Нелинейные волноводные моды в симметричной трехслойной структуре, обусловленные генерацией экситонов и биэкситонов в полупроводниках

© О.В. Коровай, П.И. Хаджи, С.И. Берил

Приднестровский государственный университет им. Т.Г. Шевченко, MD-3300 Тирасполь, Молдавия E-mail: tdsu@tirastel.md

(Поступила в Редакцию 18 июля 2002 г.)

Построена теория нелинейных *TE*-поляризованных волноводных мод, распространяющихся внутри симметричной планарной трехслойной структуры с линейной сердцевиной и нелинейными обкладками. Нелинейность обкладок обусловлена учетом процесса оптической экситон-биэкситонной конверсии. Получены и исследованы законы дисперсии распространяющихся волн.

В последние годы в связи с интенсивным развитием интегральной оптики большой интерес представляет исследование свойств волноводных (направляемых) мод в сложных структурах и нелинейных световодах [1,2]. В ряде работ были изучены пространственные профили полей нелинейных волноводных мод (НВМ) с различными модельными выражениями для диэлектрических функций нелинейных сред [3-10]. Практически во всех работах, посвященных исследованию свойств НВМ, используется выражение для диэлектрической функции є кристалла, в котором зависимость от поля распространяющейся волны представлена в виде квадратичной по полю (керровской) поправки. Тем не менее в некоторых работах изучались свойства НВМ для некерровских сред. В последовательной теории диэлектрическая функция среды должна определяться самосогласованно из материальных уравнений типа Блоха с учетом конктретных механизмов нелинейности и типа квантовых переходов. Далее представлены результаты теоретических исследований свойств НВМ, распространяющихся внутри симметричной трехслойной структуры.

1. Постановка задачи. Основные уравнения

Рассмотрим распространение нелинейных TE-поляризованных волноводных мод в симметричной трехслойной структуре, состоящей из линейной пластинки толщиной 2d ($-d \le z \le +d$), окруженной с обеих сторон полубесконечными нелинейными полупроводниками. Предполагаем, что пластинка характеризуется постоянной диэлектрической проницаемостью ε_0 , а обкладки являются полупроводниками, в которых распространяющаяся световая волна может возбуждать экситоны из основного состояния кристалла и одновременно превращать их в биэкситоны благодаря процессу оптической экситон-биэкситонной конверсии. Это возможно для кристаллов типа CdS, CdSe, энергия связи биэкситонов в которых исчезающе мала. Гигантская сила осциллятора процесса оптической экситон-биэкситонной кон

версии позволяет рассматривать эффекты нелинейного распространения лазерного излучения при умеренных уровнях возбуждения. Для решения задачи используем выражение для диэлектрической функции ε нелинейной среды, зависящей от частоты ω и амплитуды E электромагнитного поля распространяющейся волны, обусловленной взаимодействием света с экситонами и биэкситонам кристалла, полученное в [11] при изучении свойств нелинейных поверхностных волн,

$$\varepsilon = \varepsilon_{\infty} \left(1 - \frac{\omega_{LT}}{\Delta} \frac{E_s^4}{(E_s^2 - E^2)^2} \right),\tag{1}$$

где $E_s^2 = 2\Delta^2/\sigma^2$, $\Delta = \omega - \omega_0$ — расстройка резонанса для частоты ω распространяющегося излучения отностительно частоты ω_0 экситонного перехода, $\omega_{LT} = 4\pi\hbar g^2/\varepsilon_{\infty}$ — частота продольно-поперечного расщепления экситонного состояния, ε_{∞} — фоновая диэлектрическая постоянная, g — константа экситон-фотонного взаимодействия, σ — константа оптической экситон-биэкситонной конверсии [12].

С помощью (1) изучим закономерности стационарного распространения TE-поляризованных волноводных мод в геометрии, показанной на рис. 1. Считаем, что электромагнитная волна распространяется вдоль оси xи характеризуется волновым вектором k. Поле волны

Рис. 1. Геометрия световода и направления компонент полей.

