Оптическое поглощение в кобальтсодержащих эпитаксиальных монокристаллических пленках гадолиний-галлиевого граната

© В.В. Рандошкин, Н.В. Васильева*, В.Г. Плотниченко**, Ю.Н. Пырков**, А.М. Салецкий***, Н.Н. Сысоев***, А.М. Галкин***, В.Н. Дудоров

Совместная хозрасчетная лаборатория "Магнитооптоэлектроника" Института общей физики Российской академии наук при Мордовском государственном университете им. Н.П. Огарева,

430000 Саранск, Россия

* Институт общей физики Российской академии наук,

119991 Москва, Россия

** Научный центр волоконной оптики при Институте общей физики Российской академии наук,

119991 Москва, Россия

*** Московский государственный университет им. М.В. Ломоносова,

119899 Москва, Россия

E-mail: antonv@aha.ru

(Поступила в Редакцию в окончательном виде 10 июня 2002 г.)

Методом жидкофазной эпитаксии из переохлажденных растворов-расплавов на основе PbO–B₂O₃ и Bi₂O₃–B₂O₃ на подложках Gd₃Ga₅O₁₂ выращены Co-содержащие монокристаллические гранатовые пленки. Показано, что кобальт находится в пленках в трехвалентном состоянии. При введении в исходный растворрасплав GeO₂ кобальт переходит в двухвалентное состояние. Показано, что спектр поглощения выращенных пленок содержит две широкие полосы поглощения в диапазоне длин волн 450–800 nm и 900–1800 nm, каждая из которых содержит по три компоненты. Определено спин-орбитальное расщепление этих полос.

Валентностью кристаллообразующих ионов в монокристаллических пленках гранатов, синтезируемых методом жидкофазной эпитаксии из переохлажденного раствора-расплава, можно управлять, вводя в раствор-расплав различные добавки (см., например, [1]). В частности, валентность ионов кобальта в эпитаксиальных монокристаллических пленках граната изменяется при введении в раствор-расплав GeO₂ [2]. Заметим, что Со-содержащие монокристаллы перспективны для использования в качестве насыщающихся фильтров в лазерах инфракрасного (ИК) диапазона [3]. Это обусловлено наличием в их спектрах пропускания широкой полосы поглощения в диапазоне длин волн $\lambda = 1.3-1.6\,\mu$ m.

Цель настоящей работы состоит в изучении возможности изменения валентности ионов кобальта в эпитаксиальных монокристаллических пленках граната и исследовании оптического поглощения в них в диапазоне длин волн от 0.2 до 2.5 µm.

Это статья является продолжением работы [2], в которой сообщается об обнаружении оптического поглощения двух- и трехвалентных ионов кобальта в монокристаллических пленках гадолиний-галлиевого граната, выращенных методом жидкофазной эпитаксии из переохлажденных растворов-расплавов на основе PbO–B₂O₃ и PbO–B₂O₃–GeO₂.

1. Рост пленок

Кобальт-содержащие пленки выращивались на подложках $Gd_3Ga_5O_{12}$ (GGG) с ориентацией (111) из растворов-расплавов на основе PbO-B₂O₃ (I), PbO-B₂O₃-GeO₂ (II), Bi₂O₃-B₂O₃ (III)

и $Bi_2O_3-B_2O_3-GeO_2$ (IV) из платинового тигля. В отсутствие GeO_2 в растворе-расплаве для обеспечения зарядовой компенсации кобальт в основном находится в трехвалентном состоянии [1]. Лишь небольшое количество ионов Co^{2+} может образовываться для компенсации заряда примесных ионов Pb^{4+} и Pt^{4+} , входящих в пленку из раствора-расплава. Платина входит в раствор-расплав вследствие растворения материала тигля. При введении в расплав GeO_2 ионы кобальта должны переходить в двухвалентное состояние для компенсации заряда ионов Ge^{4+} , входящих в основном в тетраэдрическую подрешетку структуры граната.

