Поверхностный магнетизм нанокристаллического монооксида меди

© Т.И. Арбузова, С.В. Наумов, В.Л. Арбузов, К.В. Шальнов, А.Е. Ермаков, А.А. Мысик

Институт физики металлов Уральского отделения Российской академии наук, 620219 Екатеринбург, Россия

E-mail: viglin@imp.uran.ru

(Поступила в Редакцию 25 января 2002 г. В окончательной редакции 14 мая 2002 г.)

> Изучено влияние поверхностных явлений на магнитную восприимчивость нанопорошков полупроводникового антиферромагнетика CuO. Однофазные нанопорошки с размером наночастиц 15, 45 и 60 nm были получены методом газовой конденсации паров меди в атмосфере аргона и последующим ее окислением. Температурные зависимости магнитной восприимчивости нанопорошков качественно отличаются от зависимостей $\chi(T)$ для массивных образцов. В области $80 \le T < 600$ K магнитная восприимчивость нанопорошков обратно пропорциональна температуре и описывается суммой вкладов от объемной части CuO и от парамагнитных ионов Cu²⁺, локализованных в поверхностных слоях. Показано, что парамагнитный вклад в полную восприимчивость увеличивается при уменьшении размера частиц и плотности образцов. Проведено сравнение зависимостей $\chi(T)$ для нанопорошков и плотной нанокерамики CuO с размером зерна 5 $\le d \le 100$ nm, полученной методом ударных волн.

> Работа выполнена при финансовой поддержке проекта РФФИ-Урал № 01-02-96403 и НИР в рамках проекта Миннауки № 26 (договор 2.4.01-9.01).

Изучение свойств наночастиц представляет интерес как для исследования фундаментальных вопросов физики поверхностных явлений, так и с точки зрения возможности использования нанокристаллических материалов в практических устройствах. Уменьшение размеров частиц приводит к изменению свойств по сравнению с объемными материалами. На поверхности наночастиц могут изменяться параметры обменного взаимодействия между магнитными ионами и направление магнитного момента из-за потери трехмерной структурной периодичности и разрыва большого числа обменных связей поверхностных ионов. Большие возмущения кристаллической симметрии приводят к изменению энергии поверхностной анизотропии по сравнению с объемной. Наиболее изученными эффектами уменьшения размеров частиц являются суперпарамагнетизм и слабый ферромагнетизм, которые наблюдаются в 3*d*-металлах и сплавах на их основе. Размерные эффекты проявляются в сильном увеличении коэрцитивной силы и магнитного момента, в сдвиге петель гистерезиса, в необратимости кривых намагничивания.

В 3*d*-оксидах магнитный порядок определяется сверхобменным взаимодействием со следующими за ближайшими соседями и зависит от длины связи и угла между ионами. Уменьшение размера частиц в ионных соединениях может иметь более сильный эффект, чем в металлических соединениях. Влияние уменьшения координации и поверхностной анизотропии на магнитные свойства в окисных соединениях рассмотрели Кодама и Беркович [1,2]. Они считают, что парные обменные взаимодействия в объеме и на поверхности одинаковы, но полное обменное взаимодействие меньше для поверхностных ионов из-за их более низкой координации и, следовательно, меньшего числа соседей. При этом постулировалось существование разорванных обменных связей за счет кислородных ваканксий или лигандов. Основным эффектом уменьшения размера частиц в ферримагнетиках являются фрустрация обменных связей и спиновое разупорядочение в поверхностных слоях. При низких температурах разупорядоченные спины заморожены, что приводит к необратимости петель гистерезиса. При повышении температуры T > 50 К спинстекольная фаза переходит в скошенную спиновую структуру.

Магнитные свойства наночастиц ионных антиферромагнетиков изучены довольно слабо. В настоящее время имеются данные только по NiO. Монооксид никеля является двухподрешеточным коллинеарным антиферромагнетиком с $T_N = 523$ К. Для наночастиц NiO (d = 53 - 315 Å) при T = 5 K наблюдаются большие значения магнитного момента, коэрцитивной силы и сдвига петель гистерезиса, что нельзя объяснить на основе двухподрешеточного состояния. По-видимому, микроструктурные особенности поверхности приводят к изменению основного состояния и разбиению на большее число магнитных подрешеток. Моделирование спиновой конфигурации в наночастицах NiO показывает преимущество четырех-, шести- и восьмиподрешеточных состояний по сравнению с двухподрешеточным [1,2]. Причиной многократного разбиения магнитной решетки является близость энергий (вырожденность) двухи многоподрешеточных состояний.

