Диэлектрические и оптические свойства жидкого кристалла 5-пропил-2-(п-цианфенил)-пиридин

© Б.А. Беляев, Н.А. Дрокин, В.Ф. Шабанов

Институт физики им. Л.В. Киренского Сибирского отделения Российской академии наук, 660036 Красноярск, Россия

E-mail: belyaev@iph.krasn.ru

(Поступила в Редакцию 17 июля 2002 г.)

Вблизи фазового перехода из нематического в изотропное состояние исследованы температурные зависимости диэлектрических и оптических характеристик жидкого кристалла 5-пропил-2-(п-цианфенил)-пиридин. В диапазоне частот 1–1000 MHz для твердой кристаллической, нематической и изотропной фаз измерены диэлектрические спектры, а также проведены их дебаевские аппроксимации. По зависимости статической диэлектрической проницаемости от направления директора относительно электрического поля накачки установлено, что дипольный момент малекулы отклонен от ее продольной оси на угол ~ 15°.

Авторы выражают признательность Российскому фонду фундаментальных исследований за поддержку работы (грант № 00-03-32206).

Как известно, частотная дисперсия диэлектрической проницаемости является одним из основных свойств жидких кристаллов (ЖК). Изучение характера дисперсии и особенно ее изменения под воздействием различных факторов — важная задача не только прикладной, но и фундаментальной физики. Как правило, область дисперсии, обусловленная релаксацией молекул ЖК, ограничивается частотами метрового диапазона длин волн и в настоящее время для многих жидкокристаллических сред достаточно хорошо изучена. Одако существует ряд ЖК, для которых высокочастотные диэлектрические свойства почти не изучены, так как их частоты релаксации попадают в дециметровый диапазон длин волн, где диэлектрические измерения с требуемой точностью связаны с большими трудностями. К таким материалам, в частности, относится нематический ЖК 5-пропил-2-(п-цианфенил)-пиридин (ЗСР), структурная формула молекулы которого приведена на рис. 1. Исследования оптических и диэлектрических свойств этого нематика представляют большой интерес в связи с тем, что его молекулы близки по структуре к молекулам хорошо известных и подробно изученных ЖК из серии алкилцианобифенилов *n*-CB (*n* = 5–9) [1–5]. Отличие состоит лишь в том, что в жестком остове молекулы ЗСР в одном из двух бензольных колец атом углерода замещен азотом. Кроме того, молекула ЗСР имеет низкое для ЖК число метиленовых секторов в алкильном "хвосте" (n = 3). Температура фазового перехода этого соединения из твердого кристаллического состояния в жидкую нематическую фазу $t_0 = 43.5^{\circ}$ С, а температура перехода из нематической фазы в неупорядоченную изотропную жидкость $t_c = 47.4^{\circ}$ С.

Целью данной работы является экспериментальное исследование температурных и частотных зависимостей диэлектрической проницаемости, определение коэффициентов оптического преломления, а также проведение численных аппроксимаций диэлектрических спектров, полученных для различных фазовых состояний ЖК 5-пропил-2-(п-цианфенил)-пиридин в диапазоне частот f = 1-1000 MHz.

Измерение диэлектрических проницаемостей в области частот 1-30 MHz проводилось на стандартном измерителе добротности фирмы "Tesla" BM560 с использованием измерительной ячейки в виде плоского конденсатора. В метровом и дециметровом диапазонах длин волн применялись резонансные высокочувствительные микрополосковые датчики кольцевого типа [6]. Дискретная перестройка датчиков с малым шагом осуществлялась с помощью калиброванных индуктивностей и электрически управляемых емкостей (варакторов), подключаемых в разрыв полоскового проводника в области пучности сверхвысокочастотного (СВЧ) магнитного поля для первой моды колебаний микрополоскового резонатора [7]. В пучности СВЧ-электрического поля резонатора располагалась емкостная измерительная ячейка, изготовленная в виде встречно-штыревой структуры с зазором между штырями 150 µm. Образец ЖК толщиной 200 µm помещался непосредственно на встречноштыревую структуру, ограниченную стеклянным бордюром, и защищался от загрязнения фторопластовой пленкой. Такие датчики позволяют снимать диэлектрические спектры с высокой точностью, несмотря на сравнительно малый объем исследуемого образца.

Измерение действительной компоненты диэлектрической проницаемости ε' осуществлялось стандартным способом путем регистрации сдвига частоты датчика с образцом относительно частоты пустого датчика, а мнимая компонента диэлектрической проницаемости ε'' вычислялась по изменению нагруженной доброт-

Рис. 1. Структурная формула жидкого кристалла 5-пропил-2-(п-цианфенил)-пиридин.

