Высокотемпературные свойства манганитов. Проявление неоднородности парамагнитной фазы?

© Н.А. Бабушкина, Е.А. Чистотина, К.И. Кугель*, А.Л. Рахманов*, О.Ю. Горбенко**, А.Р. Кауль**

Российский научный центр "Курчатовский институт",

123182 Москва, Россия

* Институт теоретической и прикладной электродинамики Российской академии наук,

** Московский государственный университет им. М.В. Ломоносова,

119992 Москва, Россия

E-mail: babushkina@imp.kiae.ru

(Поступила в Редакцию 20 июня 2002 г.)

Проанализированы магнитная восприимчивость, сопротивление и магнитосопротивление образцов $(La_{1-y} Pr_y)_{0.7}Ca_{0.3}MnO_3$ с различным содержанием Pr и обогащением изотопом кислорода ¹⁸O. В области высоких температур все образцы были парамагнитными диэлектриками, а при температурах ниже 60 К часть из них переходила в ферромагнитное металлическое состояние. Поведение восприимчивости, сопротивления и магнитосопротивления всех образцов в высокотемпературной области практически идентично, несмотря на заметное отличие свойств в низкотемпературной области, а именно в широком интервале температури и магнитных полей магнитосопротивление квадратично растет с магнитным полем и падает с температурой по закону, близкому к $1/T^5$. Совместный анализ магнитной восприимчивости и магнитосопротивления квадратично растет с значительными ферромагнитными корреляциями в парамагнитной области.

Работа выполнена при поддержке Российского фонда фундаментальных исследований (проекты № 01-02-16240, 02-02-16078 и 00-15-96570), CRDF (проект N RP2-2355-MO-02), INTAS (проект N 01-2008) и NWO (проект N 047-008-017).

Для манганитов характерно большое разнообразие типов упорядочения (зарядового, орбитального, магнитного). Взаимосвязь различных параметров порядка приводит к ряду эффектов, наиболее ярким из которых является колоссальное магнитосопротивление [1]. Для физики манганитов важную роль играет также тенденция к фазовому расслоению и образованию неоднородных состояний. Фазовое расслоение наиболее существенно вблизи линий фазовых переходов. Однако имеются указания на то, что даже в парамагнитной области состояние системы является неоднородным и характеризуется значительными ферромагнитными (ФМ) корреляциями [2–4].

В данной работе нами проанализированы магнитосопротивление и магнитная восприимчивость манганитов $(La_{1-v}Pr_v)_{0.7}Ca_{0.3}MnO_3$ $(0.5 \le v \le 1)$. В этой области концентраций Pr замещение ¹⁶О на ¹⁸О приводит к существенным изменениям свойств рассматриваемой системы [5,6], что использовалось для увеличения разнообразия образцов без изменения их химического состава. Изучалась область высоких температур $(80 < T < 30 \,\mathrm{K})$ и магнитных полей $(H < 4 \,\mathrm{T})$, в которой наши образцы не обладали дальним ФМ-порядком и характеризовались неметаллическим поведением проводимости $\sigma(T)$. Однако даже в неметаллической фазе магнитосопротивление манганитов $MR = (\sigma(H) - \sigma(0)) / \sigma(0)$ довольно велико и может достигать 100%, при этом в широком диапазоне параметров оно растет квадратично с полем: $MR = a(T)H^2$. Для всех изученных образцов коэффициент a(T) обнаруживает сильную температурную зависимость $a(T) \sim 1/T^5$. Экспериментальные данные проанализированы с использованием имеющихся в литературе модельных представлений об электронном транспорте в манганитах. Показано, что наблюдаемые эффекты могут быть интерпретированы в предположении о существовании неоднородного состояния со значительными ФМ-корреляциями парамагнитной области. Учет спин-зависимого туннелирования электронов между коррелированными областями позволяет естественным образом объяснить сильную температурную зависимость магнитосопротивления.