Состав растворов-расплавов I–IV характеризовался следующими мольными отношениями. Для I

$$\begin{split} R_1 &= (\text{Ga}_2\text{O}_3 + \text{Co}_3\text{O}_4)/\text{Gd}_2\text{O}_3, \\ R_2 &= \text{PbO}/\text{B}_2\text{O}_3, \\ R_3 &= (\text{Gd}_2\text{O}_3 + \text{Ga}_2\text{O}_3 + \text{Co}_3\text{O}_4)/(\text{Gd}_2\text{O}_3 + \text{Ga}_2\text{O}_3 \\ &+ \text{Co}_3\text{O}_4 + \text{PbO} + \text{B}_2\text{O}_3), \\ R_4 &= \text{Ga}_2\text{O}_3/\text{Co}_3\text{O}_4. \end{split}$$

Для II

$$\begin{split} R_1 &= (\text{Ga}_2\text{O}_3 + \text{GeO}_2 + \text{Co}_3\text{O}_4)/\text{Gd}_2\text{O}_3, \\ R_2 &= \text{PbO}/\text{B}_2\text{O}_3, \\ R_3 &= (\text{Gd}_2\text{O}_3 + \text{Ga}_2\text{O}_3 + \text{GeO}_2 + \text{Co}_3\text{O}_4)/(\text{Gd}_2\text{O}_3 \\ &+ \text{Ga}_2\text{O}_3 + \text{GeO}_2 + \text{Co}_3\text{O}_4 + \text{PbO} + \text{B}_2\text{O}_3), \\ R_4 &= (\text{Ga}_2\text{O}_3 + \text{GeO}_2)/\text{Co}_3\text{O}_4. \end{split}$$

Оптическое поглощение в кобальтсодержащих эпитаксиальных монокристаллических пленках...

натов

243

_	
IIna	
ЛЛЯ	

$$\begin{split} R_1 &= (\text{Ga}_2\text{O}_3 + \text{Co}_3\text{O}_4)/\text{Gd}_2\text{O}_3, \\ R_2' &= \text{Bi}_2\text{O}_3/\text{B}_2\text{O}_3, \\ R_3' &= (\text{Gd}_2\text{O}_3 + \text{Ga}_2\text{O}_3 + \text{Co}_3\text{O}_4)/(\text{Gd}_2\text{O}_3 + \text{Ga}_2\text{O}_3 \\ &+ \text{Co}_3\text{O}_4 + \text{Bi}_2\text{O}_3 + \text{B}_2\text{O}_3), \end{split}$$

 $R_4 = \mathrm{Ga}_2\mathrm{O}_3/\mathrm{Co}_3\mathrm{O}_4.$

Для IV

$$\begin{split} R_1 &= (\text{Ga}_2\text{O}_3 + \text{GeO}_2 + \text{Co}_3\text{O}_4)/\text{Gd}_2\text{O}_3, \\ R_2' &= \text{Bi}_2\text{O}_3/\text{B}_2\text{O}_3, \\ R_3' &= (\text{Gd}_2\text{O}_3 + \text{Ga}_2\text{O}_3 + \text{GeO}_2 + \text{Co}_3\text{O}_4)/(\text{Gd}_2\text{O}_3 \\ &\quad + \text{Ga}_2\text{O}_3 + \text{GeO}_2 + \text{Co}_3\text{O}_4 + \text{Bi}_2\text{O}_3 + \text{B}_2\text{O}_3), \\ R_4 &= (\text{Ga}_2\text{O}_3 + \text{GeO}_2)/\text{Co}_3\text{O}_4. \end{split}$$

Пленки, выращенные из растворов-расплавов I–IV, были окрашены соответственно в желтовато-зеленый, зеленовато-голубой, зеленый и синий цвета. Мольные отношения растворов-расплавов, которые использовались при выращивании эпитаксиальных пленок, приведены в табл. 1. Здесь же для сравнения представлены моль-

