Дислокационная фотолюминесценция в кристаллах кремния с различным примесным составом

© С.А. Шевченко, А.Н. Изотов

Институт физики твердого тела Российской академии наук, 142432 Черноголовка, Московская обл., Россия

(Поступила в Редакцию 14 мая 2002 г.)

В кристаллах кремния с различным примесным составом, деформированных пластически при температурах выше 1000°С, определена специфика влияния кислорода на спектры дислокационной фотолюминесценции (ДФЛ) при 4.2 К. Обнаружено сильное влияние типа легирующей примеси на спектры ДФЛ при концентрациях выше 10¹⁶ cm⁻³. Показано, что особенности многих спектров ДФЛ в кремнии могут быть объяснены в предположении, что линии D1 и D2 связаны с дислокационными ступеньками краевого типа на скользящих дислокациях.

Работа выполнена при поддержке Российского фонда фундаментальных исследований (гранты № 00-15-96703 и 02-02-17024).

Дислокационная фотолюминесценция (ДФЛ) в кремнии при 4.2 К характеризуется линиями D1 (0.807 eV), D2 (0.870 eV), D3 (0.935 eV) и D4 (1.00 eV) [1]. Линия D4 и линия D3 (фононное ТО повторение линии D4) связываются с излучением регулярных сегментов расщепленных 60° дислокаций [2–4]. Интерес к природе линий D1 и D2, которая не выяснена окончательно, обусловлен показанной в [4] возможностью использования этого излучения в оптоэлектронике.

Известно, что линии D1 и D2 наблюдаются в кристаллах кремния, которые деформировались пластически при температурах $T < 900^{\circ}$ С, а затем отжигались в интервале температур 400–1200°С. Анализ условий появления или исчезновения этих линий в [2,5–10] указывает на возможную их связь с местами нарушения трансляционной симметрии на дислокациях, т.е. со специфическими дефектами типа ступенек и дислокационных узлов.

В другой стороны, весьма интенсивные линии D1 и D2 регистрируются в исходных кристаллах кремния, выращенных методом Чохральского (Cz Si), после отжигов, способствующих зарождению и росту кислородных преципитатов [11–13]. Преципитация кислорода сопровождается генерацией межузельных атомов Si_i и образованием дислокационных петель внедренного типа, плоскость которых перпендикулярна вектору Бюргерса b: петель частичных дислокаций Франка ($\mathbf{b} = a/3\langle 111 \rangle$, *а* — постоянная решетки) и петель полных призматических дислокаций ($\mathbf{b} = a/2(110)$). При поглощении избыточных атомов Si_i эти дислокации переползают путем образования и перемещения краевых ступенек в плоскости петли [14]. Линии D1 и D2, регистрируемые в рекристаллизованных слоях (100) Si после отжига при 1100°С в хлорсодержащей атмосфере, связываются с трехмерной сеткой чисто краевых дислокаций [15]. Изменение дефектной структуры этих слоев при отжиге обусловлено расширением полных призматических петель вследствие переползания и упругим взаимодействием сближающихся больших петель.

Исследования методом просвечивающей электронной микроскопии показали, что в кремнии указанные дислокационные петли являются эффективными геттерами переходных металлов [16-18]. В кристаллах кремния, выращенных методом бестигельной зонной плавки (FZ Si) и преднамернно загрязненных медью, обнаружены колонии преципитатов меди на площади, обметенной геликоидальными дислокациями [16,17], которые образуются из винтовых скользящих дислокаций с краевыми ступеньками вследствие переползания последних [14]. Этот факт и дискретное расположение преципитатов меди на частичных дислокациях Франка [17] позволяют рассматривать краевые ступеньки как дефекты, способствующие зарождению преципитатов меди. Согласно [18-20], при температурах выше 900°С кислородные преципитаты в виде многогранников SiO_x (1 < x < 2) формируются в некоторых местах на дислокациях и в узлах дислокационной сетки.

На основании изложенного выше возникает следующее предположение: в пластически деформированных кристаллах линии D1 и D2 связаны со ступеньками краевого типа на скользящих дислокациях и с дислокационными узлами, т.е. с дефектами, вблизи которых зарождаются преципитаты различных примесей. Максимальное уменьшение концентрации атомов межузельного кислорода в результате преципитации происходит при 1050°C [21], и в этой области температур влияние кислорода на спектр ДФЛ может быть наиболее заметным. Для проверки этой гипотезы исследовались спектры ДФЛ в кристаллах кремния с различным содержанием кислорода и легирующих примесей, которые деформировались при T > 1000°С.