1. Образцы

Образцы системы (La_{1-y}Pr_y)_{0.7}Ca_{0.3}MnO₃ с различными значениями y ($0 \le y \le 1$) и разной степенью обогащения изотопом ¹⁸О были достаточно подробно охарактеризованы в предыдущих работах [5,6]. Образцы приготовлялись в виде брусков длиной 7 mm и имели поперечный размер 1×1 mm. Для исследования были выбраны пять образцов с различным низкотемпературным поведением электросопротивления $\rho(T)$.

1) (La_{0.25}Pr_{0.75})_{0.7}Ca_{0.3}MnO₃ с ¹⁶O, имеющий переход металл–диэлектрик при $T_{\rm MI} = 87$ К.

2) (La_{0.25}Pr_{0.75})_{0.7}Ca_{0.3}MnO₃ с 30% ¹⁸О и $T_{\rm MI} = 58$ K.

3) $(La_{0.25}Pr_{0.75})_{0.7}Ca_{0.3}MnO_3$ при полной замене ^{16}O на $^{18}O.$

4) Pr_{0.7}Ca_{0.3}MnO₃ c ¹⁶O.

5) $Pr_{0.7}Ca_{0.3}MnO_3$ c ¹⁸O.

¹²⁷⁴¹² Москва, Россия

Образцы № 3-5 остаются диэлектриками вплоть до самых низких температур.

2. Экспериментальные результаты

На рис. 1 представлена температурная зависимость $\rho(T)$ в нулевом магнитном поле для пяти указанных образцов. Измерения электросопротивления проводились на постоянном токе стандартным четырехзондовым методом в интервале температур от 4.2 до 300 К. Приведенные данные согласуются с опубликованными ранее [5]. Отметим, что в высокотемпературной области зависимости $\rho(T)$ для всех образцов весьма схожи и могут быть описаны термоактивационным законом

$$\rho(T) = \rho_0 T^{\gamma} \exp\left(\frac{E_g}{k_{\rm B}T}\right). \tag{1}$$

В пределах точности эксперимента энергия активации E_g практически не зависит от выбора γ . Зависимость (1) согласуется с данными других авторов, полученными для аналогичных образцов [7,8]. Отметим также, что подобный закон следует из теоретического описания транспортных свойств неметаллических фазово-расслоенных манганитов [9].

Измерения низкочастотной магнитной восприимчивости χ проводились ранее на аналогичных образцах [5,10]. Анализ этих результатов [10] позволил сделать вывод о наличии неоднородного состояния в парамагнитной области. Графики $1/\chi(T)$ для исследуемых образцов приведены на рис. 2. Кривые $1/\chi(T)$ в высокотемпературной области оказываются качественно схожими, несмотря на выявляемые нейтронными эксперимента-

Рис. 1. Температурная зависимость электросопротивления $\rho(T)$ в нулевом магнитном поле для пяти исследованных образцов.

Рис. 2. Температурная зависимость обратной магнитной восприимчивости $1/\chi(T)$. Сплошные линии — эксперимент, штриховая линия — теоретическая кривая при концентрации ФМ-областей 5%, S = 2, g = 2, $N_{\rm ef} = 130$, удельный вес материала 6.2 g/cm³.

ми [6] различия в структуре низкотемпературного состояния. Так, согласно [6], при y = 0.75 наблюдается однородное антиферромагнитное (АФМ) состояние для образца с ¹⁸О и расслоение на макроскопические ФМи АФМ-области для образца с ¹⁶О. Кривая $\chi(T)$ может быть аппроксимирована законом типа Кюри–Вейса $\chi = C/(T - \Theta)$ с положительной и растущей с температурой величиной Θ . Положительное значение Θ и большая по сравнению с типичными антиферромагнетиками магнитная восприимчивость указывают на наличие значительных ФМ-корреляций, которые, по-видимому, и вносят основной вклад в χ .

