Проводимость в неупорядоченной среде и локализация носителей заряда в слаболегированных манганитах лантана

© Н.И. Солин, С.В. Наумов

Институт физики металлов Уральского отделения Российской академии наук, 620219 Екатеринбург, Россия

(Поступила в Редакцию 9 января 2002 г. В окончательной редакции 14 мая 2002 г.)

Электро- и магнетосопротивление на постоянном токе и на частоте 9.2 GHz в монокристаллах La_{1-x}A_xMnO₃ ($A \equiv$ Sr, Ce, $x \leq 0.1$) в интервале температур 77–300 К объясняется вкладами валентных нелокализованных и локализованных в хвосте валентной зоны и вблизи уровня Ферми носителей заряда. Хвост локализованных состояний распространяется на глубину 0.15–0.25 eV внутри запрещенной зоны, а энергия активации прыжка изменяется от 0.06 до 0.15 eV в зависимости от состава образца. В области температур магнитного упорядочения изменения электро- и магнетосопротивления от температуры и напряженности магнитного поля обусловлены изменением как подвижности, так и концентрации носителей заряда.

Работа поддержана ФЦНТП (контракт № 40.012.1.1.1153.14/02) и Российским фондом фундаментальных исследований (проект № 02-02-16429).

Интерес к манганитам лантана обусловлен возможностью достижения высоких (колоссальных) значений магнетосопротивления (CMR) при комнатной температуре, важных для практических применений. Однако природа электро- и магнетосопротивления в этих материалах до сих пор не ясна. В настоящее время преобладают две точки зрения. Показано [1], что модель двойного обмена [2] не может объяснить экспериментальные данные перехода полупроводник-металл в La_{1-x}Sr_xMnO₃ (x = 0.2-0.3), и предполагается [1,3], что электрические свойства связаны поляронным механизмом, обусловленным сильной электронфононной связью, происходящей от ян-теллеровского расщепления иона Mn⁺³.

Другая точка зрения основана на том, что магнитные и электрические свойства манганитов могут быть объяснены в рамках двойного обмена — в предположении локализации носителей заряда вследствие спинового беспорядка и случайного распределения немагнитных неоднородностей [4–6]. Вычисления [5] показывают, что в присутствии подходящего немагнитного беспорядка спиновый беспорядок в парамагнитной области является причиной локализации носителей заряда на уровне Ферми и возникновения около T_C андерсоновского перехода полупроводник–металл при x = 0.2-0.3.

В настоящей работе исследованиями электро- и магнетосопротивления на постоянном токе и на сверхвысоких частотах (СВЧ) показано, что в слаболегированных Sr^{+2} - и Ce⁺⁴-монокристаллах манганитов лантана (La_{1-x}A_xMnO₃, $A \equiv Sr$, Ce, $x \leq 0.1$), в которых еще отсутствует переход металл–неметалл, электропроводность на постоянном токе и на СВЧ может быть объяснена в модели проводимости в неупорядоченной среде с локализацией носителей заряда на краю валентной зоны. При магнитном упорядочении локализация носителей заряда уменьшается; при этом меняется как концентрация, так и подвижность носителей заряда.

1. Образцы и методики исследований

Монокристаллы LaMnO₃ (LMO), La_{0.93}Ce_{0.07}MnO₃ (LCe7 ar), La_{0.9}Ce_{0.1}MnO₃ (LCe10),¹ La_{0.93}Sr_{0.07}MnO₃ (LSr7) выращены методом плавающей зоны с радиационным нагревом в атмосфере аргона [7], а кристаллы La_{0.93}Ce_{0.07}MnO₃ (LCe7 air) — в атмосфере воздуха. Монокристаллы La_{0.9}Sr_{0.1}MnO₃ (LSr10) принадлежали к серии образцов, на которых ранее был проведен комплекс магнитных, электрических и других физических исследований [8–10]. Образцы были однофазны и имели при комнатной температуре орторомбическую кристаллическую структуру.

Электросопротивление на постоянном токе измерено стандартным четырехконтактным способом на вольтметре с входным сопротивлением более $10^9 \Omega$. Измерения микроволновой электропроводности проведены резонаторным методом [11,12]. Температуры магнитных переходов определялись по измерениям магнитной восприимчивости на частоте 1 kHz.

