Комбинационное рассеяние света в зигзагообразных фторполимерных молекулах

© В.М. Бузник, В.С. Горелик*, П.П. Свербиль*, А.К. Цветников, А.В. Червяков**

Институт химии Дальневосточного отделения Российской академии наук, Владивосток. Россия

* Физический институт им. П.Н. Лебедева Российской академии наук,

** Московский государственный университет им. М.В. Ломоносова,

119899 Москва, Россия

(Поступила в Редакцию в окончательном виде 9 апреля 2002 г.)

Выполнены исследования спектров комбинационного рассеяния света ультрадисперсного порошка, состоящего из зигзагообразных фторполимерных молекул типа $F(CF_2)_nF$, представляющих собой модель одномерного нанокристалла. Проведено сопоставление этих спектров с соответствующими спектрами соединений $C_nF_{2n+1}Br$ (n = 6, 7, 8, 9, 10, 14) и фторопласта. Установлено, что частоты оптических колебаний фторполимерных молекул $F(CF_2)_nF$ сдвинуты по отношению к соответствующим частотам колебаний молекул $C_6F_{13}Br$ более чем на 10 cm^{-1} . На основе измеренных частотных сдвигов и с использованием теории колебаний кристаллической двухатомной цепочки конечной длины оценена длина наночастиц ультрадисперсного фторорганического порошка: L = 2-2.5 nm.

Работа выполнена при поддержке Российского фонда фундаментальных исследований (грант № 02-02-16221).

Комбинационное рассеяние (КР) света зигзагообразными органическими молекулами исследовалось ранее для *n*-алканов (C_nH_{2n+2}) и их фторзамещенных аналогов [1–4]. Соединения, содержащие молекулы такого типа, находят широкое практическое применение. В частности, фторопласты, в первую очередь политетрафторэтилен (ПТФЭ) F(CF₂)_nF ($n = 10^5 - 10^7$), используются в химической и атомной промышленности, в машиностроении и на транспорте. В медицине ПТФЭ применяется в качестве материалов для искусственных органов кровообращения, а соединения типа $C_nF_{2n+1}Br$ ($n \sim 10-15$) — в качестве искусственных кровезаменителей.

Нами разработан способ получения низкомолекулярного ПТФЭ, имеющего вид ультрадисперсного порошка (УПТФЭ). Этот материал уже нашел применение в качестве антифрикционных добавок к машинным маслам.

Свойства и применение фторуглеродных соединений зависят от длины полимерной цепи. Определение этого параметра сопряжено с большими трудностями. В связи с этим представляет интерес решение такого рода задачи на основе анализа спектров КР в зигзагообразных фторполимерных молекулах.

Исследования зигзагообразных фторполимерных молекул конечной длины представляют также большой интерес с фундаментальной точки зрения для установления закономерностей динамики колебаний конечных одномерных кристаллических цепочек.

Основные цели настоящей работы — исследовать спектры КР ультрадисперсного порошка фторполимерных молекул $F(CF_2)_nF$ и сопоставить их со спектрами молекул $C_nF_{2n+1}Br$, исследовавшимися ранее в работе [2], а также со спектром ПТФЭ; определить длину фторполимерных молекул $F(CF_2)_nF$ на основе модели кристаллической цепочки конечной длины.

1. Методика эксперимента

Для возбуждения спектров КР использовался аргоновый лазер ($\lambda = 488.0$ nm) мощностью 100 mW. Регистрация спектров проводилась на автоматизированном КР-спектрометре, включающем в себя двойной монохроматор ДФС-12, систему счета фотонов, интерфейсный микропроцессорный модуль и персональный компьютер, с помощью которого осуществлялось управление монохроматором, накопление и обработка экспериментальных данных. Спектральная ширина щели составляла 2 cm⁻¹. Анализируемые в настоящей работе образцы фторорганических соединений представляли собой кристаллические порошки белого цвета. Их исследования проводились с использованием геометрии рассеяния "на отражение".