Особое место в ряду окислов переходных металлов занимает монооксид меди. Он имеет низкосимметричную моноклинную решетку и является квазиодномерным антиферромагнетиком с высокой температурой Нееля $T_N = 230$ К. Интенсивное изучение свойств СuO началось с момента открытия высокотемпературной сверхпроводимости [3,4]. CuO лежит в основе купратных ВТСП-соединений и проявляет свойства, сходные со свойствами полупроводниковых ВТСП-фаз. Монооксид меди и структуры на его основе находят практическое применение в качестве фоточувствительных элементов, катализаторов, газовых датчиков. Ишихара и др. [5] обнаружили, что на основе эквимолярной порошковой смеси ВаТіО₃ и оксидов 3*d*-металлов могут быть созданы полупроводниковые сенсоры для CO₂. Гигантским емкостным эффектом обладают сенсоры CuO–BaTiO₃ [6].

Ранее мы изучали влияние размеров зерна на магнитную восприимчивость плотной нанокерамики CuO, полученной методом воздействия ударно-изэнтропических волн на поликристаллический CuO [7]. Цель данной работы — изучить влияние поверхностных эффектов на магнитные свойства нанопорошков монооксида меди с разным размером частиц. Мы провели температурные измерения магнитной восприимчивости рыхлых нанопорошков со средним размером частиц от 100 до 1000 Å в широкой области температур (80 < T < 600 K) как выше, так и ниже T_N .

1. Образцы и методика измерения

Для получения однофазных нанопорошков CuO был использован метод газовой конденсации паров металлической меди. В этом методе капля расплавленного металла, обдуваемая потоком инертного газа (Ar), удерживается в подвешенном состоянии и разогревается до 2000°C высокочастотным магнитным полем индуктора специальной конструкции. Конструкционные особенности установки, обеспечивающие подвешенное состояние капли, позволяют избежать загрязнения расплавленного металла неконтролируемыми примесями. Испарившийся с поверхности капли металл охлаждается вместе с инертным газом, конденсируется в частицы нанокристаллического размера и осаждается на фильтре. Средний размер частиц регулируется давлением инертного газа в установке и скоростью его потока вблизи металлической капли. При изменении этих параметров были получены нанопорошки меди со средним размером частиц 15-100 nm. Размер частиц Си контролировался с помощью трансмиссионной электронной микроскопии. Распределение частиц по размерам было относительно узким и близким к нормальному логарифмическому. Нанопорошки Си окислялись до СиО на воздухе при температурах 90-240°С в течение 0.5-2 h. При выборе температуры и времени отжига учитывались следующие факторы. Необходимо было полностью окислить порошки так, чтобы не произошло кристаллизации CuO и при этом отсутствовали фазы Си и Си₂О. Увеличение температуры окисления выше 300°С приводило к резкому увеличению размеров частиц CuO.

Размер полученных наночастиц CuO контролировался с помощью сканирующего туннельного микроскопа марки STM-U1. Для этого порошок наносился тонким слоем на полированную кремниевую пластину. Из-за низкой электропроводности CuO для получения туннельного тока подавалось повышенное напряжение на иглу, по-

Рис. 1. Микроструктура нанопорошков CuO с разным размером частиц, полученная с помощью сканирующей туннельной микроскопии. d = 15 (*a*), 45 (*b*), 60 nm (*c*).

этому в работе системы игла-образец возникала дополнительная нестабильность. Компьютерная обработка изображений позволяла частично устранить помехи. Для более полной информации о состоянии образца в разных областях получали по десять и более изображений, из которых определялся средний размер наночастиц. Погрешность определения размеров наночастиц с помощью СТМ составляла 30–50% в зависимости от размера скана, величины шага иглы и последующих обработок изображения.

Для фазового и структурного анализов использовался рентгеновский дифрактометр ДРОН-2.0 с Сг K_{α} -излучением. Измерения магнитной восприимчивости нанопорошков СuO в широкой области температур (80–600 K) проводились на магнитных весах. Чувствительность весов позволяла измерять восприимчивость до 10^{-8} cm³/g. Погрешность величины χ не превышала 5%.