2. Результаты

На рис. 1 приведены температурные зависимости электросопротивления ρ_0 , ρ_{mw} и магнетосопротивления MR_0 , $MR_{mw} \equiv [\rho(H) - \rho(0)]/\rho(0)$ на постоянном токе и на частоте 9.2 GHz монокристалла La_{0.9}Sr_{0.1}MnO₃. Температуры пиков магнитной восприимчивости χ_{ac} (вставка на рис. 1) соответствуют известным температурам фазовых и структурных переходов, претерпеваемых La_{0.9}Sr_{0.1}MnO₃ в узкой области температур от 150 до 100 К. При $T_{CA} \approx 148$ К происходит, согласно фазовым диаграммам [13,14], переход парамагнетик–

¹ Согласно последним исследованиям, реальное содержание церия в этом монокристалле составляет 6%.

Puc. 1. Температурные зависимости электросопротивления (кривые 1-3) и магнетосопротивления (кривые 4-6) на постоянном токе (кривые 1, 2, 5, 6) и на частоте 9.2 GHz (кривые 3, 4) в магнитных полях H = 0 (кривые 1 и 3), 6.5 (кривые 4 и 5) и 17 kOe (кривая 6) La_{0.9}Sr_{0.1}MnO₃. Сплошные кривые 1'-3' — расчет ρ_0 и ρ_{mw} , штриховые кривые a и b — вклад нелокализованных и локализованных носителей заряда в ρ_0 . На вставке — температурная зависимость начальной магнитной восприимчивости La_{0.9}Sr_{0.1}MnO₃ на частоте 1 kHz.

скошенный антиферромагнетик. Согласно нейтронографическим исследованиям [14], ниже $T_{CO} \approx 100$ К устанавливается фаза с поляронным (зарядовым CO) упорядочением ионов Mn⁺³ и Mn⁺⁴, что сопровождается переходом в ферромагнитное состояние с более высокой намагниченностью [10,15]. В области температур $T \approx 103$ К имеет место фазовый переход из орторомбической фазы с ян-теллеровскими искажениями в фазу с псевдокубической структурой [9].

Видно (рис. 1), что хотя значения электросопротивления на постоянном и переменном токе различаются более чем на 2 порядка, свидетельствуя об их разной природе, тем не менее характер их изменений с температурой примерно одинаков, а величина MR_{mw} сравнительно большая и в ~ 2 раза меньше ее значения на постоянном токе ($MR_{mw} \approx -0.12$ и $MR_0 \approx -0.2$ в поле 6.5 kOe). В определенных температурных интервалах (с учетом данных $\rho_0 La_{0.9}Sr_{0.1}MnO_3$ из [13] при высоких температурах) зависимости $\rho_0(T)$ и $\rho_{mw}(T)$ имеют активационный характер (прямые линии на рис. 1)

с изменением вблизи температур фазовых переходов: значения ρ_0 и ρ_{mw} монотонно возрастают с понижением температуры до $T \sim 150$ K, в интервале температур $T \cong 150-100$ K они слабо зависят от температуры, а ниже $T \sim 100$ K значения ρ_0 и ρ_{mw} снова увеличиваются.

И на постоянном токе, и на СВЧ имеется характерный для манганитов пик отрицательного магнетосопротивления вблизи $T_{CA} \approx 148$ К. В малых полях H < 6.5 kOe в области $T \approx 130-100$ К значения MR_0 и MR_{mw} имеют положительный знак. Величина положительного значения MR_0 зависит от направления магнитного поля по отношению к кристаллографическим осям. В более сильных полях при исключении временны́х эффектов [16] (данные 6 на рис. 1 получены при быстрой развертке магнитного поля) значения MR_0 монотонно уменьшаются при понижении температуры, и $MR_0 \approx -0.06$ в магнитном поле 17 kOe при 77 К. Форма и интенсивность дифракционных линий в образце с концентрацией Sr x = 0.1 показывают [9], что в интервале $T \approx 125-82$ К, по-видимому, одновременно могут существовать псев-

Рис. 2. Температурные зависимости электросопротивления и магнетосопротивления на постоянном токе и на частоте 9.2 GHz (MR_{mw} — светлые квадратики δ') образца La_{0.93}Sr_{0.07}MnO₃. Сплошные кривые Fit_{dc} и Fit_{mw} — расчет ρ_0 и ρ_{mw} , штриховые кривые a и b — расчет вклада нелокализованных и локализованных носителей заряда в ρ_0 . На вставке — температурная зависимость диэлектрической проницаемости ε' . Цифры у кривых — значения магнитного поля в kOe.