содержит поперечные электрическую E (параллельную оси y) и магнитную H_z , а также продольную компоненту магнитного поля H_x . Используя уравнения Максвелла, приходим к следующим волновым уравнениям, описывающим пространственное распределение электрического поля электромагнитной волны в стационарном режиме:

$$\frac{d^2E}{dz^2} = \frac{\omega^2}{c^2} \left(n^2 - \varepsilon_{\infty} \left(1 - \frac{\omega_{LT}}{\Delta} \frac{E_s^4}{(E_s^2 - E^2)^2} \right) \right) E,$$
(2)

 $|z| \ge d, \tag{2}$

$$\frac{d^2E}{dz^2} = \frac{\omega^2}{c^2} \left(n^2 - \varepsilon_0\right)E, \ |z| \le d, \tag{3}$$

где $n = ck/\omega$ — эффективный показатель преломления среды, c — скорость света в вакууме. Мы исследуем ограниченные в пространстве волноводные моды, энергия которых локализована в области волновода. При решении уравнения (2) необходимо удовлетворить условиям обращения в нуль амплитуды поля E и ее производной dE/dz на бесконечности. Вводя новую переменную $x = \omega z/c$ и интегрируя (2) с учетом условий на бесконечности, для области $|x| > D = \omega d/c$ получаем

$$\left(\frac{dE}{dx}\right)^2 + W(E) = 0, \tag{4}$$

где

$$W(E) = -E^2 \left(n^2 - \varepsilon_{\infty} + \varepsilon_{\infty} \, \frac{\omega_{LT}}{\Delta} \, \frac{E_s^2}{E_s^2 - E^2} \right). \tag{5}$$

Здесь W(E) играет роль потенциальной энергии нелинейного осциллятора, движение которого описывается первым интегралом (4).

Отметим, что для оптически линейной среды выражение для W(E) имеет вид $W(E) = -E^2(n^2 - \varepsilon_0)$, где ε_0 — диэлектрическая проницаемость средней области. Распространяя это обстоятельство на нелинейный случай, W(E) можно представить в виде $W(E) = -E^2(n^2 - \varepsilon^*)$, где в соответствии с (5)

$$\varepsilon^* = \varepsilon_{\infty} \left(1 - \frac{\omega_{LT}}{\Delta} \frac{E_s^2}{E_s^2 - E^2} \right). \tag{6}$$

Назовем ε^* эффективной диэлектрической функцией среды. Из (4) следует, что решения в виде волноводных мод существуют для тех значений амплитуды поля E(x), для которых $W(E) \leq 0$. Анализ показывает, что решения возможны при $-\infty < \Delta < \infty$ и для $\varepsilon_{\text{ех}} = \varepsilon_{\infty} (1 - \frac{\omega_{LT}}{\Delta})$, $\varepsilon^* < n^2 < \varepsilon_0$. Могут существовать волны, амплитуда E которых изменяется в пределах

$$0 \le E^2 \le E_m^2 = \frac{n^2 - \varepsilon_{\text{ex}}}{n^2 - \varepsilon_{\infty}} E_s^2.$$
(7)

Здесь ε_{ex} — диэлектрическая функция линейной среды в области экситонного перехода, E_m — максимально возможная амплитуда поля волны. Что касается формы

профиля поля E(x) этой волны, то в области |x| > D она имеет максимум. Интегрируя (4), получаем следующее решение для профиля поля E(x) вне слоя (при |x| > D):

$$\ln \frac{\sqrt{E_s^2 - E^2} + \sqrt{E_m^2 - E^2}}{\sqrt{E_s^2 - E_0^2} + \sqrt{E_m^2 - E_0^2}} + \frac{E_s}{E_m} \ln \left(\frac{E}{E_0} \frac{E_s \sqrt{E_m^2 - E_0^2} + E_m \sqrt{E_s^2 - E_0^2}}{E_s \sqrt{E_m^2 - E^2} + E_m \sqrt{E_s^2 - E^2}} \right)$$
$$= q(x - D)$$
(8)

при $D \leq \bar{z} \leq \bar{z}_m$ и

$$\ln \frac{\sqrt{E_s^2 - E_m^2}}{\sqrt{E_s^2 - E^2} + \sqrt{E_m^2 - E^2}} + \frac{E_s}{E_m} \ln \left(\frac{E_s \sqrt{E_m^2 - E^2} + E_m \sqrt{E_s^2 - E^2}}{E \sqrt{E_s^2 - E_m^2}} \right)$$
$$= q(x - x_m)$$
(9)