Таблица 1. Мольные отношения компонентов в растворах-расплавах

Раствор-расплав	R_1	R_2	R'_2	R_3	R'_3	R_4
Ι	14.42	16.03	_	0.08	-	9.00
II	30.77	16.03	_	0.15	_	20.35
III	1.11	_	15.92	_	0.14	9.00
IV	2.34	_	15.92	—	0.20	20.14
V	14.42	16.03	_	0.08	_	_
VI	1.11	—	15.92	—	0.14	—

ные отношения растворов-расплавов $PbO-B_2O_3$ (V) [4] и $Bi_2O_3-B_2O_3$ (VI) [5], из которых выращивались пленки номинального состава $Gd_3Ga_5O_{12}$.

2. Эксперимент

Суммарную толщину 2*h* пленок на обеих сторонах подложки определяли, взвешивая подложку до эпитаксиального роста и после него [4–6]. Различием плотности выращенных пленок и подложки пренебрегали.

Спектры пропускания пленок измерялись в диапазоне длин волн $0.2-2.5 \,\mu\text{m}$ с помощью спектрофотометра Lambda 900 фирмы Perkin-Elmer при комнатной температуре. Спектры поглощения пленок рассчитывали из спектров пропускания подложек с выращенными на

Номер образца	T_g , °C	t_g , min	2 <i>h</i> , µm	f_g , μ m/min
I-1	985	5	5.8	0.58
I-2	956	5	10.3	1.03
I-3	931	5	6.2	0.63
I-4	904	5	4.3	0.43
I-5	877	5	2.3	0.23
I-6	937	60	92.3	0.77
II-1	906	5	1.98	0.20
II-2	889	5	2.6	0.26
II-3	859	5	3.3	0.33
II-4	822	5	2.3	0.23
II-5	874	120	44.6	0.19
III-1	1015	5	22.2	2.2
III-2	996	5	23.8	2.4
III-3	977	5	22.6	2.3
III-4	960	5	17.7	1.8
III-5	943	5	14.5	1.4
III-6	952	5	70.8	7.1
III-7	931	5	35.1	3.5
III-8	914	5	27.8	2.8
III-9	1003	15	29.3	0.98
III-10	952	15	87.5	2.9
IV-1	990	5	1.3	0.13
IV-2	963	5	9.1	0.91
IV-3	937	5	13.8	1.37
IV-4	953	15	27.6	0.92
IV-5	948	40	59.4	0.74
V-1	1017	10	28.4	1.42
V-2	1005	13	43.4	1.67
V-3	987	10	30.5	1.52
V-4	971	11	20.8	0.95
VI-1	925	15	16.2	0.54
VI-2	912	15	22.8	0.76
VI-3	902	15	32.8	1.1

Таблица 2. Параметры роста эпитаксиальных пленок гра-

них пленками, вычитая поглощение подложки. Параметры роста пленок приведены в табл. 2, где T_g, t_g, f_g и 2h — температура, время, скорость роста и толщина пленок соответственно. Римские цифры относятся к раствору-расплаву, арабские — к номеру пленок, последовательно выращенных из соответствующего раствора-расплава. Отметим, что для образца III-6, выращенного сразу после гомогенизации раствора-расплава, скорость роста пленки оказалась максимальной и составила 7.1 μ m/min.

3. Результаты измерений и обсуждение

На рис. 1 приведены спектры поглощения подложки GGG (кривая 0) и пленок, выращенных из растворов-расплавов I, III, V и VI (кривые 1–4 соответственно), которые позволяют разделить пики по-