докубическая и искаженная ян-теллеровская фазы. Возможно, ниже температуры $T_S \approx 130$ К происходит фазовое разделение, т. е. в части кристалла наступает зарядовое или орбитальное упорядочение. Аномалия χ_{ac} и положительное магнетосопротивление около 130 К могут быть объяснены увеличением коэрцитивной силы или поля анизотропии из-за наличия таких неоднородностей.

В монокристаллах La_{0.9}Sr_{0.1}MnO₃ ниже $T \approx 97-100$ K значения ρ_0 , ρ_{mw} , MR_0 , MR_{mw} , микроволновой магнитной μ^* и диэлектрической ε^* проницаемостей зависят от времени. Например, значение ρ_0 при 77 K увеличивается на несколько десятков процентов с характерными временами $\tau_1 \approx 3 \cdot 10^3$ и $\tau_2 \approx 5 \cdot 10^4$ s.

Температурные зависимости ρ_0 в La_{0.93}Sr_{0.07}MnO₃ могут быть представлены двумя экспонентами, как показано линиями *a* и *b* на рис. 2. Отметим небольшой провал ρ_0 ниже T_{CA} . В узком температурном интервале $T = 120 \pm 10$ К обнаружены зависящие от магнитного поля пики ρ_{mw} и диэлектрической проницаемости ε' (вставка на рис. 2). В магнитном поле 6 кОе аномалии ρ_{mw} и ε' практически исчезают. Значения MR_0 сравнительно велики и они не уменьшаются, как обычно наблюдается в монокристаллических манганитах, а остаются постоянными или даже увеличиваются с понижением температуры ниже $T_{CA} \approx 132$ К. Только в малых полях наблюдается характерный для манганитов пик MR_0 вблизи T_{CA} . Ниже T_{CA} значения $|MR_0| \sim H$, а выше T_{CA} значения $|MR_0| \sim H$, а выше $T \approx 140$ К значения MR_{mw} при 6 kOe приблизительно совпадают со значениями MR_0 на постоянном токе, а ниже 105 К значения $MR_{mw} \approx 0$ (светлые квадраты на рис. 2).

Значения электросопротивления ρ_0 нелегированного и легированного церием (рис. 3) манганитов лантана с понижением температуры быстро растут и становятся неизмеримыми ($\rho_0 > 10^7 - 10^8 \,\Omega \cdot \text{сm}$) уже при $T > T_{CA}$. В широкой области изменения электросопротивления зависимости $\rho_0(1/T)$ имеют примерно активационный характер (прямые *a* и *b* на рис. 3). В парамагнитной области магнитное поле слабо влияет на ρ_0 : при

Рис. 3. Температурные зависимости электросопротивления на постоянном токе и на частоте 9.2 GHz. θ — LaMnO₃, I — La_{0.93}Ce_{0.07}MnO₃ (air), 2 — La_{0.93}Ce_{0.07}MnO₃ (ar), 3 — La_{0.9}Ce_{0.1}MnO₃. Сплошные кривые — расчет ρ_0 и ρ_{mw} , штриховые кривые *a* и *b* — вклад нелокализованных и локализованных носителей заряда в ρ_0 .

комнатной температуре изменения ρ_0 в поле 17 kOe менее 10^{-3} . В нелегированном LaMnO₃, наиболее проводящем из этих образцов, обнаружено небольшое отрицательное магнетосопротивление $MR_0 \approx -2-3\%$ в поле 18 kOe вблизи температуры магнитного упорядочения $T \approx 140$ K.

Значения ρ_{mw} экспоненциально растут при высоких температурах и слабо зависят от температуры при низких температурах (рис. 3). Из измерений знака термоэдс следует, что все образцы при комнатной температуре являются полупроводниками *р*-типа.

