Магнитная и орбитальная структуры манганитов в области электронного легирования

© С.М. Дунаевский, В.В. Дериглазов

Петербургский институт ядерной физики им. Б.П. Константинова Российской академии наук, 188350 Гатчина, Ленинградская обл., Россия

E-mail: dunaevsk@mail.pnpi.spb.ru

(Поступила в Редакцию 26 августа 2002 г.)

Рассчитаны полные энергии различных магнитных и орбитальных конфигураций манганитов лантана $La_{1-y}Ca_yMnO_3$ в области электронного легирования y > 0.5 с учетом расщепления e_g -уровня марганца. Для определения состояния системы впервые выполнена минимизация полной энергии как по углу между спинами соседних ионов Mn^{4+} , так и по двум углам орбитального смешивания, определяющим тип орбитального упорядочения в рассматриваемой системе. Полученные для T = 0 К фазовые диаграммы манганитов правильно описывают наблюдаемое в эксперименте с ростом концентрации электронов чередование магнитных орбитально упорядоченных структур в области реальных значений межионного обменного параметра Гейзенберга, параметра внутриионного обмена и интеграла перескока.

Работа выполнена при поддержке Российского фонда фундаментальных исследований (грант № 00-62-16729 и российско-белорусский грант № 02-02-81012 Бел2002-а).

Олной из особенностей физики манганитов $La_{1-x}Ca_{y}MnO_{3}$ (y = 0 - 1)является наблюдаемая асимметрия их фазовых диаграмм относительно значения y = 0.5 [1,2], природа которой пока до конца не выяснена. В [3] было отмечено, что одной из причин асимметрии свойств является различие спектров $E(\mathbf{k})$ носителей заряда в антиферромагнитных $(A\Phi)$ структурах A, G и C, возникающее в результате учета орбитального вырождения е_g-уровня в модели двойного обмена. В [4] показано, что учет орбитального вырождения не только изменяет спектр носителей $E(\mathbf{k})$ при переходе от одной магнитной структуры к другой, но и влияет на условия возникновения либо коллинеарных, либо скошенных $(A, G, C \, \mathrm{u} \, F)$ магнитных структур, отвечающих минимуму полной энергии. Для нахождения магнитной конфигурации основного состояния системы при фиксированном значении x = 1 - y необходимо было вычислять спектр $E(\mathbf{k}, \theta)$ носителей заряда (электронов) в скошенных А, G, C и F магнитных структурах, зависящий от угла θ между спинами ионов марганца, принадлежащих различным магнитным подрешеткам. Здесь следует отметить, что ранее [5-8] для расчета энергий АФ структур А, G и *С* использовался спектр $E(\mathbf{k})$, рассчитанный для ферромагнитного (ФМ) типа спинового упорядочения $(\theta = 0)$, а минимизации полной энергии по углу θ не проводилось. Выполненные в [4] расчеты позволили получить неблюдаемое в эксперименте чередование фаз G - C - A с ростом концентрации носителей (электронов) в области реальных значений параметров межатомного и внутриатомного обмена. Правильное качественное описание эксперимента было достигнуто только в результате учета расщепления eg-уровня марганца для АФ структур А и С и задания для каждой структуры определенного типа орбитального упорядочения. В данной работе тип орбитального упорядочения, зависящий от искажений кислородного октаэдра, не задавался, а находился в результате минимизации полной энергии по углу θ и по двум углам орбитального внутриатомного смешивания φ_i . Таким образом, найдены равновесные магнитные и орбитальные конфигурации манганитов La_{1-y}Ca_yMnO₃ при T = 0 K и значениях y = 0.5-1.

1. Метод расчета

Данная работа посвящена расчетам равновесных магнитных и орбитальных структур манганитов при T = 0 К для значений y = 0.5-1, когда в первом приближении можно не рассматривать внутри- и межатомные кулоновские взаимодействия.