	[
Раствор-расплав	Диапазон полос поглощения	Максимумы оптических полос	Спин-орбитальное расщепление полос	Электронный переход [8]
$PbO{-}B_2O_3\ (I)$	540-800 nm (18 500-12 500 cm ⁻¹)	570, 625, 680 nm (17 500, 16 000, 14 700 cm ⁻¹)	$2800\mathrm{cm}^{-1}$	625 nm (⁵ $E \rightarrow {}^{5}T_{2}$) Додекаэдр. Co ³⁺ 680 nm (¹ $A_{1} \rightarrow {}^{1}T_{1}$) Октаэдр. Co ³⁺
	900-1700 nm (11 100-5900 cm ⁻¹) 390 nm (25 600 cm ⁻¹) 280 nm (35 600 cm ⁻¹)	1100, 1265, 1630 nm (9100, 7900, 6130 cm ⁻¹)	$2970 {\rm cm}^{-1}$	1100 nm $({}^{5}E \rightarrow {}^{5}T_{2})$ Тетраэдр. Co ³⁺ 390 nm $({}^{1}A_{1} \rightarrow {}^{1}T_{2})$ Октаэдр. Co ³⁺ 280 nm $({}^{1}S_{0} \rightarrow {}^{3}P_{1})$ Pb ²⁺ $(6s^{2})$
PbO- B_2O_3 -GeO ₂ (II)	$500-770 \text{ nm}$ $(20\ 000-13\ 000\ \text{cm}^{-1})$ $1060-1760\ \text{nm}$ $(9400-5700\ \text{cm}^{-1})$ $280\ \text{nm}\ (35\ 600\ \text{cm}^{-1})$	573, 613, 657 nm (17 500, 16 300, 15 200 cm ⁻¹) 1295, 1425, 1625 nm (7720, 7020, 6150 cm ⁻¹)	$2300 \mathrm{cm}^{-1}$ $1570 \mathrm{cm}^{-1}$	613 nm (${}^{4}A_{2} \rightarrow {}^{4}T_{1}({}^{4}P)$) Тетраэдр. Co ²⁺ 1425 nm (${}^{4}A_{2} \rightarrow {}^{4}T_{1}({}^{4}F)$) Тетраэдр. Co ²⁺ 280 (${}^{1}S_{0} \rightarrow {}^{3}P_{1}$) Pb ²⁺ (6s ²)
$Bi_2O_3 – B_2O_3 \ (III)$	520-740 nm (19 200-13 500 cm ⁻¹) 900-1700 nm (11 100-5900 cm ⁻¹) 400 nm (25 000 cm ⁻¹)	575, 613, 651 nm (17 400, 16 300, 15 360 cm ⁻¹) 1100, 1290, 1630 nm (9100, 7750, 6130 cm ⁻¹)	$2040 \mathrm{cm}^{-1}$ $2970 \mathrm{cm}^{-1}$	613 nm (${}^{4}A_{2} \rightarrow {}^{4}T_{1}(P)$) Тетраэдр. Co ²⁺ 1100 nm (${}^{5}E \rightarrow {}^{5}T_{2}$) Тетраэдр. Co ³⁺
	$290 \text{ nm} (34500 \text{ cm}^{-1})$			400 nm $({}^{1}A_{1} \rightarrow {}^{1}T_{2})$ Октаэдр. Co ³⁺ 290 nm $({}^{1}S_{0} \rightarrow {}^{3}P_{1})$ Bi ³⁺ (6s ²)
$Bi_2O_3 – B_2O_3 – GeO_2 \ (IV)$	$\begin{array}{c} 450-741\mathrm{nm}\\ (22200-13500\mathrm{cm^{-1}})\\ 1100-1800\mathrm{nm}\\ (9100-5560\mathrm{cm^{-1}})\\ 290\mathrm{nm}\;(34500\mathrm{cm^{-1}}) \end{array}$	573, 613, 657 nm (17 500, 16 300, 15 200 cm ⁻¹) 1295, 1425, 1625 nm (7720, 7020, 6150 cm ⁻¹)	$2300 \mathrm{cm}^{-1}$ $1570 \mathrm{cm}^{-1}$	613 nm $({}^{4}A_{2} \rightarrow {}^{4}T_{1}(P))$ Tетраэдр. Co ²⁺ 1425 nm $({}^{4}A_{2} \rightarrow {}^{4}T_{1}(F))$ Tетраэдр. Co ²⁺ 290 nm $({}^{1}S_{0} \rightarrow {}^{3}P_{1})$ Bi ³⁺ $(6s^{2})$
Кристалл шпинели $MgAl_2O_4:Co^{+2} \\ (4\cdot 10^{19} \ ion/cm^3)$	$\begin{array}{c} 490-680\text{nm} \\ (20400-14700\text{cm}^{-1}) \\ 1050-1660\text{nm} \\ (9500-6000\text{cm}^{-1}) \end{array}$	549, 583, 624 nm (18 210, 17 150, 16 030 cm ⁻¹) 1230, 1340, 1520 nm (8100, 7460, 6580 cm ⁻¹)	$2180 \mathrm{cm}^{-1}$ $1520 \mathrm{cm}^{-1}$	
Кварцевое стекло: Со ²⁺ [9]		19 700, 16 500, 14 500 cm ⁻¹ 8000, 6300, 5300 cm ⁻¹	$5200 \mathrm{cm^{-1}}$ $2700 \mathrm{cm^{-1}}$	
Кристаллический кварц: Co ²⁺ [9]		18 500, 17 100, 15 600 cm ⁻¹ 7700, 6700, 5700 cm ⁻¹	$2900 \mathrm{cm}^{-1}$ $2000 \mathrm{cm}^{-1}$	

