Туннельная термоэдс в магнитных гранулированных сплавах

© А. Грановский, Х. Сато*, Ю. Айоки*, А. Юрасов

Московский государственный университет им. М.В. Ломоносова,

119899 Москва, Россия

* Department of Physics, Tokyo Metropolitan University,

192-0397 Tokyo, Japan

E-mail: granov@magn.ru

(Поступила в Редакцию 25 декабря 2001 г.)

Показано, что природа полевой зависимости термоэдс в магнитных гранулированных сплавах Co–Al–O и Fe–Al–O с туннельным типом проводимости связана с туннельной термоэдс. Туннельная термоэдс мала, приблизительно линейно зависит от температуры и от квадрата намагниченности, а ее полевая зависимость описывается соотношением вида $S(H)/T = a + b\rho(0)/\rho(H)$, где ρ — сопротивление сплава, параметры a и b не зависят от поля.

Недавно Сато и др. [1,2] обнаружили, что термоэдс S в магнитных гранулированных сплавах металлдиэлектрик Co-Al-O и Fe-Al-O с туннельным магнитосопротивлением (TMC) отрицательна, значительно меньше, чем в объемных Co и Fe, а ее полевая зависимость описывается соотношением

$$\frac{S(H)}{T} = a + b \, \frac{\rho(0)}{\rho(H)},\tag{1}$$

где *а* и *b* не зависят от поля, ρ — сопротивление. Соотношение вида (1) ранее было найдено для металлических мультислоев и гранулированных сплавов с гигантским магнитосопротивлением (см., например, [3]) и связано с тем, что как $\rho(H)$, так и S(H) определяются в этих металлических системах спин-зависящим рассеянием в объеме гранул и на интерфейсах. Однако в гранулированных сплавах металл-диэлектрик магнитосопротивление связано с туннельными переходами электронов между соседними гранулами через изолирующую прослойку, и поэтому соотношение (1) требует адекватного объяснения. Более того, нетрудно показать, что теория эффективной среды для композитов металл-диэлектрик не позволяет объяснить это соотношение [4].

В настоящей работе представлен расчет туннельной термоэдс S^{tun} в гранулированных сплавах металлдиэлектрик и показано, что термоэдс в этих системах вблизи порога протекания в основном имеет туннельную природу и может быть описана соотношением (1). Насколько нам известно, туннельная термоэдс ранее в литературе не обсуждалась.

Вблизи порога протекания можно предположить, что проводящий канал в системе металл–диэлектрик состоит из включенных последовательно элементов двух типов, а именно металлических гранул и туннельных барьеров. Пусть каждый из этих элементов характеризуется своими значениями термоэдс (S^{met} и S^{tun}) и теплового сопротивления (W^{met} и W^{tun}). Тогда, следуя очевидному правилу Колера [5], для термоэдс такого проводника можно записать

$$S = \frac{S^{\text{met}}W^{\text{met}} + S^{\text{tun}}W^{\text{tun}}}{W^{\text{met}} + W^{\text{tun}}}.$$
 (2)

Правило Колера является следствием распределения градиента температуры в неоднородной системе. При этом, если все элементы проводника являются металлическими и подчиняются закону Видемана–Франца, из соотношения (2) вытекает известное правило Нордхейма–Гортера [5]. В рассматриваемом случае соотношение (2) является приближенным, так как заранее предполагается, что все элементы электрической цепи являются одинаковыми. При более последовательном рассмотрении следовало бы учесть различие в размерах туннельных барьеров и произвести усреднение по оптимальным траекториям электронного переноса, как например в теории магнитосопротивления [6]. Однако это выходит за рамки настоящей работы, в основном посвященной расчету S^{tun}.

Поскольку тепловое сопротивление изолирующей прослойки W^{tun} порядка теплового сопротивления диэлектрика и заведомо больше, чем W^{met} , имеем

$$S \approx S^{\text{tun}} + S^{\text{met}} \frac{W^{\text{met}}}{W^{\text{tun}}} = S^{\text{tun}} + S^{\text{met}} \frac{\gamma^{\text{tun}}}{\gamma^{\text{met}}},$$
 (3)

где $\gamma^{tun}(\gamma^{met})$ — теплопроводность диэлектрика (металла).