В работе использовался эффективный гамильтониан манганитов, учитывающий двойной обмен, внутриатомное хундовское взаимодействие e_g - и t_{2g} -электронов, гейзенберговское взаимодействие локальных магнитных моментов t_{2g} -электронов \mathbf{S}_i друг с другом и янтеллеровское расщепление e_g -уровня марганца

$$H = \sum_{i\alpha\sigma} \varepsilon_{i\alpha\sigma} d^{+}_{i\alpha\sigma} d_{i\alpha\sigma} + \sum_{ij\alpha\beta\sigma'\sigma} t^{\sigma\sigma'}_{ij\alpha\beta} d^{+}_{i\alpha\sigma} d_{j\beta\sigma'} + \sum_{ij} J_{ij} \mathbf{S}_{i} \mathbf{S}_{j}$$
$$+ \sum_{i\alpha\beta\sigma} \Delta_{i} \cdot (d^{+}_{i\alpha\sigma} d^{+}_{i\beta\sigma}) \begin{pmatrix} \cos\varphi_{i} & \sin\varphi_{i} \\ \sin\varphi_{i} & -\cos\varphi_{i} \end{pmatrix} \begin{pmatrix} d_{i\alpha\sigma} \\ d_{i\beta\sigma} \end{pmatrix}.$$
(1)

Индексы α, β нумеруют e_g -орбитали; индексы i, j атомы; $\varepsilon_{i\alpha\uparrow} = \varepsilon_{d\alpha} - J_H S$, $\varepsilon_{i\alpha\downarrow} = \varepsilon_{d\alpha} + J_H(S+1)$, $\varepsilon_{d\alpha}$ энергия невозмущенного e_g -уровня иона Mn⁴⁺ типа α , J_H — внутриатомный хундовский интеграл (для Mn³⁺ его значение, вычисленное в [3], оказалось равным 0.25 eV); $d^+_{i\alpha\sigma}(d_{i\alpha\sigma})$ — операторы рождения (уничтожения) e_g -электрона типа α на узле i; σ — спиновый индекс; $J_{ij} = J_{AF}$ — обменные интегралы модели Гейзенберга локализованных t_{2g} -электронов; $t_{ij\alpha\beta}$ — интегралы перескока между орбиталями α и β ионов марганца і и ј. Явный вид всех интегралов перескока для атомного базиса, когда $|\alpha\rangle = |1\rangle = |z^2\rangle$ и $|\beta\rangle = |2\rangle = |x^2 - y^2\rangle$, приведен в [3]. В модели двойного обмена интеграл перескока t_{i jαβ} зависит от угла между локальными магнитными моментами ближайших ионов марганца θ_{ii} , а численное значение t для манганитов лежит в интервале 0.1-0.3 eV (см. [3]). В АФ структуре G для ближайших соседей $\theta_{ij} = \pi$. В C-структуре спины ионов Mn образуют ФМ цепочки, перпендикулярные плоскости ХҮ. В этой плоскости $\theta_{ii} = \theta_{xy} = \pi$, а в цепочке $\theta_{ii} = \theta_z = 0$. В A-структуре соседние ФМ плоскости, в которых $\theta_{ij} = \theta_{xy} = 0$, упорядочены антиферромагнитно относительно друг друга, т.е. $\theta_{ij} = \theta_z = \pi$, когда атомы с индексами *i* и *j* принадлежат соседним плоскостям. В ФМ структуре всегда $\theta_{ij} = 0$. Для всех рассматриваемых АФ структур может

 $\theta_{ij} = 0$. Для всех рассматриваемых АФ структур может быть отличен от нуля всего один угол θ_{ij} , поскольку более сложные АФ структуры, характеризуемые двумя различными углами θ_{ij} , в манганитах в эксперименте до сих пор не наблюдались. Параметр Δ_i описывает ян-теллеровское расщепление изначально вырожденного e_g -уровня. Чтобы учесть влияние орбитального упорядочения на формирование той или иной магнитной структуры, в работе использовался произвольный атомный базис $|\alpha\rangle_i$ и $|\beta\rangle_i$, связанный с исходным базисным преобразованием

$$\begin{pmatrix} |\alpha\rangle_i \\ |\beta\rangle_i \end{pmatrix} = \begin{pmatrix} \cos\frac{\varphi_i}{2} & \sin\frac{\varphi_i}{2} \\ -\sin\frac{\varphi_i}{2} & \cos\frac{\varphi_i}{2} \end{pmatrix} \begin{pmatrix} |1\rangle_i \\ |2\rangle_i \end{pmatrix},$$
(2)