Таблица 3. Положение максимумов полос поглощения и их интерпретация в спектрах пропускания Со-содержащих пленок и кристаллов

Рис. 1. Спектры поглощения образцов I-1 (1), III-3 (2), V-3 (3), VI-2 (4) и подложки GGG (0). Номера образцов соответствуют табл. 2.

глощения, обусловленные примесными и легирующими ионами. Из сравнения кривых 0, 1 и 3 следует, что пик поглощения с максимумом на длине волны 280 nm связан с примесными ионами Pb^{2+} ($6s^2$), что согласуется с результатами работы [7], в которой данный пик был отождествлен с электронным переходом ${}^{1}S_{0} \rightarrow {}^{3}P_{1}$.

Исходя из выводов работы [8], с легирующими ионами Co^{3+} в пленках, выращенных из раствора-расплава *I*, можно связать две широкие полосы поглощения в диапазонах спектра приблизительно 540–800 nm и 900–1700 nm и узкую полосу поглощения с максимумом около 390 nm (табл. 3).

Каждая из широких полос состоит из трех компонент с максимумами: первая — около 570, 625 и 680 nm, вторая — около 1100, 1265 и 1630 nm.

Из сравнения кривых 0, 2 и 4 (рис. 1) следует, что пик поглощения с центром на длине волны ≈ 290 nm связан с примесными ионами Bi³⁺ (6s²) (электронный переход ${}^{1}S_{0} \rightarrow {}^{3}P_{1}$ [1]).

С легирующими ионами Co³⁺ в пленках, выращенных из раствора-расплава III, связаны широкая полоса поглощения в диапазоне приблизительно 900–1700 nm и узкая полоса поглощения с максимумом около 400 nm. Вторая широкая полоса поглощения в диапазоне длин волн 520–740 nm обусловлена электронным переходом ${}^{4}A_{2} \rightarrow {}^{4}T_{1}({}^{4}P)$ тетраэдрического Co²⁺ [8]. В пленках, выращенных из раствора-расплава III, компенсация заряда обеспечивается примесными ионами Pt⁴⁺.

Для пленок, выращенных из раствора-расплава III, каждая из двух широких полос (900–1700 nm для Co^{3+} ; 520–740 nm для Co^{2+}) также содержит три компоненты, параметры которых приведены в табл. 3.