1. Методика эксперимента

Исследования проводились на монокристаллах кремния, легированных бором (*p*-тип) или фосфором (*n*-тип), с различным содержанием кислорода и плотностью сталлах с $N_{\rm B}$, $N_{\rm P} > 10^{16}$ cm⁻³ концентрация углерода составляет $\sim 10^{17}$ cm⁻³. Эти данные получены из спектров поглощения в инфракрасной области. Химически полированные параллелепипеды размером $3.2 \times 3.4 \times 11$ mm деформировались в вакууме ~ 7 Ра сжатием вдоль самого длинного ребра (направление $\langle 123 \rangle$) при различных температурах в интервале $1050 \leq T_d \leq 1200^{\circ}$ С до степеней деформации $0.5 < \delta < 30\%$ [6]. После окончания деформации кристаллаы разгружались и медленно (со скоростью менее 10° /min) охлаждались до комнатной температуры, что способствовало получению с равновесной дислокационной структурой. Плотность дислокаций определялась по ямкам травления на грани {111}.

Дислокационная структура, которая формируется при высокотемпературной деформации, исследовалась нами ранее в [6]. Она определяется не только движением дислокаций в плоскости скольжения, но и выходом из этой плоскости вследствие поперечного скольжения винтовых и переползания краевых сегментов. В кристаллах с указанной ориентацией при небольших деформирующих напряжениях т работает одна система скольжения и часть изолированных дислокаций представляет собой прямолинейные (регулярные) сегменты винтовых или 60° дислокаций, которые разделены перегибами и ступеньками. Активизация других систем скольжения при более высоких значениях т и взаимодействие дислокаций способствуют формированию ячеистой структуры и появлению дислокационных узлов. При $\delta > 20\%$ регулярные сегменты 60° и винтовых дислокаций образуют сетку, степень связности которой увеличивается с δ .

Спектры ФЛ измерялись при 4.2 К в диапазоне энергий 0.8-1.2 eV по методике, использованной ранее в [5–7,10]. Плотность мощности возбуждения неравновесных электронов и дырок на длине волны 488.8 nm аргонового лазера составляла 2 mW/cm².

2. Результаты эксперимента

Согласно [7], в кристаллах FZ и Cz Si *p*-типа с $N_{\rm B} = 4 \cdot 10^{13} \,{\rm cm}^{-2}$, деформированных при 1050°С, при относительно небольших ($N_{\rm D} < 2 \cdot 10^7 \,{\rm cm}^{-2}$) плотностях введенных дислокаций вид спектров ДФЛ существенно отличается. Далее приведены спектры ДФЛ в кристаллах FZ и Cz Si с различными типом и концентрацией легирующей примеси после деформации при $T \ge 1050^{\circ}$ С. Оказалось, что подобное различие спектров ДФЛ имеет место также для кристаллов FZ и Cz Si *n*-типа с $N_{\rm P} \le 2 \cdot 10^{14} \,{\rm cm}^{-2}$. В образце FZ *n*-Si (кривая *I* на рис. 1, $N_{\rm P} = 6 \cdot 10^{13} \,{\rm cm}^{-3}$) регистрируется типичный спектр ДФЛ, в котором присутствуют ли-

Рис. 1. Спектры ДФЛ при 4.2 К в кристаллах FZ *n*-Si $(N_{\rm P} = 6 \cdot 10^{13} \,{\rm cm}^{-3})$ (1) и Cz *n*-Si $(N_{\rm P} = 2 \cdot 10^{14} \,{\rm cm}^{-3})$ (2). Плотность дислокаций $N_{\rm D}$, cm⁻²: $4 \cdot 10^6$ (1); $6 \cdot 10^6$ (2). $T_d = 1050^{\circ}$ C.

Рис. 2. Спектры ДФЛ при 4.2 К в кристаллах Сz *p*-Si $(N_{\rm B} = 1.6 \cdot 10^{16} \,{\rm cm^{-3}})$ с различной плотностью дислокаций $N_{\rm D} \,{\rm cm^{-2}}$: 8 · 10⁶ (*I*); > 2 · 10⁷ (*2*); ~ 10⁹ (*3*). $T_d = 1170^{\circ}$ С.