где φ_i — угол внутриатомного орбитального смешивания. После такого преобразования интеграл перескока $t_{ij\alpha\beta}$ зависит уже от трех углов: θ_{ij} , φ_i и φ_j . Поскольку в работе рассматриваются только АФ структуры, состоящие их двух магнитных подрешеток, возможные типы орбитального упорядочения совпадают с типами магнитных конфигураций (A, G, C, F). Так, орбитальная ФМ структура соответствует всего лишь одному углу смешивания φ_i на всех узлах. В АФ орбитальных структурах A, G и C каждой подрешетке отвечает свой угол орбитального смешивания — φ_1 или φ_2 — а сами подрешетки определяются так же, как и для магнитных конфигураций. При значениях $\varphi_i = 0$ либо π орбитальные структуры являются коллинеарными, а при $\varphi_i \neq 0$ — скошенными.

Без учета последнего члена в гамильтониане (1) преобразование (2) никак не влияет на спектр и полную энергию магнитных конфигураций. Однако при учете ян-теллеровского расщепления e_g -уровня электронная часть полной энергии системы начинает зависеть от типа орбитального порядка (значений φ_1 и φ_2). Известно, что в соединении (La–Nd)_{1-y}Sr_yMnO₃ [9] для значений y = 0.52-0.62 экспериментально наблюдалась АФ структура *A* с преимущественным заполнением орбиталей типа $|2\rangle$. Кроме того, существуют и теоретические предпосылки [7,10] для утверждения, что в магнитной

фазе $A \ 2\Delta = \varepsilon_{d1} - \varepsilon_{d2} > 0$ (кроме случая y = 0). Для магнитной фазы C знак расщепления будет обратным (см. [10]). Расщепление 2 Δ принималось пропорциональным x = 1 - y таким образом, чтобы в предельном случае y = 0 получить значение $|\varepsilon_{d1} - \varepsilon_{d2}| = 0.3 - 0.5$ eV [11] для A-фазы LaMnO₃.

Численные расчеты были проведены для различных значений концентрации электронов x = 1 - y и наборов параметров J_H/t и J_{AF}/t , где $J_{AF} = 1.5$ meV (в отсутствие легирования для CaMnO₃ $T_N = 141$ K). Полученные результаты не распространяются на область в непосредственной близости от стехиометричного состава x = 0.5, так как в работе не рассматривалась магнитная *CE*-структура, связанная с эффектом зарядового упорядочения. Полные энергии всех конфигураций минимизировались по соответствующим углам θ и φ_i , в результате чего для каждого значения электронной концентрации определялись равновесные магнитная и орбитальная структуры.

Энергия, приходящаяся на один атом марганца фазы G, вычислялась как

$$E_G(x, \theta, \varphi_1, \varphi_2) = -3J_{AF}S^2 \cos \theta + \int_{-\infty}^{\varepsilon_F} \varepsilon n_G(\varepsilon, \theta, \varphi_1, \varphi_2) d\varepsilon, \quad (3)$$

где S = 3/2, ε_F — уровень Ферми, а $n_G(\varepsilon, \theta, \varphi_1, \varphi_2)$ плотность состояний фазы G. Плотность состояний находилась суммированием по соответствующей зоне Бриллюэна спектра $E(\mathbf{k}, \theta, \varphi_1, \varphi_2)$, вычисленного путем диагонализации матрицы (8 × 8) из [3] гамильтониана G-структуры, модифицированной с учетом преобразования (2). Аналогичным образом вычислялись полные энергии всех остальных магнитных структур (см. [4]).

2. Результаты расчета и их обсуждение

На рис. 1 представлены зонные структуры для магнитных фаз A и C. В отсутствие расщепления e_g -уровня (жирная линия) зонная структура для обеих фаз не зависит от углов орбитального смешивания. При расщеплении e_g -уровня ($\Delta = 1$) электронные зоны претерпевают изменение в зависимости от типа орбитального порядка. Видно, что для структуры A ФМ орбитальное упорядочение $|x^2 - y^2\rangle$ ($\varphi_{1,2} = \pi$, точечная линия) выгоднее, чем упорядочение $|3z^2 - r^2\rangle$ ($\varphi_{1,2} = 0$, тонкая сплошная линия), тогда как для структуры C ситуация обратная.