2. Результаты эксперимента

На рис. 1 приводятся полученный спектр КР УПТФЭ и для сравнения спектры КР фторорганических зигзагообразных молекул типа $C_nF_{2n+1}Br$, полученные ранее [2]. Здесь же приведен спектр КР фторопласта $F(CF_2)_nF$, полученный в настоящей работе. Спектры представлены в диапазоне 0–1500 сm⁻¹.

Низкочастотная область этих спектров показана на рис. 2. Как видно из рис. 1, в области частот 0–400 сm⁻¹ обнаруживается интенсивная полоса в низкочастотной области спектров КР и ряд взаимно перекрывающихся полос в диапазоне 200–300 сm⁻¹. С увеличением числа звеньев *n* в молекулярной цепи частота низкочастотного максимума КР монотонно убывает (рис. 2). При значениях n = 6, 7 и 8 наблюдаемая низкочастотная полоса состоит из нескольких компонент; для n = 9, 10 и 14

¹¹⁷⁹²⁴ Москва, Россия

Рис. 1. Общий вид спектров КР соединений: $I - \Pi T \Phi \Im$, 2 — УПТФЭ, 3 — $C_{14}F_{29}Br$, 4 — $C_{10}F_{21}Br$, 5 — $C_9F_{19}Br$, 6 — $C_8F_{17}Br$, 7 — $C_7F_{14}Br$, 8 — $C_6F_{13}Br$.

Рис. 2. Изменения в низкочастотной области спектров КР в зависимости от длины молекулярной цепи; стрелка указывает положение "акустической" моды. Обозначения кривых те же, что на рис. 1.

обсуждаемая полоса становится практически бесструктурной, а для фторопласта и ультрадисперсного порошка полностью пропадает.

На рис. 3 и 4 приводятся спектры КР в области частот "скелетной" оптической моды $(719-733 \text{ cm}^{-1})$,

соответствующей противофазному движению углеродных атомов, и симметрично-валентной моды CF_2 -связи (1360–1380 cm⁻¹). Как видно из приведенных рисунков, наблюдаемые высокочастотные полосы хорошо проявляются на всех спектрах КР, и с увеличением числа атомов в молекулярной цепи частота максимума обсуждаемых линий КР монотонно возрастает.

Рис. 3. Изменения в высокочастотной области спектров КР в зависимости от длины молекулярной цепи; стрелка указывает положение "оптической" моды. Обозначения кривых те же, что на рис. 1.

Рис. 4. Изменения в высокочастотной области спектров КР в зависимости от длины молекулярной цепи; стрелка указывает положение симметрично-валентного колебания CF₂-связи. Обозначения кривых те же, что на рис. 1.

Обсуждение полученных результатов

Наблюдаемые сдвиги частот положений максимумов КР в зависимости от длины цепочки можно объяснить на основе теоретической модели зигзагообразной молекулы как кристаллической цепочки конечной длины.

Рассмотрим одномерную кристаллическую решетку, состоящую из атомов двух сортов. Уравнения движения в этом случае имеют вид

$$m_1 \frac{d^2 u_1(l)}{dt^2} = -f \mathbf{1}[u_1(l) - u_2(l-1)] + f_2[u_2(l) - u_1(l)],$$

$$m_2 \frac{d^2 u_1(l)}{dt^2} = -f_2[u_2(l) - u_1(l)] + f_1[u_1(l+1) - u_2(l)].$$
(1)

В общем случае атомы соединены связями различных типов, характеризующимися числовыми постоянными f_1 и f_2 . Если $f_1 = f_2$ и $m_1 = m_2$, то из (1) для решения в виде плоской монохроматической волны $u(l) = u \cdot e^{i(kla - \omega t)}$ можно получить закон дисперсии

$$\Omega_{-}^{2} = \frac{2f}{m} - \frac{2f}{m} \cos\left(\frac{ka}{2}\right),$$

$$\Omega_{+}^{2} = \frac{2f}{m} + \frac{2f}{m} \cos\left(\frac{ka}{2}\right).$$
 (2)

При малых волновых векторах, вблизи центра зоны Бриллюэна получаем приближенно

$$\Omega_{-}^{2} = \frac{f}{m} \sin^{2}\left(\frac{ka}{2}\right),$$

$$\Omega_{+}^{2} = \frac{4f}{m} - \frac{f}{m} \sin^{2}\left(\frac{ka}{2}\right).$$
(3)