нии D1, D2, D3 и D4, связываемые с дислокациями. В образце Cz *n*-Si (кривая 2, $N_{\rm P} = 2 \cdot 10^{14} \,{\rm cm}^{-3}$) вместо линии D1 появляется уширенная линия с энергией в максимуме $E_m = 0.82 \,{\rm eV}$, который смещается к значению $E_m = 0.83 \,{\rm eV}$ при $N_{\rm D} \sim 1.5 \cdot 10^7 \,{\rm cm}^{-2}$. Специфический спектр ДФЛ наблюдается в образцах Cz Si *n*- и *p*-типов с концентрацией доноров $N_{\rm P} \leq 2 \cdot 10^{15}$ и акцепторов $N_{\rm B} \leq 1.6 \cdot 10^{16} \,{\rm cm}^{-3}$ соответственно, деформированных в интервале температур $1050 \leq T_d \leq 1200^{\circ}$ С. В кристаллах Cz *p*-Si с $N_{\rm B} = 1.6 \cdot 10^{16} \,{\rm cm}^{-3}$ ($T_d = 1170^{\circ}{\rm C}$) изучено влияние плотности дислокаций на спектры ФЛ (рис. 2). Как и в [7], при $N_{\rm D} < 2 \cdot 10^7 \,{\rm cm}^{-2}$ увеличение плотности дислокаций способствует возрастанию ФЛ в окрестности линий D1 и D2. Однако при $N_{\rm D} > 2 \cdot 10^7 \,{\rm cm}^{-2}$ появляется излучение с энергией $E_m = 0.807 \,{\rm eV}$, соответствующей линии D1, и с ростом $N_{\rm D}$ его интенсивность возрастает значительно быстрее, чем интенсивность линии D2. Поэтому при $N_{\rm D} \sim 10^8 - 10^9 \,{\rm cm}^{-2}$ в спектрах ФЛ доминирует широкая линия D1 (кривая 3, $N_{\rm D} \sim 10^9 \,{\rm cm}^{-2}$). В образцах 1-3 обнаружено возрастание интенсивности излучения с энергиями 0.95–0.97 eV (вставка на рис. 2), которое часто наблюдалось в виде небольшого уступа на длинноволновом крыле линии D4 (см., например, рис. 1).

На рис. 3 представлены ДФЛ спектры в кристаллах Cz *n*-Si, легированных фосфором ($N_{\rm P} = 2.6 \cdot 10^{16}$ cm⁻³, $T_d = 1170^{\circ}$ C). В образцах с $N_{\rm D} \sim 10^7$ cm⁻² регистрируются весьма слабые пики на месте линий D2, D3 и D4 (кривая 1). Дальнейшее увеличение $N_{\rm D}$ способствует росту интенсивности линий D1–D4. Широкая полоса излучения слева от линии D2 (кривая 2 на рис. 3) свидетельствует о том, что в образцах с $N_{\rm D} \sim 10^8$ cm⁻² присутствует излучение с $E_m = 0.807$ и 0.830 eV примерно равной интенсивности. В образце с $\delta = 25\%$ (кривая 3 на рис. 3) излучение в окрестности линии D1 становится доминирующим, но его интегральная интенсивность ($I_{\rm D1}$), приведенная к одинаковым условиям измерения, оказалась в десятки раз ниже, чем в образце 3 (рис. 2).

Поскольку в исходных кристаллах Cz Si *n*- и *p*-типов с $N_{\rm B}, N_{\rm P} > 2 \cdot 10^{16}$ cm⁻³ концентрации кислорода и углерода практически одинаковы, значительное ослабление излучения в окрестности линий D1 и D2 в образцах Cz *n*-Si могло быть связанным с влиянием типа легирующей

Рис. 3. Спектры ДФЛ при 4.2 К в кристаллах Cz *n*-Si $(N_{\rm P} = 2.6 \cdot 10^{16} \,{\rm cm^{-3}})$ с различной плотностью дислокаций $N_{\rm D}$, cm⁻²: $1.2 \cdot 10^7$ (*I*); ~ 10^8 (*2*); ~ 10^9 (*3*). $T_d = 1170^{\circ}$ C.

