Аннигиляция позитронов в насыщенном водородом титане

© К.П. Арефьев, О.В. Боев, О.Н. Имас, А.М. Лидер, А.С. Сурков*, И.П. Чернов

Томский политехнический университет, 634034 Томск, Россия * Фраунгоферовский институт неразрушающих методов контроля, *D*-66123 Саарбрюкен, Германия

E-mail: kpa@hm.tpu.ru

(Поступила в Редакцию в окончательном виде 4 мая 2002 г.)

Методами электрон-позитронной аннигиляции изучены особенности влияния атомарного водорода на электронную структуру образцов α-титана. Показано, что различные состояния атомов водорода по-разному проявляют себя в спектре временно́го распределения позитронов. Проведенные теоретические расчеты первой компоненты времени жизни позитрона согласуются с полученными экспериментальными данными.

Металлы являются важнейшим конструкционным материалом. При этом существует реальная угроза водородной коррозии металлов. Наибольшую опасность представляет эксплуатация оборудования в нефтегазовой, химической и атомной промышленностях, где водород и водородсодержащие среды занимают значительную долю рабочей атмосферы. Изменение физических и механических свойств металлов и сплавов под действием водорода является серьезной проблемой. Используемые материалы обычно должны совмещать стойкость к большим напряжениям с приемлемой высокотемпературной деформацией. Однако влияние водорода на их прочностные характеристики существенно зависит от химического состава материала. Так, для технически чистого титана (BT1-0) предельно допустимая концентрация водорода составляет 0.5 at.%, а для сплава $TiV_{13}Cr_{11}Al_{13} - 1.0 at.\%$ [1].

Данная работа посвящена изучению влияния атомарного водорода на механические свойства титана. Поглощая водород при нормальном давлении, кристаллическая решетка α-титана расширяется, соотношение параметров гексагональной плотноупакованной (ГПУ) решетки с/а при этом уменьшается. Растворение водорода в металле характеризуется его неравномерным распределением от поверхности к объему. Этим неравномерным распределением и объясняется различная степень разрушения материала на поверхности и в объеме. Так, после электролитического насыщения водородом образцов титана в течение 360 min на поверхности фиксируются "следы разрушения" в виде повышенной концентрации дислокаций [2]. Однако разрушения всего титанового образца в области концентраций атомарного водорода до $11 \cdot 10^{-5}$ at.% Н нами не наблюдалось. В работе сделана попытка на основании сопоставления результатов расчета электронной структуры идеального и наводороженного титана, а также экспериментальных данных установить особенности изменения свойств титана под влиянием водорода. Уникальным инструментом для решения этого вопроса является метод электрон-позитронной аннигиляции (ЭПА), поскольку он непосредственно позволяет получить информацию электронной структуре дефектов в исследуемом об

материале. В данной работе метод ЭПА был применен для диагностики состояния титановых изделий и конструкций, находящихся в контакте с водородсодержащими средами, на стадии, предшествующей хрупкому разрушению. Проводились измерения параметров времени жизни позитронов и допплеровского уширения аннигиляционной γ -линии (ДУАЛ). Параметры ДУАЛ, среднее время жизни позитронов и параметры его компонент, обусловленные аннигиляцией позитронов в области позитрон-чувствительных дефектов, дают количественную и качественную информацию о типе и концентрации этих дефектов.

Ранее в [3-5] проводилось изучение процессов аннигиляции позитронов в металлических гидридах с помощью исследования углового распределения аннигиляционных фотонов (УРАФ) и времени жизни позитронов. Теоретические расчеты времени жизни квазисвободных позитронов выполнены лишь для "комплектных" гидридов (TiH₂) [6]. В [2] визуально исследовано влияние водорода на динамику образования дефектов (кратеров и трещин) в титане BT1-0 с помощью растровой микроскопии и измерения среднего времени жизни позитронов. В настоящей работе исследовались образцы технически чистого титана, наводороженные до состава TiH_{0.01}, рассчитывались электронная структура, позитронный спектр и позитронные характеристики α -Ті и α -Ті $H_{0.125}$, которые сопоставлялись с полученными методом ЭПА экспериментальными данными.