Если ввести обозначения $\frac{f}{m} = \frac{4s^2}{a^2}$, из (3) получаем

$$\Omega_{-}^{2} = \frac{4s^{2}}{a^{2}} \sin^{2}\left(\frac{ka}{2}\right),$$

$$\Omega_{+}^{2} = \frac{16s^{2}}{a^{2}} - \frac{4s^{2}}{a^{2}} \sin^{2}\left(\frac{ka}{2}\right).$$
 (4)

Здесь *s* — параметр, характеризующий скорость распространения волны в цепочке, $a = 2.53 \cdot 10^{-8}$ ст — длина периода двухатомной цепочки, соответствующей фторорганической молекуле $F(CF_2)_nF$, *k* — волновой вектор.

Из (4) следует, что предельное значение частоты оптической моды при k = 0 есть $\Omega_0 = 4s/a$.

Для цепочек с конечным числом атомов, имеющих длину L = Na, устанавливается стоячая волна с минимально возможным значением волнового вектора

$$k_{\min} = \frac{2\pi}{\lambda_{\max}} = \frac{\pi}{Na} \quad (\lambda_{\max} = 2L).$$
 (5)

Для достаточно длинных молекул типа $C_n F_{2n+1} Br$ и $F(CF_2)_n F$ можно полагать, что $L = Na = \frac{na}{2}$.

Наблюдаемые экспериментально наиболее интенсивные линии КР можно рассматривать как проявление решеточных мод с минимально возможным волновым вектором k_{\min} акустической и оптической ветвей колебаний молекулярной цепочки.

Таким образом, следует ожидать, что с увеличением числа звеньев N молекулярной цепи частоты акустической Ω_{ac} и оптической Ω_{opt} мод должны изменяться по закону

$$\Omega_{\rm ac}^2 = \frac{4s^2}{a^2} \sin^2\left(\frac{\pi}{2N}\right),$$

$$\Omega_{\rm opt}^2 = \Omega_0^2 - \frac{4s^2}{a^2} \sin^2\left(\frac{\pi}{2N}\right).$$
 (6)

Переходя к волновым числам $\nu = 1/\lambda$, из (6) получаем

$$v_{\rm ac}^{2} = \frac{s^{2}}{\pi^{2}a^{2}c^{2}}\sin^{2}\left(\frac{\pi}{2N}\right),$$
$$v_{\rm opt}^{2} = v_{0}^{2} - \frac{s^{2}}{\pi^{2}a^{2}c^{2}}\sin^{2}\left(\frac{\pi}{2N}\right).$$
(7)

Из (7) с учетом того, что L = Na, получаем следующие соотношения:

$$v_{\rm ac}^2 = \frac{s^2}{\pi^2 a^2 c^2} \sin^2\left(\frac{\pi a}{2L}\right),$$
$$v_{\rm opt}^2 = v_0^2 - \frac{s^2}{\pi^2 a^2 c^2} \sin^2\left(\frac{\pi a}{2L}\right).$$
(8)

В соответствии с (4) для скорости распространения *s* волны в цепочке имеет место

$$s = \frac{\pi a c \nu_0}{2}.$$
 (9)

Используя формулу (9), можно вычислить параметр *s*. При этом величина v_0 определяется путем линейной экстраполяции экспериментальных значений v_{opt} для длинных цепочек, полученных по спектрам КР. С помощью формул (8) можно вычислить длину молекулы, используя экспериментальные данные для значений v_{ac} и v_{opt} . Соответственно получаем два соотношения

$$L_1 = \frac{\pi a}{2} \cdot \frac{1}{\arcsin\left(\frac{\pi a c v_{ac}}{s}\right)},\tag{10}$$

$$L_2 = \frac{\pi a}{2} \cdot \frac{1}{\arcsin\left(\frac{\pi ac\sqrt{\nu_0^2 - \nu_{opt}^2}}{s}\right)}.$$
 (11)