Нам удалось получить однофазные нанопорошки CuO со средним размером частиц 15, 45 и 60 nm. На рис. 1 представлена полученная с помощью СТМ микроструктура этих образцов. Видно, что в образцах с малым размером частиц (d = 15 и 45 nm) порошинки имели сферическую форму, а при d = 60 nm часть порошинок имела вытянутую форму. Размер порошинок в образце, показанном на рис. 1, *c*, значительно больше, чем в образце на рис. 1, *a*. Хотя в образце на рис. 1, *c* размер частиц различается, т.е. имеются частицы с d = 60 nm и более крупные порошинки с $d \ge 100$ nm, для выяснения роли поверхностного магнетизма в CuO важно, что доля поверхностных слоев в образце с d = 15 nm (рис. 1, *a*) существенно больше доли поверхностных слоев порошинок на рис. 1, *c*.

2. Магнитная восприимчивость нанопорошков CuO

Среди окислов меди магнитоупорядоченным состоянием могут обладать только соединения, содержащие двухвалентные ионы меди $(3d^9, S = 1/2)$. Одновалентные ионы меди имеют замкнутую 3d-оболочку $(3d^{10}, S = 0)$ и являются немагнитными ионами. Экспериментальные доказательства наличия ионов Cu³⁺ $(3d^8, S = 1)$ в ионных медьсодержащих окислах в настоящее время отсутствуют. Для соединений Cu²⁺ характерно образование низкоразмерных магнитных систем: линейных цепочек (1D) и двумерных плоскостей (2D), что может быть обусловлено эффектом Ян-Теллера. Особенностью низкоразмерных систем являются пологие максимумы восприимчивости и теплоемкости при температурах, сравнимых с параметрами обменного взаимодействия в цепочке или плоскости [8].

СиО является квазиодномерным антиферромагнетиком и имеет высокую температуру Нееля ($T_N = 230$ K) по сравнению с известными низкоразмерными соединениями ($T_N < 50$ K). Ниже T = 213 K в CuO реализуется коллинеарная антиферромагнитная структура, а в области 213 K $< T < T_N$ — неколлинеарная (спиральная) структура. Значительно выше температуры Нееля сохраняются сильные спиновые корреляции ионов Cu²⁺ вдоль направления [101]. Температурная зависимость магнитной восприимчивости массивных образцов CuO имеет вид, типичный для низкотемпературных антиферромагнитных систем, которые при понижении температуры испытывают переход в 3D-состояние. Выше T_N

Рис. 2. Температурные зависимости магнитной восприимчивости для поликристалла (1) и нанопорошков CuO с разным размером частиц (2–4). d, nm: 2 — 60, 3 — 45, 4 — 15. 5 — гетерофазный порошок ($d \leq 100$ nm).

Рис. 3. Температурные зависимости обратной восприимчивости в магнитном поле H = 9 kOe для нанопорошков CuO с разным размером частиц. d = 15 (1), 45 (2) и 60 nm (3). 4 — поликристалл.

восприимчивость не уменьшается с ростом температуры, а возрастает и проходит через широкий максимум вблизи 550 К. В области T_N отсутствует характерный для 3D-антиферромагнетиков пик восприимчивости, изменяется лишь наклон $\chi(T)$. Отсутствие пика χ вблизи T_N указывает на плавный переход из 3D-состояния с дальним антиферромагнитным порядком в низкоразмерное состояние с сильными спиновыми корреляциями. Собственные дефекты (кислородные вакансии) и замещение части ионов Cu²⁺ (< 3%) ионами Li⁺, Zn²⁺, Ni²⁺ качественно не влияют на вид зависимостей $\chi(T)$ [9].

На рис. 2 представлены температурные зависимости магнитной восприимчивости в постоянном магнитном поле H = 9 kOe для нанопорошков CuO с различным средним размером частиц. Для сравнения приведена также зависимость $\chi(T)$ для поликристалла с d > 1000 nm

Рис. 4. Температурные зависимости магнитной восприимчивости в постоянном магнитном поле H = 9 kOe поликристаллических образцов CuO, подвергнутых воздействию сферических ударных волн, с разным размером зерна. d, nm: I - 110, 2 - 70, 3 - 30, 4 - 15, 5 - 5.