1. Материалы и методика исследований

Расчет зонной электронной структуры чистого α -Ті и α -ТіH_{0.125} проводился самосогласованным методом линеаризованных muffin-tin-орбиталей в приближении атомной сферы (ЛМТО–ПАС) с обменно-корреляционным потенциалом Цеперлея–Алдера [7]. Кристаллическая решетка моделировалась повторяющимися гексагональными расширенными ячейками с восьмью атомами титана (параметры решетки для титана a = 0.2951 nm, c = 0.4684 nm [8]). Атом водорода помещался в октапо-

-15.101

24.25

Параметр	Простая ячейка (2 at./cell)	Расширенная ячейка (8 at./cell)	Простая ячейка, метод ППВ* [8]	
<i>a</i> ,nm	0.2951	0.5902	0.2951	
c,nm	0.4684	0.4684	0.4684	
E_F, Ry	0.630	0.631	0.5953	
$E_F - \Gamma_1$, Ry	0.475	0.474	0.466	

-15.107

30.37

Таблица 1. Параметры электронной структуры идеального α -Ті: энергия Ферми относительно кристаллического нуля E_F , ширина занятой части зоны проводимости $E_F - \Gamma_1$, полная энергия E_{tot} , плотность состояний на уровне Ферми $N(E_F)$; *a*, *c* — постоянные ГПУ-решетки

* Метод присоединенных плоских волн.

 $N(E_F)$, states/Ry

 $E_{\rm tot}, Ry$

ру с координатами $(1/4; \sqrt{3}/12; c/4)$ в единицах постоянной решетки а. Остальные семь октапор заполнялись дополнительными "пустыми" сферами (Е) с нулевой зарядовой плотностью для модельного учета анизотропии кристаллического потенциала. Самосогласование проводилось по 90 k-точкам в неприводимой части зоны Бриллюэна для ГПУ-ячейки и считалось достигнутым, если изменение собственных значений энергии не превышало 0.003 Ry, а изменение давления, рассчитываемого на каждой итерации по формуле Петтифора [9], было не более 1 kbar. Квазисвободные состояния позитрона в кристаллах описывались в приближении пренебрежимо малого влияния позитрона на электронную систему; позитронные состояния рассчитывались на основе электронной плотности, самосогласованной без присутствия позитрона. Полученный таким образом позитронный потенциал и волновая функция позитрона использовались при расчете вероятностей нахождения позитрона в различных атомных сферах, включая сферу, занятую таким дефектом, как водород, а также скорости аннигиляции и времени жизни позитрона. Подробно методика расчета позитронных состояний изложена в [10,11].

При измерении аннигиляционных характеристик позитронов использовались парные образцы титана BT1-0 (содержание Fe < 0.18 at.%, Si < 0.10 at.%, C < 0.07 at.%, O < 0.12 at.%, N < 0.04 at.%). Образец ВТ1-0 был предварительно отожжен при температуре 750°C в вакууме с последующим медленным охлаждением до 20°С. Электрохимическое насыщение водородом парных образцов проводилось в одномолярном электролите LiOH (электролит термостатировался при температуре 20°C) в течение 20, 60, 120 и 360 min. Сразу после насыщения образца водородом проводились одновременные измерения временных и допплеровских спектров при $T = 25^{\circ}$ С. В качестве источника позитронов использовался изотоп Na²² с активностью около 10⁶ Bq, который помещался между двумя идентичными частями исследуемого образца. Радиоактивный источник представлял собой выпаренную на алюминиевую фольгу (20 µm) соль Na²²Cl. Момент рождения позитрона фиксировался по испускаемому почти одновременно с позитроном ядерному у-кванту с энергией 1.28 MeV, момент аннигиляции — по аннигиляционному *γ*-кванту с энергией 0.511 MeV, временное разрешение используемой установки составляло 240 рs. Обработка временного распределения позитронов проводилась с помощью стандартной программы Resolution [12]. Синхронно с измерением времени жизни позитрона осуществлялось измерение ДУАЛ, в котором использовался Ge-детектор с разрешением 1.2 keV на линии 0.5 MeV. Обработка спектра ДУАЛ проводилась с помощью программы LIFESPECFIT [13,14].