3. Обсуждение

Температурные изменения электросопротивления исследованных образцов (рис. 1–3) можно рассматривать как следствие изменения энергии активации с понижением температуры при переходе от одного механизма проводимости к другому, что характерно для проводимости в стеклообразных (неупорядоченных) полупроводниках [17]. Низкую проводимость при введении до 10% дополнительного количества примесей Sr и Се можно объяснить тем, что вследствие несовершенств в кристалле (спинового беспорядка, случайного распределения примесей и т. п.) носители заряда захватываются в ловушки около ионов Mn⁺⁴ и Mn⁺², а локализованные состояния образуются в запрещенной зоне на краю валентной зоны или зоны проводимости. В таком неупорядоченном полупроводнике электропроводность на постоянном и переменном токе определяется тремя механизмами [17].

1) Переносом нелокализованных носителей заряда. Проводимость на постоянном токе (для дырок) имеет вид

$$\sigma_0 = \sigma_{mm} \exp[-(E_F - E_V)/kT] = \sigma_{\min} \exp[-\Delta E_1/kT], \quad (1)$$

где E_F — уровень Ферми, энергия E_V — "край подвижности" по Мотту — отделяет нелокализованные состояния от локализованных, а значение минимальной металлической проводимости $\sigma_{\min} \approx 300-10^3 \,\Omega^{-1} {\rm cm}^{-1}$. На переменном токе ниже $\approx 10^{15}$ Hz этот механизм вклада не вносит.

 Прыжками локализованных в хвосте валентной зоны носителей заряда. Для такого процесса вклады в проводимость на постоянном и переменном токе равны

$$\sigma_0 = \sigma_2 \exp[-(E_F - E_B + W_1)/kT] = \sigma_2 \exp[-\Delta E_2/kT], \quad (2)$$

$$\sigma_{\omega} \sim \sigma(\omega) \exp[-(E_F - E_B)/kT] = \sigma_{mw}^0 \exp[-E_{mw}/kT], \quad (3)$$

где W_1 — энергия активации прыжка, $E_B - E_V$ — хвост локализованных состояний, $\sigma(\omega) \sim \omega^s$, а для манганитов значения $s \approx 0.8-1$ [18].

Кристалл	LMO	LMO [18]	LCe7(air)	LCe7(ar)	LCe10	LSr7	LSr10
$\sigma_{ m min},~\Omega^{-1} m cm^{-1}$	800	800	800	900	800	800	1100
$E_F - E_V$, meV	290	327	335	367	326	204	250
$\sigma_2, \ \Omega^{-1} \mathrm{cm}^{-1}$	12	10	10	10	10	9	9
$E_F - E_B + W_1, \text{meV}$	219	216	241	266	239	130	118
$E_F - E_B$, meV	89	95	109	123	93	55	55
$\sigma_{mw}^0, \ \Omega^{-1} \mathrm{cm}^{-1}$	0.36	0.20	0.5	0.15	0.06	0.8	1.3
W_1 , meV	130	121	132	143	146	75	63
$E_B - E_V$, meV	201	228	226	244	233	149	195
T_{CA}, \mathbf{K}	142	—	138	138	139	132	148
							127
T_{CO}, \mathbf{K}							97

Электрические и магнитные параметры монокристаллов манганитов лантана

 Прыжками локализованных вблизи уровня Ферми носителей заряда

$$\sigma_0 = \sigma_3 \exp[-W_2/kT], \tag{4}$$

где $\sigma_3 \leq \sigma_2$, а W_2 — энергия активации прыжка. В этом случае проводимость на переменном токе пропорциональна температуре или не меняется с температурой.

На рис. 1–3 сплошными линиями показаны результаты расчетов температурных зависимостей ρ_0 и ρ_{mw} исследованных по этой модели образцов. Видно, что температурная зависимость $\rho_0(T)$ в парамагнитной области температур в широкой области изменения электросопротивления может быть удовлетворительно описана вкладами нелокализованных и локализованных носителей заряда (штриховые кривые *a* и *b* соответственно), рассчитанными из выражений (1) и (2) при значениях ΔE_1 , ΔE_2 , σ_{\min} и σ_2 , приведенных в таблице. Для La_{0.9}Sr_{0.1}MnO₃ результаты ρ_0 при T = 800 K, взятые из работы [13] для образца аналогичного состава (темные квадраты на рис. 1), также достаточно близки к расчетной кривой.