(кривая 1). Для нанопорошков с размером частиц d = 45и 60 nm в области T < 140 К восприимчивость уменьшается с ростом температуры в отличие от зависимости $\chi(T)$ для поликристалла. Для нанопорошка с размером $d = 15\,\mathrm{nm}$ восприимчивость обратно пропорциональна температуре во всем интервале температур. Это хорошо видно из рис. 3, на котором представлены температурные зависимости обратной восприимчивости. Только для образца с минимальным размером зерна в широком температурном интервале (T = 150-600 K) выполняется закон Кюри–Вейса: $\chi = C/T - \Theta$, где $C = N\mu_{\text{eff}}^2/3k$ постоянная Кюри-Вейса, О — парамагнитная температура Кюри. Однако значение эффективного магнитного момента $\mu_{\rm eff} = 2.12 \,\mu_{\rm B}$ выше теоретического значения $\mu_{\rm eff} = 1.73 \mu_{\rm B}$ для изолированных ионов Cu²⁺, что указывает на наличие обменной связи между ионами Cu²⁺ в этой области температур. Для нанопорошков CuO при всех температурах наблюдается корреляция между величиной восприимчивости и размером частиц: чем меньше размер d, тем выше значение χ .

Важным фактором, влияющим на вид зависимости $\chi(T)$, является не только размер частиц, но и плотность образцов. На рис. 4 представлены температурные зависимости восприимчивости в магнитном поле H = 9 kOe плотных (98%) нанокерамических образцов CuO с разным размером зерна, подвергнутых ударно-волновому воздействию. Для образца с большим размером зерна d = 110 nm температурная зависимость восприимчивости совпадает с соответствующей зависимостью $\chi(T)$ для поликристаллов. В этой серии образцов размер зерна изменяется в тех же пределах, что и размеры порошинок образцов, полученных методом газовой конденсации, однако характер изменения $\chi(T)$ несколько отличается. Из рис. 4 видно, что восприимчивость нагруженных образцов не зависит от размера зерна в области

ближнего магнитного порядка ($T_N < T < 550$ K). В области дальнего магнитного порядка ($T < T_N$) появляется так называемый "парамагнитный" вклад $\chi \sim 1/T$, который увеличивается при уменьшении *d*. Отметим, что зависимости $\chi(T)$ для образцов двух серий при одних и тех же размерах зерна не совпадают. Более высокие значения χ имеют рыхлые образцы, в которых доля поверхностных слоев в общей массе значительно выше.

Для изучения влияния немагнитных фаз Cu₂O и Cu на магнитную восприимчивость CuO мы провели измерения $\chi(T)$ гетерофазных образцов, содержащих смесь этих фаз (50 wt.%). Магнитная восприимчивость мелкодисперсного ($d \le 100$ nm) порошка, полученного методом распыления меди в вакууме под действием мощных импульсов электрического тока, в области T = 100-300 K оставалась практически постоянной: $\chi = (1.55-1.65) \cdot 10^{-6}$ cm³/g (кривая 5 на рис. 2). При T = 80 K восприимчивость незначительно увеличивалась до $\chi = 2.08 \cdot 10^{-6}$ cm³/g. Как абсолютные значения восприимчивости, так и вид зависимости $\chi(T)$ гетерофазного образца при T > 100 K можно объяснить суммой вкладов от всех фаз

$$\chi_{\Sigma} = a\chi(\mathrm{CuO}) + b\chi(\mathrm{Cu}_{2}\mathrm{O}) + c\chi(\mathrm{Cu}), \qquad (1)$$

где a, b, c — концентрации фаз CuO, Cu₂O, Cu. Были измерены температурные зависимости для однофазных образцов Cu₂O и Cu. Восприимчивость Cu₂O мала и уменьшается при повышении температуры от $\chi = 0.81 \cdot 10^{-6} \,\mathrm{cm^3/g}$ $(T = 80 \,\mathrm{K})$ до $0.23 \cdot 10^{-6} \,\mathrm{cm^3/g}$ $(T = 290 \, \text{K})$. Металлическая медь имеет диамагнитную (отрицательную), слабо зависящую от температуры восприимчивость ($\chi = -0.1 \cdot 10^{-6} \,\mathrm{cm}^3/\mathrm{g}$ при $T = 300 \,\mathrm{K}$). В CuO восприимчивость обычно увеличивается от $\chi_{min} = 2 \cdot 10^{-6} \text{ cm}^3/\text{g}$ до $\chi_{max} = 3.6 \cdot 10^{-6} \text{ cm}^3/\text{g}$ [10,11]. Более низкие значения х гетерофазного образца по сравнению с однофазным CuO (рис. 2) обусловлены вкладом в общую восприимчивость фаз Си₂О и Си. Следовательно, наблюдаемое поведение $\chi(T)$ нанопорошков CuO не связано с присутствием фаз Cu₂O и Cu, а является проявлением нанокристаллического состояния монооксида меди. Отметим, что измерения магнитной восприимчивости являются удобным экспрессметодом выявления неконтролируемых магнитных примесей в слабомагнитных материалах.