Основываясь на результатах работы [8], пик поглощения с центром около 1100 nm можно связать с электронным переходом ${}^{5}E \rightarrow {}^{5}T_{2}$ ионов Со³⁺, входящих в тетраэдрическую подрешетку структуры граната; пики поглощения с центрами на 680 и 390 nm следует отнести соответственно к электронным переходам ${}^{1}A \rightarrow {}^{1}T_{1}$ и ${}^{1}A_{1} \rightarrow {}^{1}T_{2}$ ионов Co³⁺, входящих в октаэдрическую подрешетку, а пик поглощения с центром около 625 nm — к электронному переходу ${}^{5}E \rightarrow {}^{5}T_{2}$ ионов Co³⁺, входящих в додекаэдрическую подрешетку (табл. 3).

Из сравнения кривых 1 и 2 (рис. 1) видно, что спектр поглощения пленки, выращенной из растворарасплава I, в диапазоне длин волн от 0.7 до $1.5\,\mu$ m лежит выше спектра поглощения пленки, выращенной из раствора-расплава III. Следовательно, можно оптимизировать параметры роста для получения пленок с заданным оптическим поглощением.

Рис. 2. Спектры поглощения образцов I-1 (1), I-2 (2), I-3 (3), I-4 (4), I-5 (5) и I-6 (6). Номера образцов соответствуют табл. 2.

Рис. 3. Зависимости коэффициента поглощения α пленок, выращенных из раствора-расплава I, на длинах волн $\lambda = 1071$ (*1*), 1265 (*2*) и 1630 nm (*3*) от температуры роста *T_g*.

Рис. 4. Спектры поглощения образцов I-6 (1), II-5 (2), V-3 (3) и подложки GGG (θ). Номера образцов соответствуют табл. 2.

Рис. 5. Спектры поглощения подложки GGG (0), образцов III-3 (1), IV-5 (2), VI-2 (3) и шпинели MgAl₂O₄, легированной ионами Co²⁺ (4). Номера образцов соответствуют табл. 2.

На рис. 2 приведены спектры поглощения пленок, выращенных из раствора-расплава I при разных температурах (см. табл. 2). Видно, что по мере снижения температуры роста коэффициент оптического поглощения α во всем диапазоне измерений растет. Это коррелирует с ростом коэффициента распределения кобальта (который меньше единицы) при увеличении переохлаждения раствора-расплава. Зависимости α от T_g для характерных пиков поглощения ионов Co³⁺ показаны на рис. 3. Видно, что они близки к линейными и могут быть описаны линейными функциями, приведенными на рисунке. Следовательно, полученные зависимости позволяют определить температуры роста для выращивания пленок с необходимым поглощением.

На рис. 4 приведены спектры поглощения пленок, выращенных из растворов-расплавов I, II, V (кривые 1-3соответственно), и подложки GGG (кривая 0). Видно, что при введении в раствор-расплав GeO₂ обе широкие полосы поглощения еще более уширились, а слабая полоса поглощения, связанная с ионами Co³⁺ $(\lambda = 390 \text{ nm})$, входящими в октаэдрическую подрешетку, исчезла. Исходя из этого можно сделать вывод, что кобальт перешел в двухвалентное состояние. Положения максимумов первого триплета, который расширился в коротковолновую область спектра, заняв диапазон около 500-770 nm, и максимумов второго триплета, сдвинувшегося в длинноволновую область спектра (1060-1760 nm), приведены в табл. 3.

На рис. 5 показаны спектры поглощения подложки GGG (кривая θ) и пленок, выращенных из растворорасплавов III, IV, VI (кривые 1-3 соответственно), а также спектр поглощения шпинели MgAl₂O₄, легированной ионами Co²⁺ (кривая 4). Видно, что при введении GeO₂ в раствор-расплав первый триплет сдвинулся в коротковолновую область спектра 450–741 nm, а второй триплет расширился в длинноволновую часть спектра 1100–1800 nm. Основываясь на результатах работы [8], пики поглощения с максимумами около 613 и 1425 nm мы связали с электронными переходами ${}^{4}A_{2} \rightarrow {}^{4}T_{1} ({}^{4}F)$ ионов Co²⁺, входящих в тетраэдрическую подрешетку структуры граната.