Туннельный процесс происходит без изменения энергии электрона, и поэтому для расчета S^{tun} можно использовать формулу Мотта

$$S^{\text{tun}} = \frac{-\pi^2}{3} \frac{k_B^2}{|e|} T \left[\frac{1}{G(E)} \frac{\partial G(E)}{\partial E} \right]_{E_F}, \qquad (4)$$

где G(E) — туннельный кондактанс. В рамках теории ТМС выражение для туннельного кондактанса имеет следующий вид [7]:

$$G(E) = G_0 (1 + P^2(E)m^2) e^{-\sqrt[2]{2\kappa(E)C/k_BT}},$$
 (5)

где $G_0 = \text{const}, C = \text{const}, m$ — относительная намагниченность,

$$P(E) = \frac{D_{\uparrow}(E) - D_{\downarrow}(E)}{D_{\uparrow}(E) + D_{\downarrow}(E)},\tag{6}$$

 $D_{\sigma}(E)$ ($\sigma = \uparrow, \downarrow$) — локальная плотность состояний на поверхностях туннельного контакта при соответствую-

щей энергии Е,

$$\kappa = \sqrt{2m_{\rm eff}(V - E)/\hbar^2},\tag{7}$$

 $m_{\rm eff}$ — эффективная масса туннелирующего электрона, V — высота барьера. В соответствии с выражением (5) температурная зависимость кондактанса

$$G \sim e^{-(T_0/T)^{1/2}}, \quad T_0 = \sqrt{\frac{8kc}{k_B}},$$
 (8)

что хорошо согласуется с экспериментом [6]. Соотношение (5) также хорошо описывает зависимость ТМС от m^2 и слабую температурную зависимость ТМС. Следует отметить, что выражения (5) и (8) справедливы в ограниченном ($T_{\min} < T < T_{\max}$), но достаточно широком интервале температур [6], и хотя они получены на основе приближения Шенга и др. [8] для усреднения кондактанса по межгранульным расстояниям, соотношения такого же вида можно получить из достаточно общих соображений о характере распределения гранул по размерам [6]. При высоких температурах закон $T^{1/2}$ (8) становится неадекватным и сменяется активационной зависимостью. Мы ограничимся областью, где закон (8) справедлив, так как случай высоких температур для ферромагнитных систем даже с высокой температурой Кюри не реализуется.

Подставляя соотношение (5) в формулу Мотта (4), после очевидных вычислений получаем

$$S^{\text{tun}} = \frac{-\pi^2}{3} \frac{k_B^2}{|e|} T \left[\frac{\left(2P \frac{\partial P}{\partial E}\right)_{E_F} m^2}{1 + P^2 m^2} + \frac{m_{\text{eff}}}{2\hbar^2 \kappa^2} \left(\frac{T_0}{T}\right)^{1/2} \right].$$
(9)

Из (5) следует, что

$$\frac{\Delta\rho}{\rho} = \frac{G^{-1}(0) - G^{-1}(H)}{G^{-1}(0)} = 1 - \frac{\rho(H)}{\rho(0)} = \frac{P^2 m^2}{1 + P^2 m^2}, \quad (10)$$
$$\frac{\rho(0)}{\rho(H)} = 1 + P^2 m^2. \quad (11)$$

Согласно (11), $m^2 = \frac{1}{P^2} \left(\frac{\rho(0)}{\rho(H)} - 1 \right)$, и тогда выражение (9) преобразуется к виду (1), где

$$a = \frac{-\pi^2}{3} \frac{k_B^2}{|e|} \left[\left(\frac{T_0}{T} \right)^{1/2} \frac{m_{\text{eff}}}{2\hbar^2 \kappa} - \frac{2\left(\frac{1}{P} \frac{\partial P}{\partial E} \right)_{E_F}}{1 + P^2 m^2} \right], \quad (12)$$

$$b = \frac{-\pi^2}{3} \frac{k_B^2}{|e|} \left[\frac{2\left(\frac{1}{P} \frac{\partial P}{\partial E}\right)_{E_F}}{1 + P^2 m^2} \right].$$
 (13)