3. Обсуждение

Антиферромагнитное упорядочение в CuO обусловлено сверхобменным взаимодействием ионов Cu²⁺ со следующими за ближайшими соседями через ионы O^{2-} в направлении [101]. Угол связи Cu–O–Cu вдоль этого направления наиболее близок к 180°. Во всех других направлениях угол Cu–O–Cu близок к 90° и обеспечивает ферромагнитное взаимодействие. Магнитную структуру CuO можно представить в виде зигзагообразных антиферромагнитных цепочек Cu–O–Cu вдоль

направления [101]. Обменная связь между цепочками более слабая и ферромагнитная. При высоких температурах, когда тепловая энергия kT становится сравнимой с обменным параметром между цепочками, это взаимодействие выключается и CuO переходит в квазиодномерное антиферромагнитное состояние. Выше T = 550 К монооксид меди находится в парамагнитном состоянии.

При уменьшении размера частиц в нанокристаллических образцах зависимость $\chi(T)$ имеет сложный вид, который, по-видимому, связан с "парамагнитным" вкладом, обратно пропорциональным температуре. Разумно связать "парамагнитный" вклад в измеряемую χ с поверхностными слоями. В рыхлых нанопорошках доля поверхностных слоев в общей массе больше, чем в плотной нанокерамике, поэтому этот вклад проявляется во всей области температур.

Рассмотрим возможные причины влияния поверхностных эффектов на магнитные свойства CuO. В поверхностных слоях из-за нарушения трехмерной периодичности происходит разрыв обменных связей между ионами Cu²⁺. В случае 1D-антиферромагнетиков образуются альтернированные цепочки с ограниченным числом спинов [12]. Маловероятно, что бо́льшая часть альтернативных цепочек в CuO состоит из нечетного числа спинов, для которых должен наблюдаться рост χ . Для альтернативных антиферромагнитных цепочек с четным числом спинов восприимчивость плавно уменьшается при понижении температуры. В результате разрыва обменных связей в поверхностных слоях CuO, скорее всего, становится сильно фрустрированным антиферромагнетиком. Для таких антиферромагнетиков перпендикулярная и параллельная восприимчивости ($\chi = 2/3\chi_{\perp} + 1/3\chi_{\parallel}$) могут возрастать при понижении температуры. Фрустрация обменных связей должна проявляться только в магнитоупорядоченной области. В высокотемпературной области *T* > *T_N* уменьшение размеров частиц не должно влиять на абсолютные значения восприимчивости $\chi(T)$. Такое поведение $\chi(T)$ наблюдается в образцах из плотной нанокерамики. Их магнитные свойства можно объяснить сильно фрустрированным антиферромагнетизмом. Однако в случае рыхлых нанопорошков абсолютные значения восприимчивости увеличиваются при уменьшении d во всей температурной области.

Как отмечалось выше, разрыв большого числа обменных связей поверхностных ионов в наночастицах может привести к состоянию спинового стекла. Из рис. 2 и 4 видно, что в CuO состояние спинового стекла может реализоваться только ниже 80 К. Выше температуры замерзания T_f , при которой должен наблюдаться максимум восприимчивости, наночастицы должны находиться в парамагнитном состоянии, а их восприимчивость должна следовать закону Кюри–Вейса. Согласно нашим исследованиям, закон Кюри–Вейса выполняется только для нанопорошка с d = 15 nm (рис. 3). Однако большое значение μ_{eff} указывает на то, что в малых частицах CuO в области T > 80 K реализация состояния спинового стекла маловероятна.