Измеренные значения электропроводности на переменном токе определяются значениями электропроводности на постоянном токе и электропроводностью, обусловленной собственно переменным характером тока. Вклад в электропроводность на переменном токе вносят прыжки носителей, возбужденных в локализованные состояния в хвосте валентной зоны; он определяется выражением (3). Этот вклад и вклад электропроводности на постоянном токе, определяемый выражениями (1) и (2), удовлетворительно описывают экспериментальную температурную зависимость $\rho_{mw}(T)$ La0 93Sr0 07MnO3 и La0 9Sr0 1MnO3 в парамагнитной области (сплошные кривые на рис. 1 и 2). Для нелегированного и легированных церием образцов вклад этого механизма преобладает, по-видимому, только в небольшом интервале температур ниже комнатной (сплошные кривые на рис. 3). Вследствие высоких значений $E_{mw} = E_F - E_B$ (см. таблицу) с понижением температуры вклад указанного механизма быстро уменьшается и начинают играть роль другие механизмы, повидимому, связанные с прфжками носителей заряда вблизи уровня Ферми. Характерная для этого механизма слабая зависимость ρ_{mw} от температуры хорошо видна на рис. З при низких температурах.

Таким образом, в парамагнитной области электропроводность всех исследованных образцов можно описать в предположении локализации части носителей заряда на краю валентной зоны. Значения σ_{\min} и σ_2 близки к теоретическим и обычно наблюдаемым в неупорядоченных средах [17]. Из таблицы видно, что хвост локализованных состояний $E_B - E_V$ в зависимости от состава распространяется на сравнительно большую глубину 0.15-0.25 eV внутри запрещенной зоны. Энергия активации прыжка в нелегированных и легированных церием образцах манганитов незначительно различается: $W_1 \approx 0.13 - 0.15 \text{ eV}$, имеет некоторую тенденцию роста с увеличением компенсации (концентрации церия) и уменьшается при легировании стронцием до $W_1 \approx 0.06 \,\mathrm{eV}$. Данные [18] $\rho_0(T)$ и $\rho_{mw}(T)$ при 1 GHz для LaMnO₃ удовлетворительно обрабатываются в рамках этой модели, и мы получили для этого образца примерно такие же параметры, как и для исследованного нами LaMnO₃ (см. таблицу).

Можно полагать, что увеличение сопротивления при легировании Ce⁺⁴ связано с компенсацией дырок (ионов Mn⁴⁺), по-видимому, имеющихся в нелегированном LaMnO₃ из-за вакансий по лантану и кислороду. Наибольшая компенсация дырок достигается в выращенном в аргоне монокристалле LCe7 (ar). Предположение о компенсации дырок согласуется с возрастанием энергии активации $E_F - E_V$ и $E_F - E_B$ с изменением концентрации церия.

Анализ результатов [19] по термоэдс La_{0.9}Sr_{0.1}MnO₃ показывает, что при высоких температурах (до ~ 160 K) термоэдс имеет активационный характер: $S = k/e^*(E_S/kT + A)$ [17] с $E_S = 53 \pm 5$ meV. Полагаем, что близость результатов СВЧ-исследований и термоэдс на постоянном токе также свидетельствует о справедливости предлагаемой модели проводимости.

Узкий температурный интервал аномалии ρ_{mw} La_{0.93}Sr_{0.07}MnO₃, сильная зависимость ρ_{mw} от магнитного поля и отсутствие аномалии ρ_0 на постоянном

Рис. 4. Температурные зависимости энергии активации электросопротивления на постоянном токе (a), на частоте 9.2 GHz (b), энергии активации прыжка W_1 (c) в La_{0.9}Sr_{0.1}MnO₃. Цифры у кривых — напряженность магнитного поля в kOe.