При наличии дополнительных ветвей колебаний молекулярной цепочки закон дисперсии может быть получен на основе рассмотрения кристаллической цепочки с дополнительной связью. В этом случае имеет место следующее уравнение:

$$\nu^{2} = (\nu_{0}')^{2} \pm \frac{(s')^{2}}{\pi^{2}c^{2}a^{2}}\sin^{2}\left(\frac{\pi}{2N}\right).$$
 (12)

Физика твердого тела, 2002, том 44, вып. 12

Частоты колебаний	(cm^{-1})), полученные из	в спектров КР	фторорганических	соединений, и длины*	молекул (nm)	
-------------------	-------------	------------------	---------------	------------------	----------------------	--------------	--

Тип молекулы	$ u_{\rm ac}$	$ u_{\text{opt}}$	V .	L_1		L_2		L_3	
				(10)	(17)	(11)	(18)	(13)	(19)
$C_6F_{13}Br$	142.8	720.5	1362.5	0.98	1.02	1.02	1.05	1.01	1.03
$C_7F_{15}Br$	135.5	722.4	1367.1	1.04	1.07	1.10	1.13	1.16	1.18
$C_8F_{17}Br$	117.8	723.8	1368.2	1.21	1.23	1.18	1.20	1.21	1.23
C ₉ F ₁₉ Br	111.4	725.8	1370.2	1.27	1.30	1.33	1.35	1.32	1.34
$C_{10}F_{21}Br$	100.6	727.2	1372.1	1.42	1.45	1.47	1.49	1.44	1.46
$C_{14}F_{29}Br$	77.9	730	1376.7	1.85	1.87	1.94	1.95	2.02	2.04
УПТФЭ		731.8	1377.0	_	_	2.68	2.69	2.09	2.10
ПТФЭ		732.7	1380.4	—	—	3.62	3.63	4.10	4.11

* Значения длин молекул L₁ получены из соотношений (10) и (17), L₂ — из (11) и (18), L₃ — из (13) и (19) соответственно.

Знак в (12) зависит от знака величины массы фонона рассматриваемой дисперсионной ветви: для положительной массы фонона в (12) необходимо выбрать знак плюс, а для отрицательной — минус. Эксперимент показал, что сдвиг частоты симметрично-валентного колебания CF₂-связи подчиняется формуле (12) с отрицательной массой фонона.

Из экспериментально измеряемых значений v и v'_0 , соответствующих выбранной ветви колебаний, можно также определить длину L = Na молекулярной цепочки

$$L_{3} = \frac{\pi a}{2} \frac{1}{\arcsin \frac{\pi a c \sqrt{|\nu^{2} - (\nu_{0}')^{2}|}}{s'}}.$$
 (13)

Экспериментальные данные для частот v_{ac} , v_{opt} и частоты v, соответствующей симметрично-валентному колебанию CF₂-связи, полученные из спектров KP, приводятся в таблице. Там же приводятся вычисленные по формулам (10), (11), (13) значения L_1, L_2, L_3 длин молекул C_nF_{2n+1}Br, УПТФЭ и ПТФЭ. Для фторопласта полученное значение длины молекулы можно интерпретировать как размер упорядоченного, квазикристаллического участка бесконечной цепи фторполимера, в котором кристаллические области чередуются с разрывами, обусловленными изменением направления кристаллической цепи. Рассмотрим также приближенные формулы, соответствующие большой длине молекулы ($N \gg 1$). Тогда из формул (8) и (12) получим следующие уравнения:

$$v_{\rm ac} = \frac{s}{2cL},\tag{14}$$

$$\nu_{\rm opt}^2 = \nu_0^2 - \frac{s^2}{4c^2 L^2},\tag{15}$$

$$v^2 = (v'_0)^2 \pm \frac{(s')^2}{4c^2 L^2}.$$
 (16)

Отсюда следуют формулы для длин молекул в этом приближении

$$L_1 = \frac{s}{2c\nu_{\rm ac}},\tag{17}$$

$$L_2 = \frac{s}{2c\sqrt{\nu_0^2 - \nu_{\rm opt}^2}},$$
 (18)

$$L_3 = \frac{s'}{2c\sqrt{|\nu^2 - (\nu_0')^2|}}.$$
(19)

Вычисленные по формулам (10), (11), (13), (17)–(19) приближенные значения длин молекул L_1 , L_2 , L_3 представлены в таблице. Как видно из таблицы, эти значения оказываются близкими. Это дает возможность пользоваться приближенными формулами для достаточно длинных молекул.