ности резонатора после размещения в нем образца ЖК. Амплитудно-частотные характеристики микрополосковых датчиков регистрировались автоматическим измерителем комплексных коэффициентов передачи Р4-37. При этом абсолютная точность определения диэлектрических характеристик была не хуже $\delta \varepsilon' \sim 0.05$ и $\delta \varepsilon'' \sim 0.1$. Требуемый угол φ наклона длинных осей молекул образца ЗСР относительно направления СВЧ-электрического поля в измерительной ячейке устанавливался ориентацией постоянного магнитного поля H = 2500 Ое. Измерения проводились в термостате в температурном интервале от $0-50^{\circ}$ С. Точность стабилизации температуры была не хуже 0.1° С.

Измерения температурных зависимостей оптических показателей преломления для обыкновенного n_0 и необыкновенного n_e лучей проводились на длине волны света $\lambda = 0.589 \,\mu$ m с использованием рефрактометра ИРФ-454 Б при гомеотропной ориентации директора в измерительной ячейке.

На рис. 2 представлены результаты измерений температурных зависимостей показателей оптического преломления (темные символы) для обыкновенного n_0 (1) и необыкновенного n_e (2) лучей. Здесь же показаны зависимости от температуры действительных компонент диэлектрических проницаемостей (светлые символы): продольной $\varepsilon'_{\parallel}(3)$ и поперечной $\varepsilon'_{\perp}(4)$, снятых соответственно при параллельной и перпендикулярной ориентации директора молекул ЖК относительно электрического поля накачки. Скорость нагрева исследуемого образца задавалась ~ 4°C/h. Измерение диэлектрических констант проводилось на частоте накачки f = 1 MHz, где частотная дисперсия еще практически не проявляется. Поэтому полученные диэлектрические характеристики близки к соответствующим статическим значениям $\varepsilon'_{||0}$ и ε'_{10} . Как и следовало ожидать, при температуре перехода ЖК из нематической в изотропную фазу $(t_c - t = 0)$ оптические и диэлектрические константы изменяются скачком. При этом как в нематической фазе (кривые 1-4), так и в изотропном состоянии (5, 6)

Рис. 2. Температурные зависимости оптических (темные символы) и диэлектрических (светлые символы) характеристик жидкого кристалла 3СР в области фазового перехода нематик– изотропная жидкость.

Рис. 3. Зависимость диэлектрической проницаемости образца 3СР от угла направления директора молекул относительно высокочастотного поля накачки.

наблюдаются слабые зависимости измеренных констант от температуры.

На рис. 3 показаны зависимости действительной компоненты диэлектрической проницаемости исследуемого образца в нематической фазе от угла между направлением ориентирующего молекулы ЖК постоянного магнитного поля Н и направлением высокочастотного электрического поля. Эти измерения также проводились вне области дисперсии образца на частоте накачки $f = 1 \, \text{MHz}$. Хорошо видно, что полученная зависимость асимметрична относительно вертикальной линии, проведенной через точку $\phi = 90^{\circ}$. При этом значении угла длинные оси молекул ориентированы ортогонально полю накачки. Наблюдаемая асимметрия $\varepsilon'(\phi)$ свидетельствует, очевидно, об отклонении дипольного момента молекулы μ от ее продольной оси. Угол этого отклонения несложно определить по величине смещения минимума зависимости $\varepsilon'(\phi)$ относительно 90°; он составляет $\beta \approx 15^{\circ}$.

Отметим, что достаточно большие значения статических диэлектрических проницаемостей образца ЗСР ($\varepsilon'_{\parallel 0} \approx 25$, $\varepsilon'_{\perp 0} \approx 14.4$) и его диэлектрической анизотронии ($\Delta \varepsilon' = \varepsilon'_{\parallel 0} - \varepsilon'_{\perp 0} = 11.4$) указывают на значительную величину дипольного момента молекул. Хорошо известно [1–4], что в ЖК группы алкилцианбифенилов *n*-CB, в которых дипольный момент $\mu = 4.3$ D обусловлен циангруппой $-C \equiv N$, типичные значения диэлектрических констант для всех гомологов (n = 5-9) не превышают $\varepsilon'_{\parallel 0} = 15-17$, $\varepsilon'_{\perp 0} = 6-8$ и $\Delta \varepsilon' = 8-9$ при температурах $+1 < (t_c - t) < +5^{\circ}$ С. Все это свидетельствует о том, что благодаря существованию пиридиновой группы в молекуле ЖК ЗСР ее дипольный момент возрастает на 40–50% по сравнению с ЖК из серии алкилцианобифенилов.