Измерения магнитосопротивления изучаемых образцов проводились в интервале температур 80-273 К в магнитных полях до 4 Т. При этом ток и магнитное поле были направлены вдоль длинной стороны образца. Для всех исследованных образцов проводимость росла с увеличением приложенного магнитного поля Н. Практически во всей области магнитных полей и температур относительное изменение проводимости подчинялось универсальному квадратичному закону $MR = a(T)H^2$. Заметные отклонения от квадратичного закона возникают в области малых температур вблизи перехода диэлектрик-металл. Для иллюстрации на вставке к рис. З показана зависимость MR(H) для образца Pr_{0.7}Ca_{0.3}MnO₃ с ¹⁶О в интервале температур T = 80 - 273 К. На рис. 3 приведена температурная зависимость коэффициента а. Как видно из рисунка, для всех образцов величина a(T) является быстро убывающей функцией (по закону, близкому к $1/T^5$).

Рис. 3. Температурная зависимость коэффициента *a* из формулы MR = $a(T)H^2$ для различных образцов. Точки — эксперимент ($I - {}^{16}$ O, y = 0.75; 2 - 30% 18 O, y = 0.75; $3 - {}^{18}$ O, y = 0.75; $4 - {}^{16}$ O, y = 1; $5 - {}^{18}$ O, y = 1), штриховая линия — расчет по формуле (8) при S = 2, g = 2, Z = 6, $N_{\rm ef} = 130$, $J/k_{\rm B} = 15$ K, $H_a = 0.5$ T и $\cos\beta = 1$. На вставке показана полевая зависимость магнитосопротивления образца $\Pr_{0.7}$ Ca_{0.3}MnO₃ с 16 O при различных температурах.

3. Обсуждение результатов

Итак, в высокотемпературной области показанные на рис. 1-3 температурные зависимости сопротивления, магнитной восприимчивости и магнитосопротивления для всех изученных образцов весьма схожи как качественно, так и количественно. Это с очевидностью указывает на сходный механизм, определяющий траспортные свойства данных материалов в неметаллической фазе. Как уже отмечалось выше, анализ современных теоретических представлений о свойствах манганитов [1-4] и данные по магнитной восприимчивости свидетельствуют о возможном наличии сильных ФМ-корреляций в наших образцах в парамагнитной области. Другим возможным указанием на наличие коррелированных областей служит относительно большая и сильно зависящая от температуры величина магнитосопротивления. Действительно, поскольку измеренное сопротивление подчиняется активационному закону (1), естественно предположить, что магнитосопротивление манганитов в неметаллической области связано с изменением ширины щели в подвижности носителей тока $E_g(H)$ с ростом магнитного поля [1]. Тогда

$$MR = \exp[-(E_g(H) - E_g)/k_BT] - 1.$$
 (2)

Согласно известным представлениям о зонной структуре магнитоупорядоченных материалов (в рамках, например, s-d-модели), магнитосопротивление можно представить как квадратичную функцию магнитного момента M, что было подтверждено и в ряде экспериментальных работ (см., например, [1]). Это согласуется и с нашими результатами в области малых полей, где $M = \chi H$. При MR $\ll 1$ из простых размерных соображений (2) можно переписать в виде

$$MR = -\frac{\lambda^2 H^2 \Delta E_g}{M_s^2 k_B T}, \quad \Delta E_g = \frac{E_g (M^2) - E_g}{(M/M_s)^2}, \qquad (3)$$

где M_s — магнитный момент насыщения. Подставляя в (3) экспериментальные значения MR и χ и положив для оценок $4\pi M_s = 1$ T, для $Pr_{0.7}Ca_{0.3}Mn^{16}O_3$ при T = 150 K, например, получим $\Delta E_g \sim 0.1$ eV, что значительно выше энергии любого магнитного упорядочения в расчете на один магнитный атом. Отметим, что оцененное здесь значение ΔE_g типично для манганитов подобного состава в рассматриваемой области температур [1]. Уже такая грубая оценка указывает на то, что механизм магнитосопротивления должен определяться областями достаточно большого размера. Это отражает некую общую физическую ситуацию. Если система находится в состоянии с некоррелированными магнитными атомами, то при температуре 100 К и выше энергия взаимодействия атомов с магнитным полем $\mu_{\rm B}S_{g}H$ (где $\mu_{\rm B}$ — магнетон Бора, g — фактор Ланде, S — спин атома) слишком мала по сравнению с $k_{\rm B}T$, чтобы вызвать заметные изменения состояния системы и ее транспортных свойств. Отметим также, что кроме относительно большой величины магнитосопротивления необходимо объяснить также его сильную температурную зависимость, которая не следует очевидным образом из (3).