В отсутствие свободных электронов магнитные фазы в порядке возрастания их магнитных энергий располагаются как G, C, A и F. С ростом x в результате конкуренции между кинетической и магнитной энергиями системы реализуется одно из магнитных состояний. На рис. 2 представлены фазовые диаграммы системы La_{1-v}Ca_vMnO₃ в области x = 0-0.5 без расщепления

Рис. 1. Зонные структуры фаз A(a) и C(b) для случаев вырожденного e_g -уровня (жирные линии, $\Delta = 0$) и расщепленного e_g -уровня ($\Delta = \pm t$) для двух типов ферромагнитного орбитального порядка $\varphi_{1,2} = 0$ (тонкие линии) и π (точки).

 e_g -уровня в координатах $(x, J_H/t)$ для обменного параметра $J_{AF} = 0.015t$, характерного для CaMnO₃ при t = 0.1 eV, и в координатах $(x, J_{AF}/t)$ для $J_H = 2.5t$. Тонкие линии соответствуют межфазным границам в коллинеарном приближении, а жирные линии — при допущении возможности скашивания спинов. В широкой области значений J_{AF} и x равновесной магнитной структурой является ФМ фаза. Это противоречит экспериментальному факту, согласно которому ФМ фаза в области концентраций *x* < 0.5 наблюдается крайне редко (см. [9]). Обычно в области электронного легирования наблюдаются магнитные фазы $C \ (x \cong 0.1 - 0.4)$ и $A \ (x \cong 0.4 - 0.5)$ [12]. Из расчета следует, что "правильное" чередование фаз G - C - A с ростом x возможно в коллинеарном приближении лишь в интервале $0.033 < J_{AF}/t < 0.043$, соответствующем слишком большим значениям J_{AF}. Скашивание подрешеток только усугубляет ситуацию: скошенная фаза G существенно вытесняет остающиеся коллинеарными фазы (существует лишь узкая область C' скошенной фазы C при $x \cong 0.08$), при этом фаза А в промежуточной области легирования x > 0.4 полностью исчезает. Соответствующие углы скоса для структуры G примерно пропорциональны x и достигают 180° на границе G-F.

На рис. 3 изображены фазовые диаграммы, рассчитанные с учетом расщепления eg-уровня, пропорционального электронной концентрации $2\Delta = 3tx$, и с оптимизацией по спиновому углу θ и орбитальным углам $\varphi_{1,2}$. Расщепление существенно изменяет характер фазовых диаграмм. В области $x \ge 0.4$ на диаграмме в координатах $(x, J_H/t)$ вновь возникает фаза A, а межфазные границы лишь незначительно сдвигаются с ростом параметра J_H/t . В результате качественный вид фазовой диаграммы $(J_{AF}/t, x)$ практически не зависит от Ј_Н. В скошенной фазе G реализуется ФМ орбитальный порядок типа $|3z^2 - r^2 > (\varphi_{1,2} = 0)$. Он трехкратно вырожден: равновероятны орбитальные порядки $|3y^2 - r^2\rangle(\varphi_{1,2} = 2\pi/3)$ и $|3x^2 - r^2\rangle(\varphi_{1,2} = 4\pi/3)$. Фаза С коллинеарна, за исключением небольшой области C' с ФМ орбитальным порядком $|3z^2 - r^2\rangle$. Две области коллинеарной фазы А с ФМ типом орбитального порядка $|x^2 - y^2\rangle(\varphi_{1,2} = \pi)$ связаны узкой областью A', в которой конкуренция между орбитальным и спиновым упорядочением порождает различные комбинации коллинеарной либо скошенной спиновой структуры типа А с ФМ орбитальным порядком, к которому может подмешиваться АФ орбитальный порядок. Поведение угла скашивания ($\pi - \theta$) и орбитальных углов $\varphi_{1,2}$ вдоль штриховой прямой, проходящей через область А', пока-

Рис. 2. Магнитные фазовые диаграммы для случая вырожденного e_g -уровня ($\Delta = 0$): ($J_H/t, x$) (a) и ($J_{AF}/t, x$) (b), рассчитанные в коллинеарном приближении (тонкие линии) и с учетом скашивания спинов (жирные линии).