при $x \ge x_m$, где положение максимума $x = x_m$ профиля поля $E(x) = E_m$ определяется выражением

$$q(x_m - D) = \ln \frac{\sqrt{E_s^2 - E_m^2}}{\sqrt{E_s^2 - E_0^2} + \sqrt{E_m^2 - E_0^2}} + \frac{E_s}{E_m} \ln \left(\frac{E_s \sqrt{E_m^2 - E_0^2} + E_m \sqrt{E_s^2 - E_0^2}}{E_0 \sqrt{E_s^2 - E_m^2}} \right), \quad (10)$$

 $q = \sqrt{n^2 - \varepsilon_{\infty}}, E_0$ — значение амплитуды поля на границе раздела световода при x = D. Из (9) следует, что при $x \gg x_m$ (когда $E \ll E_m$) поле убывает экспоненциально: $E \sim \exp(-\sqrt{n^2 - \varepsilon_{ex}}(x - x_m)).$

Рассмотрим сначала свойства симметричных (четных) НВМ. Решение уравнения (3) для средней области $|x| \le D$ имеет вид

$$E = \frac{C}{p_0} \cos(p_0 x), \tag{11}$$

где $p_0 = \sqrt{\varepsilon_0 - n^2}$, *С* — константа интегрирования, которая в данном случае определяет амплитуду поля в центре пластинки. Удовлетворяя условию сохранения тангенциальных компонент электрического и магнитно-го полей на границе раздела в точке x = D, из (11) и (4) получаем

$$p_0 \operatorname{tg}(p_0 D) = \sqrt{n^2 - \varepsilon_\infty - \varepsilon_\infty \frac{\omega_{LT}}{\Delta} \frac{E_s^2}{E_s^2 - E_0^2}}.$$
 (12)

Это выражение можно рассматривать как дисперсионное соотношение, определяющее зависимость $\omega(k)$ или в данном случае зависимость эффективного показателя преломления среды n от расстройки резонанса Δ при фиксированных значениях толщины пленки d и параметра E_0 (амплитуды поля волны на границе раздела сред в точке x = D). Следует отметить, что величину амплитуды поля E_0 невозможно контролировать экспериментально. Экспериментально контролируемым параметром является поток энергии P, переносимой распространяющейся волной. Полный поток энергии в сечении волновода P можно разделить на сумму линейного потока P_L в сердцевине и нелинейного потока P_{NL} в обкладках, которые определяются выражениями

$$P_L = \frac{c^2 n}{4\pi\omega} \frac{E_0^2}{4p_0 \cos^2(p_0 D)} \left(\sin(2p_0 D) + 2p_0 D\right), \quad (13)$$

$$P_{NL} = \frac{c^2 n}{8\pi\omega} \frac{1}{p_0} \Biggl\{ E_s E_m + \sqrt{(E_s^2 - E_0^2)(E_m^2 - E_0^2)} + (E_s^2 - E_m^2) \ln \frac{\sqrt{E_s^2 - E_0^2} + \sqrt{E_m^2 - E_0^2}}{E_s - E_m} \Biggr\}.$$
 (14)

Исключая из (13), (14) E_0 с помощью (12), получаем зависимость $P(n, \Delta)$, т.е. зависимость эффективного показателя преломления нелинейного световода n от потока энергии, переносимой волной.

Что касается антисимметричных (нечетных) волноводных мод, то решение для внутренней области $(|x| \le D)$ имеет вид

$$E = \frac{C}{p_0} \sin(p_0 x). \tag{15}$$

Решение для внешней области по-прежнему выражается формулами (9)–(11). Поток в пластине при этом равен

$$P_L = \frac{c^2 n}{4\pi\omega} \frac{E_0^2}{4p_0 \sin^2(p_0 D)} \left(\sin(2p_0 D) - 2p_0 D\right), \quad (16)$$

а закон дисперсии выражается формулой

$$p_0 \operatorname{ctg}(p_0 D) = -\sqrt{n^2 - \varepsilon_\infty - \varepsilon_\infty \frac{\omega_{LT}}{\Delta} \frac{E_s^2}{E_s^2 - E_0^2}}.$$
 (17)