Опишем теперь магнитосопротивление в высокотемпературной области, основываясь на достаточно простой модели электронного транспорта в системе с сильными ФМ-корреляциями. В соответствии с обычным подходом к проводимости манаганитов (например, в рамках модели двойного обмена) [1] ФМ-коррелированные области обладают более высокой проводимостью. Поэтому в отсутствие перекрытия между этими областями основной вклад в сопротивление определяется туннелированием носителей тока между ними. Соответствующая вероятность зависит, в частности, от взаимной ориентации спина электрона и спинов атомов областей, между которыми происходит туннелирование. Простые оценки показывают, что в области полей порядка 1 Т направление спина электрона практически не меняется при туннелировании на расстояние в несколько постоянных решетки. Электрон, выходящий из одной ФМ-коррелированной области, переходит в другую со своим спином. Поэтому вероятность перехода зависит от взаимной ориентации магнитных моментов коррелированных областей. Ориентация ФМ-коррелированных областей в магнитном поле приводит к повышению вероятности перехода и тем самым к снижению сопротивления с ростом магнитного поля, что и наблюдается в эксперименте.

Представим проводимость системы в виде $\sigma(H) = \sigma_0 \langle \Sigma(H) \rangle$, где $\Sigma(H) - ,$ "спиновой" вклад в вероятность туннелирования электрона, а угловые скобки обозначают усреднение по объему. При таком определении MR = $(\langle \Sigma(H) \rangle / \langle \Sigma(0) \rangle) - 1$. Для частного случая рассматриваемой модели σ_0 была рассчитана в [9].

Рассмотрим N идентичных неперекрывающихся областей (капель) с преимущественной ориентацией атомных моментов внутри каждой из них. Обозначим эффективный магнитный момент такой капли как $M_{\rm ef} = \mu_{\rm B}gN_{\rm ef}S$, где $N_{\rm ef}$ — эффективное число магнитных атомов в капле ($SN_{\rm ef} \gg 1$). Пренебрегая магнитным вза-имодействием капель, представим свободную энергию капли в магнитном поле в виде [11]

$$U(H) = U(0) - M_{\rm ef}(H\cos\theta + H_a\cos^2\psi), \qquad (4)$$

где θ — угол между приложенным полем H и направлением $M_{\rm ef}$, H_a — поле анизотропии; ψ — угол между осью анизотропии и направлением магнитного момента капли (мы полагаем для простоты, что анизотропия одноосная). Отметим, что обычная магнитная анизотропия, связанная с кристаллическим полем, в манганитах мала [12]. Тогда величина H_a в основном определяется эффектом формы [13]. Например, для эллипсоида $H_a = \pi m_{\rm ef}(1 - 3\tilde{N})$, где $m_{\rm ef}$ — магнитный момент единицы объема капли, а \tilde{N} — соответствующий размагничивающий фактор. Уже при относительно небольшой степени несферичности для характерных значений параметров H_a оказывается порядка 1 Т.