Выражения (9), (12), (13) являются основным результатом настоящей работы. Поскольку для всех исследованных систем ТМС не превышает 9% [1,3], а величина спиновой поляризации $P \sim 0.3$ [7,9], можно без нарушения общности ограничиться линейным приближением по P. Второй член в квадратных скобках выражения (9) численно мал по сравнению с первым, его следует

учитывать только для парамагнитных сплавов. Действительно, так как $\kappa \ge k_F$ (где k_F — фермиевский волновой вектор [7]), а вблизи порога протекания $T_0 \approx 10$ K [6], этот член заведомо меньше $1/(4E_F)$. С другой стороны,

$$\frac{\partial P}{\partial E} = \frac{1}{2} \left[\frac{1}{D_{\uparrow}} \frac{\partial D_{\uparrow}}{\partial E} - \frac{1}{D_{\downarrow}} \frac{\partial D_{\downarrow}}{\partial E} \right]_{E_F}$$
(14)

для переходных металлов при учете sp-d-гибридизации может быть занчительно больше P/E_F . Далее при сравнении с экспериментом показано, что пренебрежение вторым членом в (9) действительно оправдано, особенно в интервале температур 77–300 К. Тогда выражения (9), (12), (13) упрощаются

$$S^{\text{tun}} = \frac{-\pi^2}{3} \frac{k_B^2}{|e|} T\left[\left(2P \frac{\partial P}{\partial E} \right)_{E_F} \right] m^2, \qquad (15)$$

$$b = -a = \frac{-\pi^2}{3} \frac{k_B^2}{|e|} \left[\left(\frac{2}{P} \frac{\partial P}{\partial E} \right)_{E_F} \right].$$
(16)

Для системы Fe-Al-O эти выражения находятся в хорошем согласии с экспериментальными данными: $b_{exp} =$ = $(0.08 \pm 0.01) \,\mu \text{V/K}^2$, $a_{\text{exp}} = -(0.09 \pm 0.01) \,\mu \text{V/K}^2$ [10]. Действительно, $b_{\exp} \approx -a_{\exp}$ и оба параметра практически не зависят от температуры. Более того, принято считать, что туннелирование определяется sp-подобными электронами, а их относительно большая поляризация $(P \approx 0.3)$ связана с sp-d-гибридизацией. Для модели свободных электронов $D_{\uparrow(\downarrow)} = A_{\uparrow(\downarrow)} (E \mp \Delta)^{1/2}$, где Δ спиновое расщепление подзон, или для полуэллиптической формы кривой плотности состояний с почти наполовину заполненной подзоной со спином $\sigma = \uparrow$, что соответствует Fe, $\frac{\partial P}{\partial E} < 0$. Поскольку P > 0, про-изведение $\frac{1}{P} \frac{\partial P}{\partial E} < 0$ и b > 0, что соответствует эксперименту. При этом для оценки разумно положить, что римения при от для селона для селона года при $\frac{1}{D_{\uparrow}} \frac{\partial D_{\uparrow}}{\partial E} - \frac{1}{D_{\downarrow}} \frac{\partial D_{\downarrow}}{\partial E} = -\frac{1}{\omega}$, где ω — полуширина зоны или энергии Ферми. Тогда при $\omega = 1 \text{ eV}$ [7], согласно (16), $b_{\rm calc} = 0.08 \,\mu {\rm V}/{\rm K}^2$.