Спектр поглощения шпинели MgAl₂O₄, легированной ионами Co²⁺, содержит две полосы поглощения в диапазонах 490–680 nm и 1050–1660 nm. Каждая из этих двух полос поглощения также испытывает расщепление на три компоненты (табл. 3). Видно, что у эпитаксиальных пленок полосы поглощения ионов Co²⁺ шире, чем у монокристаллической шпинели.

Спин-орбитальное расщепление уровней для пленок, выращенных из растворов-расплавов II и IV, одинаково и составляет 2300 и 1570 сm⁻¹. Для пленок, выращенных из раствора-расплава I, эти величины составляют 2970 и 2800 сm⁻¹. Для пленок, выращенных из растворарасплава III, они имеют значения 2970 и 2040 сm⁻¹, а для шпинели, легированной ионами Co²⁺, равны 2180 и 1520 сm⁻¹. Отметим, что, согласно [9], это расщепление для кварцевого стекла, легированного ионами Co²⁺, составляет 5200 и 2700 сm⁻¹, а для кристаллического кварца, легированного ионами Co²⁺, — 2900 и 2000 сm⁻¹.

Таким образом, в настоящей работе впервые методом жидкофазной эпитаксии из растворов-расплавов на основе PbO-B₂O₃, Bi₂O₃-B₂O₃ выращены эпитаксиальные кобальт-содержащие гранатовые пленки составов Gd₃Ga₅O₁₂: Co³⁺ и Gd₃(Ga,Ge)₅O₁₂ : Co²⁺.

Получены следующие результаты.

 Введение в раствор-расплав GeO₂ приводит к тому, что кобальт в выращенных пленках находится в двухвалентном состоянии и занимает тетраэдрическую подрешетку структуры граната.

2) В спектрах поглощения эпитаксиальных пленок, содержащих двух- и трехвалентные ионы кобальта, имеются две широкие полосы поглощения в ближней ИК-области спектра, причем каждая из полос содержит три компоненты.

 В выращенных эпитаксиальных пленках полосы поглощения тетраэдрических ионов Co²⁺ шире, чем у монокристаллической шпинели. Авторы благодарят А.В. Васильева, М.И. Беловолова и В.А. Михайлова за помощь в проведении настоящей работы и обсуждение ее результатов.

Список литературы

- [1] В.В. Рандошкин, А.Я. Червоненкис. Прикладная магнитооптика. Энергоатомизда, М. (1990). 320 с.
- [2] В.В. Рандошкин, Н.В. Васильева, В.Г. Плотниченко, Ю.Н. Пырков. Письма в ЖТФ 26, 23, 55 (2000).
- [3] Б.И. Галаган, Е.А. Годовикова, Б.И. Денкер, М.Л. Мейльман, В.В. Осико, С.Е. Сверчков. Квантовая электрон. 26, 3, 189 (1999).
- [4] В.В. Рандошкин, Н.В. Васильева, А.В. Васильев, В.Г. Плотниченко, С.В. Лаврищев, А.М. Салецкий, К.В. Сташун, Н.Н. Сысоев, А.Н. Чуркин. ФТТ 43, 9, 1594 (2001).
- [5] В.В. Рандошкин, Н.В. Васильева, В.Г. Плотниченко, А.М. Салецкий, К.В. Сташун, Н.Н. Сысоев. Письма в ЖТФ 26, 10, 22 (2000).
- [6] В.В. Рандошкин, А.М. Беловолов, М.И. Беловолов, Н.В. Васильева, Е.М. Дианов, К.В. Сташун, М.И. Тимошечкин. Квантовая электрон. 25, 3, 233 (1998).
- [7] G.B. Scott, J.L. Page. J. Appl. Phys. 48, 3, 1342 (1977).
- [8] D.L. Wood, J.P. Remeika. J. Chem. Phys. 46, 9, 3595 (1967).
- [9] М.А. Ельяшевич. Спектры редких земель. М. (1953). 456 с.