Пусть **H** параллельно оси z, а ось анизотропии лежит в плоскости (x, z) под углом β к вектору **H**. Тогда $\cos \psi = \sin \theta \sin \beta \cos \varphi + \cos \theta \cos \beta$, где φ — угол между осью x и проекцией вектора \mathbf{M}_{ef} на плоскость (x, y). В классическом пределе каждой ориентации \mathbf{M}_{ef} соответствует вероятность

$$P(H, \theta, \varphi) = A(H) \exp[M_{\rm ef}(H\cos\theta + H_a\cos^2\psi(\theta, \varphi))/k_{\rm B}T], \qquad (5)$$

где A(H) — нормировочный множитель. Стационарными состояниями электрона являются состояния с сохраняющейся проекцией спина $s = \pm 1/2$ на направление эффективного поля в ФМ-коррелированной области. Пусть электрон взаимодействует с Z магнитными атомами в капле ($Z < N_{\rm ef}$). Энергия такого взаимодействия равна $E_s = -JSZs$, где J – обменный интеграл. Полагая, что JSZ составляет величину порядка температуры Кюри, легко видеть, что E_s много больше энергии взаимодействия спина электрона с магнитным полем, если $H \ll 100$ Т. При этом направление эффективного поля совпадает с направление $M_{\rm ef}$. Тогда вероятность того, что электрон имеет проекцию спина s, равна

$$P_s = \frac{\exp(-E_s/k_{\rm B}T)}{2\operatorname{ch}(E_s/k_{\rm B}T)}.$$
(6)

При переносе электрона на другую каплю он оказывается в эффективном поле, направленном

7*

под углом v к исходному, где $\cos v = \cos \theta_1 \cos \theta_2$ + $\sin \theta_1 \sin \theta_2 \cos(\varphi_1 - \varphi_2)$, а индексы 1 и 2 нумеруют капли. Тогда работа по перемещению электрона из первой капли во вторую равна $\Delta E_s = E_s(1 - \cos v)$. Соответственно вероятность перехода из капли в каплю пропорциональна $\exp(-\Delta E_s/k_BT)$. Теперь, учитывая все вероятностные множители и усредняя по каплям, запишем искомое выражение в виде

$$\begin{split} \langle \Sigma(H) \rangle &= \int_{0}^{2\pi} d\varphi_1 \int_{0}^{2\pi} d\varphi_2 \int_{0}^{\pi} \sin \theta_1 d\theta_1 \\ &\times \int_{0}^{\pi} \sin \theta_2 d\theta_2 P(\theta_1, \varphi_1) P(\theta_2, \varphi_2) \\ &\times \sum_{s=\pm 1/2} P_s(\theta_1) \exp(-\Delta E_s/k_{\rm B}T). \end{split}$$
(7)

В области высоких температур с помощью (5)–(7) получаем

$$MR = \frac{2}{225} \left(\cos^2 \beta - 1/3 \right) \frac{\mu_B^3 S^5 N_{ef}^3 Z^2}{(k_B T)^5} g^3 J^2 H_a H^2.$$
(8)

Z имеет смысл числа ближайших соседей магнитного атома. Это выражение формально справедливо, когда $k_{\rm B}T$ много больше характерных энергий E_s : зеемановской энергии $\mu_{\rm B}gSN_{\rm ef}H$ и энергии магнитной анизотропии $\mu_{\rm B}gSN_{\rm ef}H_a$. Численный расчет показывает, что (8) остается справедливым и при $k_{\rm B}T$ порядка и даже несколько меньше этих энергий.

Величина магнитосопротивления (8) явно зависит от угла β между осью анизотропии и приложенным магнитным полем. Однако если анизотропия в основном определяется эффектом формы, то естественно предположить, что длинные оси капель главным образом ориентированы вдоль приложенного магнитного поля. Отметим, что измерительный ток направлен вдоль магнитного поля. Следовательно, относительно больший вклад в проводимость вносят капли, ориентированные вдоль магнитного поля, что эффективно снижает влияние возможной разориентации капель. Поэтому для дальнейших оценок будем полагать, что соѕ $\beta \approx 1$.