На рис. 4 приведены частотные зависимости действительной компоненты диэлектрической проницаемости исследуемого образца 3СР, измеренные для различных состояний мезофазы. Кривая 1 получена при $t = 0^{\circ}$ С и соответствует твердой кристаллической фазе; 2 и 3 из-

Рис. 4. Частотные зависимости диэлектрической проницаемости жидкого кристалла 3СР, снятые при различных температурах образца. t = 0 (1), 45 (2, 3) и 49°С (4).

мерены в нематической фазе ЖК при $t = 45^{\circ}$ С и показывают соответственно дисперсию ε'_{\parallel} и ε'_{\perp} , а кривая 4 снята при $t = 49^{\circ}$ С, когда образец находится в изотропном состоянии. Как видно, в твердой фазе дисперсия практически отсутствует, а величина диэлектрической проницаемости $\varepsilon'_{s} = 2.63 \pm 0.02$. Интересно отметить, что это значение проницаемости хорошо совпадает с величиной квадрата коэффициента оптического преломления для жидкой "высокотемпературной" изотропной фазы исследуемого ЖК $n_{is}^2 = 2.624$. Это свидетельствует о том, что в твердой кристаллической фазе ориентационный вклад вращения дипольного момента в диэлектрическую проницаемость отсутствует, а наблюдаемая величина ε'_{s} обусловлена малоинерционными процессами смещения внутримолекулярных электрических зарядов.

Для описания частотной дисперсии продольной (параллельной) $\varepsilon'_{\parallel}(f)$ и поперечной (перпендикулярной) $\varepsilon'_{\perp}(f)$ диэлектрической проницаемости образца 3СР, находящегося в нематической фазе, нами использовались различные подходы. При аппроксимации параллельной компоненты принимался во внимание тот факт, что дипольный момент молекулы отклонен на угол β от ее длинной оси. Поэтому в соответствии со сложившимися представлениями о механизмах диэлектрической поляризации ЖК [1–4,8] использовалось описание дисперсии с помощью суммы двух дебаевских процессов, отличающихся временами релаксации [9],

$$\varepsilon'_{\parallel}(f) - n_e^2 = \frac{(\varepsilon'_{\parallel 0} - n_e^2)g_1}{1 + \omega^2 \tau_{\parallel 1}^2} + \frac{(\varepsilon'_{\parallel 0} - n_e^2)g_2}{1 + \omega^2 \tau_{\parallel 2}^2}, \qquad (1)$$

где n_e — показатель оптического преломления для необыкновенного луча, $\varepsilon'_{\parallel 0}$ — значение статической диэлектрической проницаемости, $\omega = 2\pi f$, $\tau_{\parallel 1}$ и $\tau_{\parallel 2}$ времена релаксации двух процессов, g_1 и g_2 — соответствующие весовые множители процессов, сумма которых $g_1 + g_2 = 1$.

Существование двух релаксационных процессов в исследуемом ЖК обусловлено отклонением дипольного момента молекулы от ее продольной оси. Благодаря этому отклонению поперечная компонента μ вносит некоторую добавку в продольную диэлектрическую проницаемость, и наоборот. Численная аппроксимация результатов измерения $\varepsilon'_{\parallel}(f)$, проведенная по формуле (1), показана кривой *I* на рис. 5. Кривая построена при следующих параметрах ЖК: $\varepsilon'_{\parallel 0} = 25.2$, $\tau_{\parallel 1} = 5 \cdot 10^{-9}$ s, $\tau_{\parallel 2} = 3.8 \cdot 10^{-10}$ s, $n_e = 1.7$, $g_1 = 0.78$ и $g_2 = 0.22$.

Видно, что предлагаемая аппроксимация дает достаточно хорошее совпадение расчетной дисперсии параллельной диэлектрической проницаемости с экспериментальными данными во всем исследованном диапазоне частот. Кривая 2 на рис. 5 соответствует дисперсионной зависимости при $g_1 = 1$ и $g_2 = 0$, которая согласуется с экспериментом лишь на "низких" частотах в самом начале области дисперсии. Кривая 3 соответствует дисперсионной зависимости при $g_1 = 0$ и $g_2 = 0.22$, которая, напротив, достаточно хорошо согласуется с экспериментом только на "высоких" частотах в конце области дисперсии. И наконец, кривая 4 отвечает значению $n_{e_r}^2$, к которому приближается продольная диэлектрическая проницаемость исследуемого ЖК при $f \to \infty$.