Рис. 5. Расчетные кривые температурной зависимости магнитной восприимчивости для разных концентраций (x) парамагнитных ионов Cu²⁺ в нанокристаллических образцах CuO. x, %: 1 - 1, 2 - 2, 3 - 4, 4 - 6.7, 5 - 10, 6 - 15, 7 - 20, 8 - 100.

На наш взгляд, основной причиной появления парамагнитной составляющей восприимчивости в нанокристаллическом CuO являются парамагнитные ионы Cu²⁺, локализованные в поверхностных слоях. Полагая, что изменение вида температурных зависимостей восприимчивости для нанокристаллических образцов с разным размером частиц обусловлено изменением соотношения между вкладами в χ от антиферромагнитной матрицы и от парамагнитных ионов Cu²⁺, мы провели расчеты полной восприимчивости как

$$\chi = (1 - x)\chi(\text{CuO}) + x(Ng^2S(S + 1)\mu_{\text{B}}^2/3kT), \quad (2)$$

где x — концентрация парамагнитных ионов Cu²⁺, S = 1/2, g = 2.

Первый член уравнения (2) определялся из температурной зависимости восприимчивости для поликристалла CuO с составом, близким к стехиометрическому [9]. Второй член в (2) представляет собой закон Кюри, так как ионы Cu²⁺ в поверхностных слоях наночастиц не упорядочиваются магнитно ни при каких температурах (парамагнитная температура Кюри $\Theta = 0$).

На рис. 5 представлены расчетные кривые $\chi(T)$ для разных концентраций x = 0.01-0.20. Ход зависимостей $\chi(T)$ для нанокристаллов с d > 70 nm и поликристаллов совпадает, поскольку при малых $x \le 0.01$ полная восприимчивость в основном определяется первым членом уравнения (2). При увеличении концентрации ионов Cu²⁺ роль второго члена возрастает, особенно при низких температурах. Температурные зависимости восприимчивости имеют вид, подобный виду кривых на

рис. 4 для нанокерамики с минимумом в температурном интервале 150–200 К. При бо́лыших концентрациях ионов Cu²⁺ (x > 0.10) доминирует второй член уравнения (2). Эти зависимости подобны кривым $\chi(T)$ на рис. 2 для нанопорошков CuO. Если бы все ионы Cu²⁺ были изолированы, то восприимчивость при 77 К достигала бы значения $\chi = 61.2 \cdot 10^{-6}$ cm⁻³/g. Экспериментальные значения χ для нанокристаллических образцов на порядок меньше. Следовательно, антиферромагнитное упорядочение большей части ионов Cu²⁺ в наночастицах сохраняется.

Появление пармагнитных ионов Cu²⁺ в мультислоях СиО ниже T_N наблюдали авторы работы [13]. Поликристаллические и эпитаксиальные пленки CuO разной толщины (d = 2-200 nm) напылялись на подложки из немагнитных фаз MgO и Al₂O₃. В области температур 4.2 < T < 300 К все пленочные образцы имели обратно пропорциональную температурную зависимость восприимчивости $\chi \sim 1/T$. При одной и той же общей толщине мультислоев восприимчивость выше у более тонких пленок. Установлено, что при 4.2 К восприимчивость линейно увеличивается с ростом числа интерфейсов. Авторы [13] приводят зависимости $\chi(T)$ в относительных единицах, поэтому нет возможности сравнить абсолютные значения восприимчивости для пленок и нанопорошков. На основании магнитных и мессбауэровских измерений делается вывод, что в пленках кроме основной антиферромагнитной фазы CuO присутствуют парамагнитные ионы Cu²⁺, локализованные в прилегающих к интерфейсным слоям плоскостях с эффективной толщиной 2-4 Å. Для тонких поликристаллических пленок 20 Å CuO/30 Å Al₂O₃, состоящих из 100 слоев, оценка концентрации парамагнитных ионов Cu²⁺ из данных по магнитной восприимчивости дает значение 6.7% от общего числа ионов меди. Мессбауэровские спектры при 4.2 К для таких же пленок из 50 слоев CuO хорошо описываются при концентрации x = 0.10. Увеличение толщины пленок (100 Å CuO/150 Å Al₂O₃, 10 слоев) приводит к уменьшению интенсивности парамагнитного вклада до 4%.