16.12

2. Обсуждение результатов

При моделировании низкой концентрации водорода в элементарной ячейке кристалла титана для расчета электронной структуры использовалась удвоенная по параметру *а* ГПУ-ячейка. В целях единообразия подхода электронная структура идеального α -Ті рассчитывалась в этой же схеме. Корректность этого подхода подтверждается близостью результатов, полученных в разных схемах (расчет с простой (2 at/cell) и с расширенной (8 at/cell) ячейкой) в настоящей работе и в литературе [8] (табл. 1). Электронный энергетический спектр и нижняя позитронная зона для TiH_{0.125} приведены на рис. 1. Позитронная зона имеет параболический вид, что соответствует квазисвободному состоянию по-

Таблица 2. Теоретически рассчитанные время жизни позитрона (τ) и вероятность распределения позитрона (w) по атомным сферам (s), а также соответствующий электронный заряд (Q) в атомных сферах и вероятность аннигиляции позитрона (ω) с электронами проводимости

	$ au$ -Ti $ au = 158.1 ext{ ps}$	$\begin{array}{l} \alpha \text{-TiH}_{0.125} \\ \tau \ = \ 154.5 \ \text{ps} \end{array}$			
	s _{Ti}	s _{Ti}	$s_{\rm H}$	SE	
<i>w</i> ,%	100	32.25	4.90	62.85	
$\omega,\%$	100	42.19	5.35	52.46	
Q, el./at.	22	20.47	2.48	1.48	

Обработка	Компоненты времени жизни позитронов, ps		Интенсивность компоненты,%		Среднее время жизни, ps	Параметры ДУАЛ, arb.units			
	$ au_1 \pm 1$	$ au_2 \pm 10$	$ au_3$	$I_1 \pm 0.6$	$I_2 \pm 0.6$	$I_3 \pm 0.03$	τ	$W\pm 0.0003$	$S \pm 0.0003$
Без обработки	150 150	390 369	1326 1419	96.1 94.3	3.7 5.3	0.2 0.3	163 167	0.0757 0.0759	0.4322 0.4332
Наводорожи-				2 110					
вание 20 min	152	356	1376	94.4	5.4	0.2	167	0.0748	0.4327
60 min	153	362	1344	94.0	5.7	0.3	170	0.0752	0.4328
120 min	154	321	1015	91.5	8.1	0.3	174	0.0766	0.4337
360 min	154	331	1298	91.7	8.0	0.3	174	0.0746	0.4347

Таблица 3. Экспериментальные значения трехкомпонентного разложения временно́го распределения позитронов и параметры допплеровского уширения аннигиляционной γ-линии (S, W) в образцах α-титана

зитрона [10]. В табл. 2 для *α*-Ті и *α*-ТіН_{0.125} приведены распределение заряда, вероятностное распределение позитрона по атомным сферам, вероятность аннигиляции позитрона из соответствующих сфер, а также время жизни позитрона, которое в дальнейшем связывается с первой короткоживущей компонентой временно́го распределения (т₁ в табл. 3). При данном выборе радиусов атомных сфер (атомные сферы Ті, Н и "пустые" сферы Е имели равные радиусы) расчет показал значительный перенос валентных электронов титана в "пустые" междоузельные сферы Е и в сферу водорода. Позитрон в элементарной ячейке распределен по междоузельной области как для чистого α-Ті, так и для наводороженного Ті. Как видно из табл. 2, в том случае, когда в междоузлие помещается водород, вероятность нахождения позитрона вблизи водорода в 2 раза уменьшается, что можно объяснить "выталкивающим" позитрон в область наименьшей электронной плотности кулоновским полем ядра водорода. Расчет времени жизни позитрона показал незначительное уменьшение значения т при введении водорода в структуру титана. Этот факт можно интерпретировать следующим образом: 1) в нашем расчете не учитывалось расширение решетки при наводороживании матрицы титана, что имеет место в данном случае и должно привести к некоторому понижению электронной плотности и соответствующему повышению времени жизни позитронов; 2) концентрация электронов примесного дефекта (водорода) и его электронная плотность (один электрон) на фоне электронов матрицы титана малы, что подтверждается незначительным изменением первой короткоживущей компоненты (150-154 ps, табл. 3). Были также рассчитаны вклады остовных и валентных (*α*-Ti — 90.32% и α -TiH_{0.125} — 90.11%) электронов в процесс ЭПА. Несмотря на небольшое отличие как теоретических, так и экспериментальных данных, следует отметить, что этот результат подтверждает то, что водород является позитрон-чувствительным дефектом.