Итак, рассмотренная простая модель правильно воспроизводит экспериментальную зависимость магнитосопротивления от поля и температуры: MR ~ H^2/T^5 . Для численных оценок возьмем S = 2, g = 2, Z = 6; кроме того, в соответствии с приведенными выше оценками можно положить $H_a = 0.5$ T и $J/k_B = 15$ K. Тогда формула (8) дает хорошее количественное согласие с экспериментом при $N_{\rm ef} \sim 10^2$. Соответствующая зависимость при $N_{\rm ef} = 130$ показана штриховой линией на рис 3. С помощью соотношения (5) стандартным образом можно рассчитать магнитную восприимчивость $\chi(T)$. При использованных выше параметрах и концентрации областей с ФМ-корреляциями порядка 5–10% получаем

верное по порядку величины значение при том же $N_{\rm ef} \sim 10^2$. Расчетная кривая $\chi(T)$ показана штриховой линией на рис. 2. Как видно из рис. 2 и 3, предложенная модель дает разумное описание экспериментальных данных. Характерный размер ФМ-коррелированной области оказывается порядка пяти постоянных решетки, что близко к структуре мелкомасштабного фазового расслоения типа ферронов [3,4] и согласуется с данными по малоугловому рассеянию нейтронов, приводимыми в [14].

Таким образом, полученные экспериментальные данные и их анализ на основе простой модели указывают на возможность существования неоднородного состояния с сильными ФМ-корреляциями даже в парамагнитной области. Отметим, однако, что приведенная выше качественная картина не вскрывает механизмов образования неоднородного состояния и нуждается в дальнейшем уточнении.

Авторы выражают глубокую признательность А.Н. Талденкову за предоставленные данные о магнитосопротивлении образцов, а также за критическое обсуждение результатов работы.

Список литературы

- [1] M.B. Salamon, M. Jaime. Rev. Mod. Phys. 73, 3, 583 (2001).
- [2] E. Dagotto, T. Hotta, A. Moreo. Phys. Rep. 344, 1 (2001).
- [3] E.L. Nagaev. Phys. Rep. 346, 387 (2001).
- [4] М.Ю. Каган, К.И. Кугель. УФН 171, 577 (2001).
- [5] N.A. Babushkina, A.N. Taldenkov, L.M. Belova, E.A. Chistotina, O.Yu. Gorbenko, A.R. Kaul, K.I. Kugel, D.I. Khomskii. Phys. Rev. B 62, 10, R6081 (2000).
- [6] A.M. Balagurov, V.Yu. Pomjakushin, D.V. Sheptyakov, V.L. Aksenov, P. Fischer, L. Keller, O.Yu. Gorbenko, A.R. Kaul, N.A.Babushkina. Phys. Rev. B 64, 024 420 (2001).
- [7] G. Jakob, W. Westerburg, F. Martin, H. Adrian. Phys. Rev. B 58, 22, 14966 (1998).
- [8] M. Ziese, C. Srinitiwarawong. Phys. Rev. B 58, 17, 11519 (1998).
- [9] A.L. Rakhmanov, K.I. Kugel, Ya.M. Blanter, M.Yu. Kagan. Phys. Rev. B 63, 174 424 (2001).
- [10] N.A. Babushkina, L.M. Belova, A.N. Taldenkov, E.A. Chistotina, D.I. Khomskii, K.I. Kugel, O.Yu. Gorbenko, A.R. Kaul. J. Phys.: Cond. Matter 11, 5865 (1999).
- [11] Л.Д. Ландау, Е.М. Лифшиц. Электродинамика сплошных сред. Наука, М. (1982).
- [12] A.M. Oles, L.F. Feiner. Phys. Rev. B 65, 052414 (2002).
- [13] А.Г. Гуревич, Г.А. Мелков. Магнитные колебания и волны. Наука, М. (1994).
- [14] J.M. De Teresa, M.R. Ibarra, P. Algarabel, L. Morellon, B. Garcia-Landa, C. Marquina, C. Ritter, A. Maignan, C. Martin, B. Raveau, A. Kurbakov, V. Trounov. Phys. Rev. B 65, 100 403 (2002).