токе (рис. 2) свидетельствуют, что аномалии ρ_{mw} вблизи T_{CA} не имеют отношения к проводимости в неупорядоченной среде и, по-видимому, обусловлены влиянием доменов. Такие пики обычно приписывают релаксационным потерям дебаевского типа [20], которые возникают в среде, где электрон может находится в двух или более стационарных состояниях, разделенных потенциальным барьером E_D , вызывая перескоки между разновалентными ионами, например Mn⁺³ и Mn⁺⁴. На низких частотах обнаружены максимумы на температурной зависимости $\sigma_{\omega}(T)$ в La_{1-x}Sr_xMnO₃ и оценены значения потенциального барьера релаксации $E_D \approx 86$ и 90 meV для x = 0 и 0.05 [17]. Используя [17], можно оценить, что значение $E_D \approx 50$ meV для La_{0.93}Sr_{0.07}MnO₃.

Электросопротивление исследованных образцов при переходе в магнитоупорядоченное состояние может быть объяснено в рамках этой же модели проводимости в неупорядоченной среде. Из рис. 1 и 2 видно, что в образцах La_{0.9}Sr_{0.1}MnO₃ и La_{0.93}Sr_{0.07}MnO₃ вклад нелокализованных носителй заряда (кривые *a*) в $\rho_0(T)$ становится пренебрежимо малым при приближении к температуре Кюри T_C . Тогда представленные на рис. 1 и 2 изменения $\rho_{mw}(T)$ и $\rho_0(T)$ при магнитном упорядочении могут быть описаны выражениями (2) и (3) при изменении энергии активации ΔE_2 и E_{mw} от их значений в парамагнитной области, приведенных в таблице.

На рис. 4 и 5 представлены температурные зависимости ΔE_2 , $E_{mw} \equiv E_F - E_B$ и W_1 для образцов La_{0.9}Sr_{0.1}MnO₃ и La_{0.93}Sr_{0.07}MnO₃, вычисленные из выражений (2) и (3) в этом предположении. Расчеты для La_{0.93}Sr_{0.07}MnO₃ проведены вне области температур ~ 105–135 K, причем вкладом релаксационных потерь пренебрегали.

Видно (рис. 4 и 5), что при магнитном упорядочении с понижением температуры в обоих образцах изменения сопротивления происходят за счет уменьшения $E_F - E_B$ — приближения уровня Ферми к краю хвоста валентных состояний, т.е. за счет увеличения концентрации носителей заряда. Этот результат свидетельствует в пользу изменения локализации носителей заряда при магнитном упорядочении. Если происходит освобождение носителей заряда из ловушек, то это должно привести к увеличению числа акцепторов, участвующих в проводимости, и к понижению уровня Ферми. Значение $E_F - E_B$ изменяется сильнее в образце с более высоким значением легирования стронцием. Изменение $E_F - E_B$ от температуры для La_{0.9}Sr_{0.1}MnO₃ может быть представлено зависимостью, приблизительно пропор-

Рис. 5. То же, что на рис. 4, для La_{0.93}Sr_{0.07}MnO₃. Цифры на кривых — напряженность магнитного поля в kOe.

циональной квадрату намагниченности, $E_F - E_B \sim M^2$ (данные по намагниченности взяты из [10]).

Однако совершенно по-другому ведет себя энергия активации прыжков W1 для этих образцов. Из таблицы и рис. 4 и 5 видно, что в парамагнитной области энергии активации прыжков W₁ для двух образцов различаются несильно. Энергия активации прыжков W₁ при переходе в магнитоупорядоченное состояние в ферромагнитном La_{0.9}Sr_{0.1}MnO₃ уменьшается, а в антиферромагнитном La_{0.93}Sr_{0.07}MnO₃ возрастает, превышая почти в 2 раза значение W_1 в La_{0.9}Sr_{0.1}MnO₃. Уменьшение W_1 в ферромагнитном состоянии согласуется с предположением [1] о роли электрон-фононной связи в природе CMR в манганитах. Качественно это можно объяснить также и тем, что из-за конкуренции двойного и косвенного обмена в скошенном антиферромагнетике выигрыш в энергии при перескоке электрона между ионами Mn³⁺ и Mn⁺⁴ зависит от направления спинов: в скошенном антиферромагнетике по сравнению с ферромагнетиком с параллельными спинами он уменьшается [2], т.е. энергия активации прыжка между Mn³⁺ и Mn⁺⁴ должна увеличиться. Этим же можно объяснить и возрастание значения W₁ при электронном легировании церием (см. таблицу). При компенсации дырок (Mn⁺⁴) церием косвенный обмен становится преобладающим, что может приводить к росту W_1 .