В табл. З приведены параметры экспериментально измеренных компонент времени жизни позитронов. Пер-

вые две строки данной таблицы соответствуют образцам, вырезанным из разных участков одной и той же пластины BT1-0. Обсудим полученные результаты. Первая компонента τ_1 , которая связывается с аннигиляцией квазисвободных позитронов, обнаруживает стабильное значение в разных образцах и удовлетворительно согласуется с рассчитанным значением τ (табл. 2). Изменения долгоживущей компоненты τ_3 , связанной с аннигиляцией позитронов в воздухе, могут быть обусловлены изме-

Рис. 1. Электронный энергетический спектр (пунктир) и нижняя позитронная зона (сплошная линия) *α*-TiH_{0.125}.

нениями в геометрии эксперимента (отличается расположение источника позитронов и образцов). Поскольку интенсивность третьей компоненты очень мала, изменения τ_3 даже на 30% можно считать незначительными, и в дальнейшем мы не будем возвращаться к обсуждению τ_3 . Более существенные различия наблюдаются в значениях τ_2 (аннигиляция позитронов в источнике и в области структурных дефектов вакансионного типа исследуемого образца) и соответственно среднего времени жизни позитронов τ . Очевидно, это обусловлено отличиями в концентрации и структуре исходных вакансионных дефектов и свидетельствует о неоднородном распределении таких дефектов в пластине BT1-0.

Время насыщения титана водородом в течение 120, 360 min (при этом достигается максимальная концентрация атомов водорода) соответствует химическому составу в приповерхностном слое TiH_{0.01} и глубине слоя $\sim 100\,\mu{\rm m}$, что находится в области чувствительности метода ЭПА. В этом случае нами выделялись также три компоненты времени жизни позитронов, отличные от исходных компонент и связанные с наличием водорода как в матрице, так и в области вакансионных дефектов титана. Слабое увеличение первой компоненты τ_1 наряду с уменьшением соответствующих значений I₁ показывает, что при наводороживании значительного изменения плотности свободных электронов не наблюдается (как и в расчетах). В наводороженных образцах происходит уменьшение второй компоненты τ_2 и, следовательно, возрастание интенсивности по сравнению с исходными образцами титана. Единственным объяснением этого результата является рост вклада позитронов, аннигилирующих в области структурных дефектов вакансионного типа, заполненных атомами водорода. В этом случае увеличивается электронная плотность вакансионного дефекта, что должно приводить к уменьшению времени жизни позитронов, локализованных в таких дефектах. Рост интенсивности т2-компоненты показывает, что эффективность захвата позитронов указанными дефектами при наличии в них атомов водорода возрастает (очевидно, за счет увеличения их размеров), что проявляется также в значительном росте среднего времени жизни позитронов. Эта точка зрения находит логическое подтверждение в результатах, полученных на образцах титана с меньшим содержанием атомов водорода: в образцах, насыщенных в течение 60 и 20 min, наблюдается плавное уменьшение среднего времени жизни и интенсивности второй компоненты вплоть до исходных значений для ненаводороженных образцов.

На рис. 2 приведен спектр ДУАЛ для исходных и наводороженных образцов титана. Спектр ДУАЛ для металлов и сплавов обычно рассматривается как суперпозиция параболической части, соответствующей аннигиляции позитронов с электронами проводимости, и гауссианы, соответствующей вкладу остовных электронов (аналогично кривым УРАФ). На основании этого подхода в данной работе определялись параметры

Рис. 2. Спектр допплеровского уширения аннигиляционной *γ*-линии. *1* — чистый α-Ті, *2*, *3* — наводороженный в течение 120 и 360 min соответственно.