Рис. 4. Спектры ДФЛ при 4.2 К в кристаллах FZ *n*-Si $(N_{\rm P} = 8 \cdot 10^{16} \, {\rm cm}^{-3})$ с различной плотностью дислокаций $N_{\rm D}$, cm⁻²: 1.5 · 10⁷ (*I*); ~ 10⁹ (*2*). $T_d = 1050^{\circ}$ C.

примеси. Поэтому спектры ДФЛ изучались также в кристаллах Fz *n*-Si с $N_{\rm P} = 8 \cdot 10^{16} \,{\rm cm}^{-3}$. В образце с $N_{\rm D} = 3 \cdot 10^6 \,{\rm cm}^{-2}$ дислокационная ФЛ не регистрируется. Очень слабая линия D2 и весьма интенсивные линии D3 и D4 наблюдаются при $N_{\rm D} = 1.5 \cdot 10^7 \,{\rm cm}^{-2}$ (кривая *I* на рис. 4). Отжиг образа при $T_0 = 700-800^{\circ}{\rm C}$ в течение 30 min не влияет на спектр. При более высоких значениях $N_{\rm D}$ появляется излучение в окрестности линий D1 и D2 (кривая 2), но значения $I_{\rm D1}$ также в десятки раз слабее по сравнению с образцом 3 (рис. 2).

Отметим, что в образцах с разным содержанием кислорода (рис. 2–4) при увеличении $N_{\rm D}$ от 10^7 до 10^9 cm⁻² величины $I_{\rm D4}$ отличаются не сильно (в несколько раз). Поэтому сравнимые значения $I_{\rm D1}$ и $I_{\rm D4}$ в образцах с $\delta > 20\%$ (рис. 3 и 4) отражают уменьшение эффективности излучения в окрестности линии D1.

В образцах FZ и Cz Si с $N_{\rm B}$, $N_{\rm P} > 10^{16} \,{\rm cm}^{-3}$ и $N_{\rm D} \leqslant 1.5 \cdot 10^7 \,{\rm cm}^{-2}$ (рис. 2–4) при $E > 1 \,{\rm eV}$ регистрируется излучение TO экситона, его фононного повторения и TA экситона [10].

Таким образом, представленные результаты свидетельствуют о специфических изменениях спектров ДФЛ при увеличении концентрации кислорода, бора и фосфора.

3. Обсуждение

3.1. Спектры ДФЛ при энергиях E < 0.9 eV. Сравнительное исследование спектров ДФЛ в кристаллах FZ и Cz Si, проведенное нами ранее [7] и в настоящей работе, позволяет определить уширенную линию с $E_m = 0.82 - 0.83$ eV как характерный признак деформированных кристаллов Cz Si с $N_D < 2 \cdot 10^7$ cm⁻².

Линия D1 появляется в спектре ДФЛ после отжига этих кристаллов при 1070°C в течение $t_0 = 30 \min c$ последующим медленным охлаждением до комнатной температуры [7] или при введении большого числа дислокаций ($N_{\rm D}=2\cdot 10^7\,{
m cm}^{-2},$ рис. 2). Эти факты коррелируют с результатами других исследований. Линия D1 сдвигается в сторону больших энергий при одноосной упругой деформации образцов с введенными дислокациями [22] или после их отжига в кислороде при 750°С [23]. В деформированных при 900°С образцах Сz *n*-Si $(N_d = 2 \cdot 10^{14} \text{ cm}^{-3}, N_D \sim 10^9 \text{ cm}^{-2})$ излучение в окрестности линии D1 зависит от скорости их охлаждения после отжига при 1200°С [24]. При медленном охлаждении вместо линии D1 появляется излучение в виде широкого уступа, примыкающее к длинноволновому крылу линии D2 и быстро спадающее при $E < 0.82 \,\mathrm{eV}$, а после закалки регистрируются линии D1 и D2 примерно равной интенсивности. Широкая полоса с максимумом при $E \approx 0.82 \,\text{eV}$ и линии D2–D4 наблюдаются после быстрой $(t_d = 15 \text{ min}, N_D = 5 \cdot 10^5 \text{ cm}^{-2})$ деформации образцов Cz Si при 700°C [9], а при $t_d = 14$ hours ДФЛ полностью исчезает.

Совокупность этих факторов указывает на процесс преципитации кислорода в кристаллах Cz Si как на возможную причину сильного влияния условий приготовления образцов на излучение в окрестности линии D1.