Рис. 3. Магнитные фазовые диаграммы для случая расщепленного e_g -уровня ($\Delta \sim x$): ($J_H/t, x$) (a) и ($J_{AF}/t, x$) (b), на вставке показана зависимость от степени легирования угла спинового скашивания ($\pi - \theta$) и углов орбитального смешивания $\varphi_{1,2}$ вдоль штриховой линии, проходящей через область A'.

зано на вставке нижней диаграммы рис. 3. ФМ фаза *F* имеет ФМ орбитальный порядок, аналогичный фазе *G*.

Расщепление e_g -уровня стабилизирует магнитный и орбитальный порядки, которые в основном определяются величиной расщепления Δ и его зависимостью степени легирования. В области реальных значений $0.013 < J_{AF}/t < 0.02$ чередование магнитных фаз G-C-A и положение межфазных границ хорошо согласуются с экспериментом [9]. Численные расчеты также подтверждают экспериментально наблюдаемую коллинеарность фаз A и C, как это следует, например, из данных по нейтронному рассеянияю в A-фазе Nd_{1-y}Sr_yMnO₃ (y > 0.52) [13] и в C-фазе Sm_{1-y}Ca_yMnO₃ (y = 0.8) [14].

В заключение отметим, что в работе представлены результаты численных расчетов магнитных фазовых диаграмм манганитов в области электронного легирования, выполненных на основе законов дисперсии $E(\mathbf{k})$ основных типов антиферромагнитного упорядочения манганитов с учетом расщепления e_g -уровня, скашивания магнитных подрешеток и орбитального упорядочения. Полученные результаты достаточно хорошо описывают существующие экспериментальные данные: чередование наблюдаемых с ростом *x* магнитных структур с характерным для них орбитальным порядком при концентрации электронов x = 0-0.5 для реальных значений параметров внутри- и межионного обмена.

Список литературы

- [1] S. Mori, C.H. Chen, S.W. Cheong. Nature (London) **392**, 473 (1998).
- [2] R. Maezono, S. Ishihara, N. Nagaosa, Phys. Rev. B 57, R13993 (1998).
- [3] С.М. Дунаевский. ФТТ 43, 2161 (2001).
- [4] С.М. Дунаевский, В.В. Дериглазов. ФТТ 44, 12, 2169 (2002).
- [5] H. Shiba, R. Shina, A. Takahashi. J. Phys. Soc. Jpn. 66, 941 (1997).
- [6] J. van den Brink, D. Khomskii. Phys. Rev. Lett. 82, 1016 (1999).
- [7] Liang-Jian Zou. Phys. Rev. B 63, 155103 (2001).
- [8] G. Venketeswara Pai. Phys. Rev. B 63, 064431 (2001).
- [9] T. Akimoto, Y. Maruyama, Y. Moritomo, A. Nakamura, K. Hirota, K. Ohoyama, M. Ohashi. Phys. Rev. B 57, R5594 (1998).
- [10] R. Maezono, S. Ishihara, N. Nagaosa. Phys. Rev. B 58, 11583 (1998).
- [11] J.W. Liu, Z. Zeng, Q.Q. Zheng, H.Q. Lin. Phys. Rev. B 60, 12968 (1999).
- [12] R. Kajimoto, H. Yoshizawa, H. Kawano, H. Kuwahara, Y. Tokura, K. Ohoyama, M. Ohashi. Phys. Rev. B 60, 9506 (1999).
- [13] H. Kawano, R. Kajimoto, H. Yoshizawa, Y. Tomioka, H. Kuwahara, Y. Tokura. Phys. Rev. Lett. 78, 4253 (1997).
- [14] C. Autret, B. Raveau, M. Hervieu, A. Maignon, C. Martin, G. Andre, F. Bouree, A. Kurbakov, V. Trunov. J. Magn. Magn. Mater. (2002), in press.