 $S=S_A/S_0$ и $W=S_B/S_0,$ где S_0 — полная площадь под кривой, S_A — площадь под параболической составляющей, а S_B — под "крыльями" гауссианы. Как видно из рис. 2, наводороживание титана не приводит к значительному изменению характера линии ДУАЛ, что согласуется с общим характером изменений временного распределения позитронов. Однако параметры спектра ДУАЛ (S, W) увеличиваются при введении водорода в образцы титана (наводороживание в течение 120 и 360 min), при этом интегральное значение S_0 соответствует 5.6052 · 10⁶, 4.8682 · 10⁶, 4.8358 · 10⁶ импульсов для образцов без обработки и при наводороживании в течение 120 и 360 min соответственно. Это может быть обусловлено следующими причинами (как и в случае наблюдаемых изменений временного распределения позитронов). Рост S-параметра обусловлен вкладом в аннигиляцию позитронов электронов водорода, как растворенных в матрице титана, так и локализованных в области дефектов вакансионного типа. Рост W-параметра связан с искажением волновой функции позитрона, локализованного в области вакансионного дефекта, содержащего атомы водорода. Незначительные изменения данных характеристик указывают на отсутствие в объеме наводороженного образца кластерных образований дефектов и устойчивость α-фазы титана при концентрации $11 \cdot 10^{-5}$ at.% H.

Таким образом, на основании проведенных теоретических и экспериментальных исследований выявлена чувствительность метода ЭПА к наличию и состоянию атомов водорода в структуре такого металла, как титан. При этом наличие водорода, растворенного в матрице титана, проявляется в первой короткоживущей компоненте времени жизни позитронов и в *S*-параметре ДУАЛ. Водород, локализованный в вакансионных дефектах титана, вносит вклад во вторую долгоживущую компоненту временно́го распределения позитронов и косвенно проявляется в *W*-параметре ДУАЛ.

Список литературы

- [1] Н.Д. Томашов, Р.М. Альтовский. Коррозия и защита титана. М. (1963). 166 с.
- [2] И.П. Чернов, А.М. Лидер, Ю.П. Черданцев, Г.В. Гаранин, Н.Н. Никитенков, М. Кренинг, А.С. Сурков. Физическая мезомеханика. 3, 6, 97 (2000).
- [3] В.И. Савин, Р.А. Андриевский, В.В. Горбачев, А.Д. Циганов. ФТТ 14, 11, 3320 (1972).
- [4] А.Д. Циганов, Р.А. Андриевский, В.В. Горбачев, В.И. Савин. Неорган. материалы 10, 6, 1030 (1974).
- [5] A. Gainotti, C. Ghezzi, M. Manfredi, L. Zecchina. Nuovo Cimento LVI B, 1, 47 (1968).
- [6] S.E. Kul'kova, O.N. Muryzhnikova, K.A. Beketov. Int. J. Hydrogen Energy 21, 11/12, 1041 (1996).
- [7] D.M. Ceperley, B.J. Alder. Phys. Rev. Lett. 45, 7, 566 (1980).
- [8] D.A. Papaconstantopoulos. Handbook of the band structure of elemental solids. Plenum Press, N.Y. (1986). 329 p.
- [9] D.J. Pettifor. Commun. Phys. 1, 5, 151 (1976).
- [10] E.B. Boronski, R.M. Nieminen. Phys. Rev. B 34, 3820 (1986).
- [11] O.V. Boev, M.J. Puska, R.M. Nieminen. Phys. Rev. B 36, 15, 7786 (1987).
- [12] P. Kirkegaard, M. Eldrup, O.E. Mogensen, N.J. Pedersen. Comput. Phys. Commun. 23, 307 (1981).
- [13] P. Kirkegaard, N.J. Pedersen, M. Eldrup. Comput. Phys. Commun. 7, 401 (1974).
- [14] R. Unger. POSIT. Programm zur Erfassung und Auswertung von Positronen-annihilationspektren. Benutzerhandbuch. Halle, Saale (1994).