Мы полагаем, что при медленном охлаждении образцов Сг *n*- и *p*-Si (рис. 1 и 2) после деформации атомы межузельного кислорода преципитируют на имеющихся ростовых преципитатах и вблизи дислокационных ступенек. Из-за несовпадения молярных объемов матрицы и преципитата появляются упругие напряжения, величина которых максимальна для плоского приципитата и уменьшается на порядок на расстоянии ~ 10^{-5} cm [11]. Характер влияния упругих напряжений на положение линии D1 [22,23] позволяет связать появление излучения с $E_m = 0.82-0.83$ eV (рис. 1 и 2, а также [9,24]) с присутствием ступенек, ответственных за линию D1, вблизи преципитатов.

Появление линии D1 в деформированных образцах Cz Si после отжига при 1070°C [7] обусловлено, вероятно, удалением ступенек от преципитатов вследствие переползания дислокаций при поглощении межузельных атомов кремния, которые генерируются при росте преципитатов. Отрыв 60° дислокаций от кислородных преципитатов путем переползания наблюдался в кристаллах Cz Si при 900°C [20]. В исходных кристаллах Cz Si преобразование линии с $E_m = 0.818$ eV в линию D1 ($E_m = 0.807$ eV) после длительного отжига коррелирует с удалением дислокационных петель от преципитатов [13], а возгорание линии D1 в [24] после отжига при 1200°C и последующей закалки — с растворением преципитатов [21].

С ростом N_D число ступенек возрастает вследствие преодоления движущимися дислокациями препятствий в виде атомов примесей, преципитатов и дислокаций леса, а также их генерации при формировании дислокационных узлов [14]. Согласно [6], в пластически сильно ($\delta \sim 20-30\%$) деформированных образцах расстояние между узлами в дислокационных сетках составляет 50-500 nm. Полагая, что количество ступенек превышает число узлов, для среднего расстояния между ступеньками возьмем значение 50 nm. Тогда при плотности дислокаций $N_{\rm D} \sim 10^9\,{\rm cm}^{-2}$ получим концентрацию ступенек $\sim 10^{14}\,{
m cm^{-3}}$, что на порядок превышает максимально возможную концентрацию зародышей преципитатов в кристаллах Cz Si с $N_{\rm O} \sim 10^{18} \, {\rm cm}^{-3}$ [25]. При заданной температуре Т₀ эта концентрация определяется временем отжига, при котором длина диффузии кислорода становится сравнимой со средним расстоянием между преципитатами. В этом случае более вероятен рост существующих, а не образование зародышей новых преципитатов, т. е. при увеличении N_D возрастает число ступенек, вблизи которых приципитаты не образуются. Поэтому при $N_{\rm D} > 10^7 \, {\rm cm}^{-2}$ в спектре ДФЛ появляется линия D1 и ее интенсивность увеличивается с ростом δ (рис. 2).

Чувствительность линии D1 к кислороду, минимальный энергетический барьер для образования преципитата меди на полных призматических дислокациях [17] и образование геликоидальных дислокаций в процессе приципитации кислорода в кремнии [20] означают, что краевые ступеньки, связанные с линий D1, могли бы быть локализованы на винтовых дислокациях. Линию D2 можно связать со ступеньками краевого типа на 60° дислокации. Регулярные сегменты винтовой дислокации расщеплены на две 30° частичные дислокации, а 60° на 30° и 90° частичные дислокации. Разорванные связи обеих частичных дислокаций реконструированы (замкнуты попарно) и не создают глубоких состояний в запрещенной зоне кремния. С деформационным потенциалом 90° частичных дислокаций связываются две квазиодномерные зоны, отщепленные от зоны проводимости (пустая зона E_{Dc}) и от валентной зоны (заполненная зона E_{Dv}), на расстоянии ~ 0.07 eV от краев соответствующих зон. Поэтому глубокие состояния, связанные с краевыми ступеньками или дислокационными узлами и проявляющиеся в ФЛ, могут быть обусловлены присутствием атома кремния с ненасыщенной связью.