Замедление роста электросопротивления $La_{1-x}Sr_xMnO_3$ ($x \approx 0.01$) в интервале 150-100 К и его резкий рост ниже $T \approx 100 \, \text{K}$ (рис. 1) иногда рассматривается как переход сначала в ферромагнитную металлическую, а затем в ферромагнитную диэлектрическую фазу при орбитальном или зарядовом упорядочении [19,21,22]. Из рис. 4 видно, что ниже температуры структурного перехода *T_{CO}* ≈ 100 К значения энергий активации W_1 и $E_F - E_B$ перестают уменьшаться с понижением температуры и стабилизируются на постоянном уровне, вследствие чего слабый рост $\rho_0(T)$ в интервале 150-100 К переходит в экспоненциальный рост ниже 100 К — это и объясняют как переход в диэлектрическую фазу. Фактически же никакого перехода ни в металлическую, ни в изоляторную фазу нет. Особенности $\rho_0(T)$ около 150–100 К обусловлены изменением локализации носителей заряда в хвостах валентной зоны при магнитном и зарядовом упорядочениях и соответствующими изменениями энергий активации. На графике зависимости $\lg \rho_0(1/T)$ при низких температурах сопротивление растет даже медленнее, чем при высоких (рис. 1). В ферромагнитной фазе, согласно модели двойного обмена, перенос электрона между ионами Mn⁺³ и Mn⁺⁴ должен быть облегчен, что согласуется с резким (~ 10 meV, рис. 4, *c*) уменьшением значения W_1 в интервале температур T = 110 - 100 K, где происходит переход в ферромагнитную фазу [10,15]. Однако дальнейшего уменьшения значения W₁ не происходит, так как при орбитальном упорядочении перенос электрона между ионами Mn³⁺ и Mn⁺⁴ затруднен и должен происходить

с преодолением дополнительного потенциального барьера, что стабилизирует значения W_1 . Влиянием орбитального упорядочения объясняется, что при низких температурах в ферромагнитной фазе La_{0.9}Sr_{0.1}MnO₃ не обладет металлической проводимостью.

Анализ температурных зависимостей ρ_0, ρ_{mw}, MR_0 и *MR_{mw}* на основе выражений (2), (3) показывает, что в La_{0.9}Sr_{0.1}MnO₃ при $T \approx 150$ K изменения электросопротивления ρ_0 в магнитном поле происходят за счет увеличения как подвижности, так и концентрации носителей заряда (уменьшения W_1 и $E_F - E_B$). Изменения значений энергий активации W_1 и $E_F - E_B$ от магнитного поля имеют величину $\sim 0.1 - 0.4 \, \text{meV} / \text{kOe}$. Природа отрицательного магнетосопротивления MR₀ в La_{0.93}Sr_{0.07}MnO₃ при высоких (выше $T_{CA} = 132$ K) температурах обусловлена в основном уменьшением *E_F* – *E_B*, т.е. концентрации носителей заряда. Ниже 110 К в La_{0 93}Sr_{0 07}MnO₃ значение MR_{mw} (7 kOe) ≈ 0 . Это означает, что сохраняющееся высокое значение MR_0 $La_{0.93}Sr_{0.07}MnO_3$ ниже T_{CA} (рис. 2) обусловлено уменьшением энергии активации прыжка W₁, т. е. увеличением подвижности носителей заряда в магнитном поле.

Таким образом, в работе изучено электро- и магнетосопротивление на постоянном токе и на частоте 9.2 GHz в монокристаллах слаболегированных манганитов лантана La_{1-x}A_xMnO₃ (A =Sr, Ce, $x \le 0.1$) в интервале 77–300 К. Результаты обсуждаются в модели проводимости в неупорядоченной среде с локализацией носителей заряда в хвосте валентной зоны и объясняются вкладами нелокализованных и локализованных носителей заряда. В области магнитного упорядочения изменения электро- и магнетосопротивления от температуры или напряженности магнитного поля обусловлены изменением как подвижности, так и концентрации носителей заряда. Результаты свидетельствуют об изменении локализации носителей заряда при магнитном упорядочении.

Авторы благодарны А.М. Балбашову и Я.М. Муковскому за выращенные монокристаллы, а В.С. Гавико за дискуссии по рентгеновским исследованиям.