Для системы Co–Al–O *S* того же порядка величины, но в отличие от Fe–Al–O $b_{\exp} < 0$, $a_{\exp} > 0$, причем $|b_{\exp}| \neq |a_{\exp}|$ и параметр *a* обладает температурной зависимостью [10]. Эти данные легко понять, если допустить, что произведение $P \frac{\partial P}{\partial E} > 0$, и учесть второй член в выражении (3). Необходимость учета второго члена в (3) очевидно следует из того, что для Со термоэдс при комнатной температуре достигает $-30 \,\mu$ V/K, что значительно больше, чем S^{tun} , а так как $\frac{y^{\text{tun}}}{y^{\text{met}}} \geq \frac{1}{5}$, для этой системы пренебрежение "металлическим" вкладом в термоэдс при сравнении теории с экспериментом не оправдано. Мы считаем, что для выделения S^{tun} из экспериментальных данных целесообразно использовать корреляцию $S^{\text{tun}} \sim m^2$, которая вытекает из соотношения (15). Что касается знака фактора $P \frac{\partial P}{\partial E}$, то здесь ситуация более сложная. Как отмечалось выше, для почти свободных электронов этот

фактор должен быть отрицательным $(P > 0, \frac{\partial P}{\partial E} < 0)$. Если для оценки взять полную плотность состояний для Со, то в этом случае $P < 0, \frac{\partial P}{\partial E} < 0$ и в соответствии с экспериментом $P \frac{\partial P}{\partial E} > 0$. Однако принято считать, что *d*-подобные электроны не участвуют в туннелировании и поэтому для всех систем P > 0; знак же $\frac{\partial P}{\partial E}$ для sp-d-гибридизованных состояний существенно зависит от заполнения подзон. Более того, локальная плотность состояний вблизи интерфейсов может значительно отличаться от плотности состояний материала гранул. Использование экспериментальных данных по туннельной термоэдс для определения $\frac{\partial P}{\partial E}$ участвующих в туннелировании электронов представляется весьма обещающим.

Следует отметить, что, поскольку теннельная термоэдс не связана ни с процессами рассеяния (в том числе и с межзонными s-d-переходами), ни с фононным или магнонным увлечением, она существенно проще и в этом смысле более информативна, чем обычная термоэдс. Кроме того, эффект туннельной термоэдс необходимо учитывать и при описании термоэлектрических явлений в композитах в рамках теории протекания [4]. Наряду с упругими процессами туннелирования возможно также индуцированное фононами (магнонами) туннелирование (phonon- (magnon-) assisted tunneling). Для описания соответствующего вклада в термоэдс формула Мотта не может быть использована, и этот вопрос требует отдельного рассмотрения.

Таким образом, природа полевой зависимости термоэдс в магнитных гранулированных сплавах Co–Al–O и Fe–Al–O связана с туннельной термоэдс. Туннельная термоэдс мала, приблизительно линейно зависит от температуры, а ее полевая зависимость описывается соотношением (1).

Список литературы

- H. Sato, Y. Kabayashi, K. Hashimoto, Y. Aoki, H. Sugawara, S. Mitany, H. Fujimory, S. Ohnuma. J. Magn. Soc. Jap. 23, 73 (1999).
- [2] H. Sato, Y. Kabayashi, K. Hashimoto, Y. Aoki, H. Sugawara, S. Mitany, H. Fujimory, S. Ohnuma. J. Phys. Soc. Jap. 67, 2193 (1998).
- [3] J. Shi, K. Pettet, E. Kita, S.S.P. Parkin, R. Nakatani, M.B. Salamon. Phys. Rev. B54, 15 273 (1996).
- [4] O. Levy, D. Bergman. Mater. Res. Soc. Symp. Proc. 195, 206 (1990).
- [5] R.O. Barnard. Termoelectricity in Metals and Alloys. Taylor and Francis, London (1972). P. 259.
- [6] Е.З. Мейлихов. ЖЭТФ 88, 861 (1999).
- [7] J. Inoue, S. Maekawa. Phys. Rev. B53, R 11 927 (1996).
- [8] P. Sheng, B. Abeles, Y. Arie. Phys. Rev. Lett. 31, 44 (1973).
- [9] R. Meservey, P.M. Tedrow. Phys. Rep. 283, 173 (1994).
- [10] H. Sato, Y. Aoki, S. Mitany, H. Fujimory, K. Takanashi. Private communication.