Значительное уменьшение интенсивности ФЛ в окрестности линии D1 и D2 в деформированных образцах Cz и FZ *n*-Si при $N_P > 10^{16}$ cm⁻³ (рис. 3 и 4) по сравнению с образцами Cz *p*-Si (рис. 2) коррелирует с подавлением преципитации кислорода в Cz *n*-Si при сильном легировании примесями V группы (в отличие от легирования бором) [26], а также с различным влиянием бора и фосфора на подвижность дислокаций Si [27]. Проблема взаимодействия технологических примесей (азота, кислорода и углерода) и некоторых легирующих примесей III и V групп с ядром 90° частичной дислокации в кремнии исследовалась теоретически в [28]. Тормозящее действие кислорода на движение дислокаций связывается с ускоренной диффузией атомов меж-

узельного кислорода О_i вдоль ядер этих дислокаций и образованием стабильного комплекса из двух амтов О_i, который расположен в области растяжения. В отличие от кислорода, примеси As, B, N и P взаимодействуют химически с ядром 90° частичной дислокации, разрушая реконструированные связи, и с дефектом реконструкции этого ядра (солитоном). Солитон — это изолированный атом Si с тремя насыщенными и одной ненасыщенной связью, который находтися на границе между реконструированными регулярными сегментами частичных дислокаций с разной фазой. Поэтому в ядре частичных дислокаций атом фосфора, например, может замещать атом Si с четырьмя (а) или с тремя (б) насыщенными связями (при взаимодействии с солитоном). В случае (а) в запрещенной зоне имеются мелкий донорный уровень фосфора и глубокий уровень солитона, а в случае (б) остается только мелкий уровень вблизи потолка валентной зоны или в валентной зоне, связнный с парой оставшихся валентных электронов фосфора, т.е. имеет место пассивация ненасыщенных связей солитона. Согласно [28], закрепление солитона этими примесями (случай б) является энергетически более выгодным. В результате образуются центры закрепления дислокаций с большими энергиями связи ($E^* = 2.3 - 2.5 \, \text{eV}$ для As, B и P и 3.4 eV для N). Такие значения E* обусловлены изменением структуры химических связей этих примесей в ядре и необходимостью их переключения при движении дислокаций (в противном случае примесный атом должен двигаться за дислокацией).

Химическое взаимодействие фосфора с краевыми ступеньками также может привести к пассивации их электрической активности, что объясняет сильное уменьшение интенсивности линий D1 и D2 в n-Si с $N_{\rm P} > 10^{16} \,{\rm cm}^{-3}$ (рис. 3 и 4). Тогда высокая интенсивность линии D1 в Cz p-Si (рис. 2) и упомянутые выше результаты [26,27] свидетельствуют о том, что поведение бора не согласуется с предсказываемым в [28]. В реальных кристаллах образование примесных комплексов зависит, в частности, от зарядового состояния легирующих примесей и собственных точечных дефектов, концентрации технологических примесей, вероятности образования и термической стабильности кластеров SiO_x , B_2O_3 , P_2O_5 и др. [26]. Атомы бора и фосфора отличаются значениями ковалентных радиусов (0.86, 1.10 и 1.18 Å для В, Р и Si соответственно), а в исследованных нами образцах — и знаками ионов при $T \sim 1000^{\circ} \mathrm{C}$ (положительный для Р и отрицательный для В). Видимо, при легировании бором энергетически более выгодным является зарождение кислородных преципитатов вблизи краевых ступенек, а при легировании фосфором химическое взаимодействие фосфора со ступеньками.

В рамках рассматриваемой гипотезы причиной появления линий D1 и D2 в присутствии переходных металлов в [29] является образование краевых ступенек при переползании дислокаций в процессе диффузии или преципитации этих примесей.