2. Обсуждение результатов

Введем далее нормированные на величину продольно-поперечного расщепления ω_{LT} расстройку резонанса Δ и частоту Раби σE_0 : $\delta = \Delta/\omega_{LT}$, $f_0 = \sigma E_0/\omega_{LT}$. Обсудим поведение закона дисперсии для симметричных мод, используя соотношение (12). Закон дисперсии каждой четной волноводной моды при $f_0 > 0$ существует в спектральной области, резделенной на три неперекрывающихся участка: 1) $-\infty < \delta < -f_0/\sqrt{2}$ — область длинноволновой ветви; 2) $-f_0/\sqrt{2} < \delta < f_0/\sqrt{2}$ — область средней ветви; 3) $f_0/\sqrt{2} < \delta < \infty$ — область коротковолновой ветви. В геометрии, показанной на рис. 1, может существовать

Рис. 2. Зависимость эффективного показателя преломления *n* системы от расстройки резонанса δ при различных значениях амплитуды поля f_0 на границе раздела сред (x = D) при $\varepsilon_0 = 5.6$, $\varepsilon_{\infty} = 5$ и D = 4.72. Стрелками (*a*) указаны направления роста f_0 в различных участках спектра, обозначенных буквами *a*-*d*.

не только нулевая мода, но также и высшие моды в зависимости от толщины d линейного слоя и величин ε_0 и ε_{∞} . С увеличением количества мод спектральные области их существования не перекрываются. Моды высшего порядка, следующие за нулевой модой, укладываются ниже по n в порядке возрастания их номера. Следует также отметить, что такое поведение мод характерно для случая $\varepsilon_0 > \varepsilon_{\infty}$. Если же $\varepsilon_0 \le \varepsilon_{\infty}$, то моды существуют только в коротковолновой области спектра ($\delta > 0$).

Рассмотрим детально закон дисперсии низшей четной моды и в соответствии с (12) изучим поведение дисперсионных кривых $n(\delta, f_0)$ для нее. В линейном приближении ($f_0 = 0$) функция $n(\delta)$ имеет две ветви: коротковолновую и длинноволновую (относительно $\delta = 0$). На рис. 2 представлен закон дисперсии низшей четной моды $n(\delta)$ при различных значениях f_0 . При

Рис. 3. Зависимость $n(p, \delta)$ для участков a-d закона дисперсии (рис. 2) при тех же значениях параметров $\varepsilon_0, \varepsilon_\infty$ и D.

 $f_0 \neq 0$ возникает промежуточная ветвь, расположенная в окрестности $\delta = 0$ (рис. 2, *a*, *b*). Видно, что с увеличением δ коротковолновая ветвь закона дисперсии монотонно растет, однако ее рост замедляется при больших δ и она асимптотически приближается к предельному значению *n*, величина которого определяется толщиной внутреннего слоя *d* и соотношением ε_0 и ε_{∞} . Что касается длинноволновой ветви, то с увеличением δ она быстро растет от некоторого порогового значения до величины $n = \sqrt{\varepsilon_0}$ и испытывает коротковолновый сдвиг с ростом f_0 . Область существования промежуточной ветви расширяется с увеличением f_0 , причем сама ветвь состоит из двух участков: коротковолнового и длинноволнового.

С ростом δ эффективный показатель преломления *n* системы быстро увеличивается, проходя через значение $\delta = 0$. С ростом f_0 имеют место длинноволновый сдвиг нижнего участка и коротковолновый сдвиг верхнего участка этой ветви. Заметим, что все три участка

закона дисперсии, указанные выше, существуют в неперекрывающихся спектральных областях. На рис. 2, *b* дано пространственное представление того же закона дисперсии $n(\delta, f_0)$ для низшей четной моды; из этого рисунка ясно видны закономерности поведения каждой ветви при изменении δ и f_0 .