На рис. 5 приводятся рассчитанные зависимости частоты v от величины π/n в соответствии с соотношениями (7) и (12) при условии N = n/2, а также результаты экспериментальных исследований для обсуждаемых соединений. Как видно из рисунка, наблюдается удовлетворительное согласие теории и эксперимента. На основе полученных экспериментальных данных определены необходимые параметры, характеризующие соответствующий закон дисперсии: параметр $s = 8.75 \cdot 10^5$ cm/s, характеризующий скорость распространения волны в цепочке, и $v_0 = 733.8$ cm⁻¹, определяющий предельное значение частоты оптической моды, соответствующее значению k = 0.

Рис. 5. Сравнение теоретических дисперсионных кривых (I-3), рассчитанных из соотношений (7) и (12), с экспериментальными данными (I–III). I — симметрично-валентная ветвь колебания CF₂-связи, 2 — оптическая ветвь скелетных колебаний, 3 — акустическая ветвь скелетных колебаний; I — экспериментальные данные для $C_nF_{2n+1}Br$ (n = 6, 7, 8, 9, 10, 14); II — для УПТФЭ; III — для ПТФЭ.

На основе выполненных экспериментов установлено, что частота моды, соответствующей валентным полносимметричным колебаниям CF₂-связи, изменяется с изменением длины цепи рассматриваемых цепных молекул в соответствии с дисперсионным законом (12), характеризующимся следующими параметрами: $s' = 14.2 \cdot 10^5$ cm/s и $v'_0 = 1381.6$ cm⁻¹.

На основании установленных законов дисперсии для рассматриваемых моделей молекулярных цепочек нами вычислены длины молекул для наночастиц ультрадисперсного порошка и фторопласта. Соответствующие значения представлены в таблице.

Таким образом, в результате выполненных экспериментов установлено, что в спектрах КР зигзагообразных фторорганических молекул ультрадисперсного порошка и фторопласта присутствуют линии, частоты которых сдвинуты по отношению к частотам соответствующих линий КР зигзагообразных фторуглеродных молекул C_nF_{2n+1} Вг. По сдвигам этих частот с помощью дисперсионных зависимостей, установленных для простых моделей одномерных двухатомных кристаллических цепочек, проведены оценки длины наночастиц ультрадисперсного фторполимерного порошка и размеры областей кристалличности фторопласта.

Важно отметить, что в наших экспериментах не удалось обнаружить достаточно четких низкочастотных спутников в спектрах КР УПТФЭ и ПТФЭ, соответствующих продольным акустическим модам (LAM), хотя такие моды хорошо появляются в спектрах КР перфторбромуглеродов ($C_nF_{2n+1}Br$). Причина этого может быть связана не только с трудностями регистрации низкочастотных спектров КР, но также с возможным сильным затуханием LAM. Это затухание может быть обусловлено сильным взаимодействием между наночастицами фторполимера.

Результаты данной работы могут быть использованы для контроля длин зигзагообразных фторорганических молекул, используемых для различных приложений.

Список литературы

- [1] S.I. Mizushima, T. Simanouti. J. Am. Chem. Soc. **71**, 1320 (1949).
- [2] Л.П. Авакянц, В.С. Горелик, Л.И. Злобина, А.В. Червяков, О.Н. Шартс. Известия РАН. Сер. физ. 64, 6, 1189 (2000).
- [3] A.M. Amorim da Costa Eduarda, B.H. Santos. Rev. Port. Oulm. 28, 154 (1984).
- [4] J.R. Ferrar, K. Nakamoto. Introductory Raman Spectroscopy. Acad. Press, Inc., Harcourt Brace and Comp., Publishers, Boston–San Diego–N.Y.–London–Sudney–Tokio–Toronto (1994). P. 350.