3.2. Спектры ДФЛ при энергиях $E > 0.9 \, \text{eV}$. В деформированных образцах Cz p-Si (рис. 2) линия D4 $(E_m = 0.998 - \pm 0.001 \,\text{eV})$ приписывается излучению регулярных сегментов 60°С дислокаций с равновесным значением ширины дефекта упаковки Δ_0 . Это излучение есть результат рекомбинации неравновесных электронов и дырок, захваченных в квазиодномерные зоны Е_{Dc} и Е_{Dv} соответственно. Деформационный потенциал 30° частичной дислокации играет роль слабого возмущения, величина которого зависит от расстояния между частичными дислокациями, т.е. от величины Δ. Этот параметр влияет на глубину зон E_{Dc} и E_{Dv} и соответственно на энергию излучения. Изменить величину Δ можно, например, охлаждением деформированного образца под большой нагрузкой до комнатной температуры [2,3]. В таком образце появляются регулярный сегменты 60° дислокаций с неравновесными значениями Δ , а в спектре ДФЛ в Si — серия узких линий (вместо линии D4). При $\Delta > \Delta_0$ каждому значению Δ соответствует узкая линия со значением $E_m > 1.00 \, \text{eV}$, дискретно увеличивающимся при увеличении Δ , а при $\Delta < \Delta_0$ значения E_m дискретно уменьшаются в интервале 1.00-0.93 eV. Таким образом, в образцах Cz p-Si с равновесной дислокационной структурой излучение с $E_m = 0.95 - 0.97 \,\mathrm{eV}$ (вставка на рис. 2) попадает в интервал энергий, соответствующих сегментам с неравновесными значениями $\Delta < \Delta_0$. Это могло бы означать, что в этих образцах, кроме регулярных сегментов 60° дислокаций с равновесными значениями Δ_0 , присутствуют и регулярные сегменты с $\Delta_{0e} < \Delta_0.$

Анализ спектров ДФЛ в пластически деформированных кристаллах Ge с равновесной дислокационной структурой [30] показывает, что значение $E_m = 0.513 \text{ eV}$ для полосы 1, связываемой с 60° дислокациями, соответствует регулярным сегментами 60° дислокаций с равновесным расщеплением Δ_0 только в одном образце. Для остальных образцов наблюдаются более низкие значения $E_m = 0.497 - 0.508 \text{ eV}$.

Из электронно-микроскопических изображений приведенных в [31], следует, что в образцах Ge с равновесной дислокационной структурой регулярные сегменты скользящих дислокаций характеризуются разными длинами и значениями Δ . Регулярным сегментам с $L > L_c$ соответствует значение Δ_0 , а с $L < L_c$ — значение $\Delta_{0e} < \Delta_0$. Критическая длина L_c составляет ~ 100 nm, т.е. для длинных ($L > L_c$) сегментов выполняется соотношение $L > (20-30) \Delta_0$, а минимальные значения Δ_{0e} соответствуют сегментам с $L \sim 30$ nm.

Приведенные результаты позволяют заключить, что в Si и Ge спектральный состав ФЛ, связываемой с равновесным ансамблем регулярных сегментов 60° дислокаций, определяется распределением этих сегментов по длинам и значениям Δ . Усиление излучения с $E_m = 0.95 - 0.97 \text{ eV}$ (из-за увеличения числа 60° дислокаций с длинами $L < L_c$) в образцах Cz *p*-Si при $N_{\rm D} > 10^7 \, {\rm cm}^{-2}$ коррелирует с присутствием кислородных преципитатов.

В деформированных образцах FZ и Cz Si, легированных фосфором, при $N_{\rm P} > 10^{16}$ cm⁻³ линия D4 характеризуется значением $E_m = 0.988 \pm 0.001$ eV (рис. 3 и 4), что на 10 eV ниже значений E_m в кристаллах с другим легированием (рис. 1 и 2). По аналогии с изложенным выше полагаем, что эти значения E_m обусловлены уменьшением длин большей части регулярных сегментов 60° дислокаций до значений $L < L_c$. Этот диапазон значений L определен по-видимому, количеством ступенек, электрическая активность которых пассивирована фосфором.

Таким образом, гипотеза о связи линий D1 и D2 со ступеньками краевого типа позволяет объяснить специфику спектров ДФЛ в кристаллах Si с большим содержанием кислорода. Кислородные преципитаты, формирующиеся в деформированных кристаллах Cz p-Si с дислокациями, влияют на количество и энергию излучения ступенек, разделяющих регулярные сегменты, а также на длину этих сегментов. Гашение линий D1 и D2 при повышенной концентрации фосфора с большой вероятностью является проявлением химического взаимодействия фосфора со ступеньками. Низкая растворимость кислорода и переходных металлов при комнатной температуре и эффективное взаимодействие этих примесей со ступеньками способствуют их концентрированию в отдельных местах на дислокациях и проявлению рекомбинационных свойств квазиодномерных дислокационных сегментов и разделяющих их дефектов.

Авторы выражают благодарность В.В. Кведеру, В.П. Киселю и А.И. Колюбакину за полезные дискуссии, Э.А. Штейнману — за внимание к данной работе и обсуждение результатов и А.В. Баженову — за определение содержания кислорода и углерода в исходных кристаллах.