Следует отметить, что времена $\tau_{\parallel 1}$ и $\tau_{\parallel 2}$ характеризуют дипольную релаксацию при вращении молекулы вокруг ее короткой и длинной осей. Отношение весовых множителей g_2/g_1 отвечает тангенсу угла отклонения дипольного момента от длинной оси молекулы, который оказывается равным $\beta = 15.7^{\circ}$. Как видно, это значение хорошо совпадает с величиной угла $\beta \approx 15^{\circ}$, найденной из угловых измерений диэлектрической проницаемости (рис. 3).

Аппроксимация одним и даже двумя релаксационными дебаевскими процессами поперечной диэлектрической проницаемости ЖК, для которых частота релаксации при перпендикулярной накачке выше, чем при параллельной, как правило, показывает недостаточно хорошее совпадение с экспериментом. Наблюдаемое увеличение

Рис. 5. Результаты численной аппроксимации частотной зависимости продольной диэлектрической проницаемости суммой двух дебаевских процессов с различными временами релаксации.

Рис. 6. Аппроксимация частотной зависимости поперечной диэлектрической проницаемости дебаевским процессом с непрерывным распределением времен релаксации.

расхождения с ростом частоты измеренного спектра $\varepsilon'_{+}(f)$ (точки на рис. 6) и дебаевской зависимости с одним временем релаксации (кривая 2) позволяет предположить, что в ЖК на высоких частотах проявляются мелкомасштабные колебания подвижных алкильных групп молекул. В таких случаях времена диэлектрической релаксации удобно представлять в виде их непрерывного распределения в определенном интервале. При этом диэлектрический спектр описывается следующим выражением [9]:

$$\varepsilon_{\perp}'(f) - n_0^2 = \left(\varepsilon_{\perp 0}' - n_0^2\right) \int_0^\infty \frac{G(\tau)}{1 + (2\pi f \,\tau)^2} \, d\tau, \quad (2)$$

где n₀ — показатель оптического преломления для обыкновенного луча, $G(\tau)$ — функция распределения времен релаксации. Для аппроксимации $\varepsilon'_{\perp}(f)$ нами использовалась удобная для практических расчетов функция распределения, предложенная Фрелихом [10],

$$G(\tau) = \frac{kT}{u_0} \frac{1}{\tau}, \quad \tau_0 \le \tau \le \tau_1 = \tau_0 \exp(u_0/kT),$$

$$G(\tau) = 0, \quad \tau_1 \le \tau \le \tau_0,$$
(3)

где *u*₀ — граничная энергия, определяющая интервал, в котором равномерно распределены изменения высоты потенциальных барьеров диполей $0 \leq \delta u \leq u_0$. Особенностью этой функции распределения является ее зависимость от температуры. При этом относительная ширина интервала распределения времен релаксации $(\tau_1 - \tau_0)/\tau_0$ уменьшается с повышением температуры; эта зависимость может быть представлена в виде

$$\frac{\tau_1 - \tau_0}{\tau_0} = \exp(u_0/kT) - 1.$$
 (4)

После интегрирования (2) в пределах от τ_0 до τ_1 с учетом (3) частотная зависимость действительной компоненты поперечной диэлектрической проницаемости принимает вид

c'(f)

$$\times \left[1 - \frac{kT}{2u_0} \ln \left(\frac{1 + \omega^2 \tau_0^2 \exp(2u_0/kT)}{1 + \omega^2 \tau_0^2} \right) \right].$$
(5)

Результаты численной аппроксимации, проведенной в соответствии с формулой (5), показаны на рис. 6 кривой 1, которая практически совпадает с экспериментальными точками. Здесь же кривой 3 показан уровень n_0^2 , к которому приближается поперечная диэлектрическая проницаемость исследуемого ЖК при $f \to \infty$. Кривая 1 построена при следующих параметрах: $\dot{\epsilon}'_{0\perp} = 14.4, T = 318 \text{ K}, u_0 = 1.52 \cdot 10^{-14} \text{ erg}, n_0 = 1.55, \tau_0 = 1.85 \cdot 10^{-10} \text{ s}$ in $\tau_1 = 2.39 \cdot 10^{-9} \text{ s}$. Отметим, что относительная ширина интервала непрерывного распределения времен релаксации в данном случае оказывается сравнительно небольшой $(\tau_1 - \tau_0)/\tau_0 \approx 10$. Однако полученные данные следует рассматривать как предварительные, так как частотный диапазон измерений в настоящей работе был недостаточно широк. Для уточнения параметров аппроксимации необходимы экспериментальные данные, охватывающие всю область дисперсии. Кроме того, как показывают эксперименты, в высокочастотной области дисперсии на диэлектрических спектрах ЖК могут наблюдаться и резонансные особенности [11], которые также необходимо принимать во внимание при аппроксимации $\varepsilon'(f)$ [12]. Необходимо заметить, что для кривой 2 на рис. 6, построенной по уравнению Дебая с одним временем релаксации, равным $\tau_D = 9 \cdot 10^{-10}$ s, это значение т_D попадает почти в середину интервала $(\tau_1 - \tau_0).$