Список литературы

- A.J. Millis, P.B. Littlewood, B.I. Shraiman. Phys. Rev. Lett. 74, 25, 5144 (1995).
- [2] C. Zener. Phys. Rev. 82, 403 (1957); P.W. Andersen,
 H. Hasegawa. Phys. Rev. 100, 675 (1955); P.G. de Gennes.
 Phys. Rev. 118, 141 (1960).
- [3] H. Röder, J. Zang, A.R. Bishop. Phys. Rev. Lett. 76, 8, 1356 (1996); A.J. Millis, R. Mueller, B.I. Shraiman. Phys. Rev. 54B, 5389 (1996); Phys. Rev. 54B, 5405 (1996).
- [4] C.M. Varma, Phys. Rev. 54B, 10, 7328 (1996).
- [5] L. Sheng, D.Y. Xing, D.N. Sheng, C.S. Ting. Phys. Rev. Lett. 79, 1710 (1997).
- [6] Q. Li, J. Zang, A.R. Bishop, C.M. Soukoulis. Phys. Rev. 56B, 4541 (1997).

- [7] A.M. Balbashov, S.G. Karabashev, Ya.M. Mukovskii, S.A. Sverkov. J. Cryst. Growth 167, 365 (1996).
- [8] В.Е. Архипов, В.П. Дякина, Я. Клямут, Я.М. Муковский, В.Е. Старцев, А.А. Чопник. Письма в ЖЭТФ 68, 39 (1998);
 В.Е. Архипов, И. Вархульска, Д. Влосевич, Я. Клямут, В.В. Марченков, В.Е. Старцев, Т. Пляцковски, А. Чопник. Физика металлов и металловедение 88, 5, 27 (1999).
- [9] В.Е. Архипов, В.С. Гавико, А.В. Королев, В.Е. Найш. ФТТ 41, 6, 1064 (1999).
- [10] A.V. Korolev, V.Ye. Arkhipov, V.S. Gaviko, Ya. Mukovskii, A.A. Arsenov, T.P. Lapina, S.D. Bader, J.S. Jiang, V. Inizhanovskii, J. Magn. Magn. Mater. 213, *1*, 63 (2000).
- [11] Л.И. Буравов, И.Ф. Щеголев. ПТЭ 2, 171 (1971).
- [12] Н.И. Солин, С.В. Наумов, А.А. Самохвалов. ФТТ 42, 5, 899 (2000); А.Б. Давыдов, Н.И. Солин, Г.Л. Штрапенин. Дефектоскопия 8, 95 (1982); Н.И. Солин, А.Б. Давыдов, Г.Л. Штрапенин. Дефектоскопия 2, 77 (1991).
- [13] А.А. Мухин, В.Ю. Иванов, В.Д. Травкин, С.П. Лебедев, А. Пименов, А. Лойдл, А.М. Балбашов. Письма в ЖЭТФ 68, 4, 331 (1998).
- [14] Y. Yamada, O. Hino, S. Nohdo, R. Kanao. Phys. Rev. Lett. 77, 5, 904 (1996).
- [15] K. Ghosh, R.L. Greene, S.E. Lofland, S.M. Bhagat, S.G. Karabashev, D.A. Shulatev, A.A. Arsenov, Y.M. Mukovskii. Phys. Rev. 58B, 13, 8206 (1998).
- [16] Н.И. Солин, И.В. Кочев. Вторая объединенная международная конференция по магнитоэлектрике. Тез. докл. Екатеринбург (2000). С. 97.
- [17] Н. Мотт, Э. Дэвис. Электронные процессы в некристаллических веществах. Перевод с англ. Мир, М. (1982). Т. 1. Гл. 6.
- [18] A. Seeger, P. Lunkenheimer, J. Hemberger, A.A. Mukhin, V.Yu. Ivanov, A.M. Balbashov, A. Loidl. J. Phys.: Condens. Matter 11, 3273 (1999).
- [19] Н.Н. Лошкарева, Ю.П. Сухоруков, Э.А. Нейфельд. ЖЭТФ
 117, 1, 440 (2000).
- [20] Г. Фрелих. Теория диэлектриков. ИЛ, М. (1960).