Список литературы

- H.А. Дроздов, А.А. Патрин, В.Д. Ткачев. Письма в ЖЭТФ 23, 651 (1976).
- [2] R. Sauer, C. Kisielowski-Kemmerich, H. Alexander. Appl. Phys. A36, 1 (1985).
- [3] A.N. Izotov, A.I. Kolyubakin, S.A. Shevchenko, E.A. Steinman. Phys. Stat. Sol. (a) 130, 193 (1992).
- [4] V.V. Kveder, E.A. Steinman, S.A. Shevchenko, H.G. Grimmeiss. Phys. Rev. B 51, 10 520 (1995).
- [5] A.N. Izotov, E.A. Stienman. Phys. Stat. Sol. (a) 104, 777 (1987).
- [6] S.A. Shevchenko, Yu.A. Ossipyan, T.R. Mchedlidze, E.A. Steinman, R.A. Batto. Phys. Stat. Sol. (a) 146, 745 (1994).
- [7] S.A. Shevchenko, A.N. Izotov. Phys. Stat. Sol. (a) 138, 665 (1993).
- [8] T. Sekiguchi, K. Sumino. J. Appl. Phys. 79, 3253 (1996).
- [9] O.V. Feklisova, G. Mariani-Reguta, B. Pichaud, E.B. Yakimov. Phys. Stat. Sol. (a) 171, 341 (1998).
- [10] E.A. Steinman, V.I. Vdovin, T.G. Yugova, V.S. Avrutin, N.F. Izyumskaya. Semicond. Sci. Technol. 14, 582 (1999).
- [11] W. Wijaranakula. J. Appl. Phys. 72, 4026 (1992).

- [12] C. Clayes, E. Simoen, J. Vanhellemont. J. Phys. III France 7, 1469 (1997).
- [13] S. Pizzini, M. Guzzi, E. Grilli, G. Borionetti. Journal of Physics: Condens. Matter 12, 10131 (2000).
- [14] Ж Фридель. Дислокации. Мир, М. (1967). 644 с.
- [15] В.И. Вдовин, Н.А. Соболев, А.М. Емельянов, Е.И. Шек, Т.Г. Югова. Изв. РАН. Сер. физ. 66, 279 (2002).
- [16] H. Gotschalk. Phys. Stat. Sol. (a) 137, 447 (1993).
- [17] B. Shen, T. Sekiguchi, J. Jablonski, K. Sumino. J. Appl. Phys. 76, 4540 (1994).
- [18] K. Sumino. Phys. Stat. Sol. (a) 171, 111 (1999).
- [19] A. Cavallini, M. Vandini, F. Cirticelli, A. Armigliato. Inst. Phys. Conf. Ser. 134, 115 (1993).
- [20] K. Minova, I. Yonenaga, K. Sumino. Mater. Lett. 11, 164 (1991).
- [21] H. Möller, L. Long, M. Werner, D. Yang. Phys. Stat. Sol. (a) 171, 175 (1999).
- [22] A.N. Drozdov, A.A. Patrin, V.D. Tkachev. Phys. Stat. Sol. (b) 83, K137 (1977).
- [23] A.N. Drozdov, A.A. Patrin, V.D. Tkachev. Phys. Stat. Sol. (a) 64, K63 (1981).
- [24] А.Н. Изотов, Э.А. Штейнман. ФТТ 28, 1172 (1980).
- [25] A. Borghesi, B. Pivac, A. Sassela, A. Stella. J. Appl. Phys. 77, 4169 (1995).
- [26] S. Hahn, F.A. Ponce, W.A. Tiler, V. Stojanov, D.A.P. Bulla, W.E. Castro, jr. J. Appl. Phys. 64, 4454 (1988).
- [27] M. Imai, K. Sumino. Phil. Mag. A47, 599 (1983).
- [28] R. Jones, A. Umerski, P. Sitch, M.I. Heggie, S. Öberg. Phys. Stat. Sol. (a) 138, 369 (1993).
- [29] E.C. Lightowlers, V. Higgs. Phys. Stat. Sol. (a) 138, 665 (1993).
- [30] А.И. Колюбакин, Ю.А. Осипьян, С.А. Шевченко, Э.А. Штейнман. ФТТ **26**, 677 (1984).
- [31] G. Packeiser, P. Haasen. Phil. Mag. 35, 821 (1977).