Аппроксимация частотной зависимости диэлектрической проницаемости для неупорядоченной изотропной фазы кристалла ЗСР была проведена также на основе соотношений (2) и (3), поскольку наличие непрерывного распределения времен релаксации в изотропной фазе вполне допустимо. Хорошее совпадение аппроксимации с экспериментом получено при следующих параметрах ЖК: $\varepsilon'_{0is} = 19.3$, T = 322 K, $u_0 = 2.28 \cdot 10^{-13}$ erg, $n_i = 1.6$, $\tau_0 = 2.1 \cdot 10^{-10}$ s и $\tau_1 = 6.12 \cdot 10^{-9}$ s. Из сравнения этих значений с соответствующими величинами для ЖК в нематической фазе видно, что на порядок возросла величина ио и заметно изменилась врехняя граница диапазона времен релаксации, что привело к увеличению относительной ширины интервала $(\tau_1 - \tau_0)/\tau_0$ более чем в 2 раза.

Таким образом, в данной работе измерены диэлектрические проницаемости в различных фазовых состояниях ЖК 5-пропил-2-(п-цианфенил)-пиридин в широком диапазоне частот и температур. Обнаружено существенное отклонение направления дипольного момента от длинной оси молекулы, угол которого составляет $\beta \approx 15^{\circ}$. Установлено, что частотная зависимость продольной проницаемости $\varepsilon'_{\parallel}(f)$ ЖК в нематической фазе с хорошей точностью описывается суммой двух дебаевских процессов, различающихся временами релаксации. Показано, что для аппроксимации поперечной $\varepsilon'_{\perp}(f)$ в нематической фазе и диэлектрической проницаемости ЖК в изотропном состоянии $\varepsilon'_{is}(f)$ в формулах Дебая требуется учитывать непрерывное распределение времен релаксаций в определенном интервале. Выявлено хорошее совпадение характера температурных зависимостей статических диэлектрических проницаемостей и коэффициентов оптического преломления в области фазового перехода жидкокристаллический нематик-изотропная жидкость.

Список литературы

- D.A. Dunmur, M.R. Manterfield, W.H. Miller, J.K. Dunleavy. Mol. Cryst. Liq. Cryst. 45, 127 (1978).
- [2] P.G. Gummins, D.A. Dunmur, D.A. Laidler. Mol. Cryst. Liq. Cryst. 30, 109 (1975).
- [3] B.R. Ratna, R. Shashidar. Mol. Cryst. Liq. Cryst. 42, 185 (1977).
- [4] J.M. Wacrenier, C. Druon, D. Lippens. Mol. Phys. 43, 97 (1981).
- [5] Б.А. Беляев, Н.А. Дрокин, В.Ф. Шабанов, В.Н. Шепов. ФТТ 42, 5, 956 (2000).
- [6] Б.А. Беляев, Н.А. Дрокин, В.Н. Шепов. ЖТФ 65, 2, 189 (1995).
- [7] Б.А. Беляев, Н.А. Дрокин, В.Ф. Шабанов, В.Н. Шепов. ЖТФ 72, 4, 99 (2002).
- [8] Л.М. Блинов. Электро- и магнитооптика жидких кристаллов. Наука, М. (1978). 384 с.
- [9] А.А. Потапов, М.С. Мицек. Диэлектрическая поляризация. Изд-во Иркут. ун-та, Иркутск (1986). 264 с.
- [10] Г. Фрелих. Теория диэлектриков. ИЛ, М. (1960). 249 с.
- [11] Б.А. Беляев, Н.А. Дрокин, В.Ф. Шабанов, В.Н. Шепов. Письма в ЖЭТФ 66, 4, 251 (1997).
- [12] Б.А. Беляев, Н.А. Дрокин, В.Ф. Шабанов, В.Н. Шепов. ФТТ 42, 3, 564 (2000).