Из сравнения экспериментальных и расчетных зависимостей $\chi(T)$ можно заключить, что предложенная модель хорошо описывает поведение восприимчивости в нанокристаллических образцах CuO, полученных разными методами. Увеличение доли свободных поверхностных слоев в общей массе образца должно приводить к увеличению концентрации парамагнитных ионов Cu²⁺. Оценки показали, что в нанопорошках с размером частиц d = 60 nm концентрация парамагнитных ионов Cu²⁺ x = 0.02, а при d = 15 nm x = 0.082. В плотной нанокерамике максимальное значение x = 0.03 имеет образец с минимальным размером зерна d = 5 nm. Наши значения концентраций парамагнитных ионов Cu²⁺ в нанокристаллах CuO согласуются с данными для мультислоев.

Помимо размера наночастиц важным фактором, влияющим на величину парамагнитного вклада в χ , является плотность образцов. В рыхлых нанопорошках расстояние между частицами большое, поэтому восприимчивость характеризует магнитные свойства самих наночастиц. Спины ионов Cu^{2+} на поверхности обменно не связаны со спинами ионов Cu^{2+} , находящихся в объеме наночастиц. В плотной керамике малое расстояние между наночастицами приводит к корреляции спинов поверхностных ионов Cu^{2+} . В этом случае следует учитывать взаимодействие между наночастицами [14]. Различие зависимостей $\chi(T)$ для нанопорошков и плотной нанокерамики CuO при одинаковом размере частиц связано с уменьшением концентрации парамагнитных ионов Cu^{2+} в последних из-за взаимодействия между наночастицами и изменения поверхностной спиновой структуры.

Таким образом, в нанокристаллических образцах поверхностные эффекты оказывают заметное влияние на магнитные свойства CuO. На поверхности наночастиц из-за потери трехмерной периодичности нарушаются антиферромагнитные связи между ионами Cu²⁺. В результате часть ионов меди в поверхностных слоях при $T < T_N$ находится в парамагнитном состоянии и ведет себя как парамагнитная примесь. Магнитная восприимчивость наночастиц CuO описывается суперпозицией вклада от антиферромагнитной матрицы и парамагнитного вклада излированных ионов Cu²⁺. Парамагнитный вклад возрастает при увеличении доли поверхностных слоев в общей массе образцов, в частности при уменьшении размеров наночастиц и плотности образцов.

Список литературы

- [1] R.H. Kodama. J. Magn. Magn. Mater. 200, 359 (1999).
- [2] R.H. Kodama, A.E. Bercowitz. Phys. Rev. B 59, 9, 6321 (1999).
- [3] E. Gmelin. Ind. J. Pure Appl. Phys. 30, 596 (1992).
- [4] А.А. Самохвалов, Т.И. Арбузова, Н.А. Виглин, С.В. Наумов, В.Р. Галахов, Д.А. Зацепин, Ю.А. Котов, О.М. Саматов, Д.Г. Клещев. ФТТ 40, 2, 295 (1998).
- [5] T. Ishihara, K. Kometanis, M. Hashida, Y. Yakita. Chem. Lett. 223, 1163 (1990).
- [6] Q. Wei, W.D. Luo, B. Liao, Y. Lin, G. Wang. J. Appl. Phys. 88, 8, 4818 (2000).
- [7] Т.И. Арбузова, С.В. Наумов, А.А. Самохвалов, Б.А. Гижевский, В.Л. Арбузов, К.В. Шальнов. ФТТ **43**, *5*, 846 (2001).
- [8] Р. Карлин. Магнетохимия. Мир, М. (1989).
- [9] Т.И. Арбузова, И.Б. Смоляк, С.В. Наумов, А.А. Самохвалов. ФТТ 40, 10, 1876 (1998).
- [10] T.I. Arbuzova, A.A. Samokhvalov, I.B. Smolyak, S.V. Naumov. J. Magn. Magn. Mater. 168, 95 (1991).
- [11] M.O'Keeffe, F.S. Stone. J. Phys. Chem. Sol. 23, 261 (1962).
- [12] J.C. Bonner, M.E. Fisher. Phys. Rev. A 135, 640 (1964).
- [13] M. Sohma, K. Kawaguchi, Y. Fujii. J. Appl. Phys. 77, 3, 1189 (1995).
- [14] M.F. Hansen, S. Morup. J. Magn. Magn. Mater. 184, 262 (1998).