На рис. З представлена зависимость $n(p, \delta)$ для тех же значений параметров, что и на рис. 2 ($p = P/P_0$, $P_0 = 4\pi\omega/c^2n$). Видно, что существует четыре типа зависимостей для каждой из спектральных областей, показанных на рис. 2, *a*, *b*. Коротковолновый участок закона дисперсии представлен на рис. 3, *a*. Видно, что *n* монотонно убывает с ростом потока. В длинноволновой области ($\delta \ge 0$) этого участка разрешенные значения потока исчезающе малы. С ростом δ расширяется область допустимых значений потока. На коротковолновом участке средней ветви закона дисперсии поведение потока в зависимости от *n* и δ качественно такое же (рис. 3, *b*). Наиболее длинноволновый участок (рис. 3, *c*) характеризуется минимальным значением потока в зависимости от n. Поэтому для возбуждения этой моды в данной области спектра необходима мощность, превышающая критическую. С увеличением δ минимальное значение потока растет. Наконец, длинноволновый участок средней ветви закона дисперсии представлен на рис. 3, d. Видно, что поток в зависимости от n характеризуется наличием максимума. Величина максимума увеличивается с ростом δ .

Что касается законов дисперсии антисимметричных мод, определенных формулой (17), то их качественное спектральное поведение подобно поведению четных мод. Отметим также, что четные и нечетные моды чередуются в зависимости $n(\delta)$ при фиксированном значении f_0 .

Из представленных результатов видно, что спектральное (и интенсивностное) поведение ветвей законов дисперсии симметричного волновода с нелинейными обкладками при учете процессов экситон-фотонного взаимодействия и оптической экситон-биэкситонной конверсии существенно более сложное, чем поведение дисперсионных ветвей для керровской нелинейности [2–10,13]. Это обусловлено сложностью поведения диэлектрической функции нелинейной среды в зависимости от частоты и амплитуды поля распространяющейся волны. Из (1) видно, что диэлектрическая функция имеет резонансный характер не только по частоте, но и по амплитуде поля волны. Изменение амплитуды поля приводит к появлению новых резонансных частот, которые обусловлены перенормировкой энергетического спектра полупроводника при больших уровнях возбуждения. В [14] показано, что имеет место эффект Аутлера-Таунса, который подтверждает изменение собственных частот нелинейных объемных поляритонов при увеличении уровня возбуждения [15].

Список литературы

- Поверхностные поляритоны / Под ред. В.М. Аграновича, Д.Л. Миллса. Наука, М. (1985).
- [2] Н.Л. Дмитрук, В.Г. Литовченко, В.Л. Стрижевский. Поверхностные поляритоны в полупроводниках. Наук. думка, Киев (1989).
- [3] A.D. Boardman, T. Twardowski. J. Opt. Soc. Am. B 5, 523 (1988).
- [4] K.M. Leung. J. Opt. Soc. Am. B 5, 571 (1988).
- [5] L. Torner, J.P. Torres. IEEE J. Quant. Electron. 28, 1571 (1992).
- [6] J.P. Torres, L. Torner. IEEE J. Quant. Electron. 29, 917 (1993).
- [7] С.А. Вакуленко, И.А. Молотков. Вестн. ЛГУ. Сер. 4, 11, 21 (1987).
- [8] Х.С. Арутюнян, К.А. Барсуков. Изв. АН АрмССР 20, 125 (1985); Опт. и спектр. 58, 1064 (1985).
- [9] S.J. Al-Bader, H.A. Jamid. IEEE J. Quant. Electorn. 24, 2052 (1988).
- [10] H.W. Schürmann, V.S. Serov, Yu.V. Shestopalov. Phys. Rev. E 58, 1040 (1998).
- [11] О.В. Коровай, П.И. Хаджи. ФТТ **45**, *2*, 364 (2003).

- [12] П.И. Хаджи. Нелинейные оптические процессы в системе экситонов и биэкситонов в полупроводниках. Штиинца, Кишинев (1985).
- [13] Н.Н. Ахмедиев, К.О. Болтарь, В.М. Елеонский. Опт. и спектр. 53, 906; 1097 (1982).
- [14] П.И. Хаджи, А.В. Коровай, Д.В. Ткаченко. ФТТ 44, 774 (2002).
- [15] R. Shimano, M. Kuwata-Gonokami. Phys. Rev. Lett. 72, 530 (1994).