Кристаллическая структура дисеринсульфата моногидрата

© Ю.И. Смолин, А.Е. Лапшин, И.А. Дроздова

Институт химии силиктатов им. И.В. Гребенщикова Российской академии наук, 199155 Санкт-Петербург, Россия

(Поступила в Редакцию 27 декабря 2001 г.)

Дифракционными методами на монокристалле определена кристаллическая структура *DL*-Serin H₂SO₄.H₂O. Измерения интенсивностей рентгеновских отражений выполнены при трех температурах 295, 343 и 233 К. Структура уточнена по всем трем наборам интенсивностей. Установлено, что при 233 К структура переходит в несоразмерно-модулированную. Именно с этим, по-видимому, связано исчезновение пьезоотклика при данной температуре.

Работа выполнена при финансовой поддержке Российского фонда фундаментальных исследований (проекты № 01-02-17163 и 99-07-90133).

Кристаллы неорганических производных белковых аминокислот благодаря особенностям своего строения представляют большой интерес для поиска новых пирои пьезоэлектриков и понимания роли электрофизических характеристик белковых аминокислот в процессах, протекающих в живых организмах.

Синтез дисеринсульфата моногидрата, выращивание его монокристаллов, первоначальные рентгеноструктурные характеристики и температурные зависимости пьезоотклика кристаллов описаны в [1]. Данная работа посвящена определению неисследованной кристаллической структуры дисеринсульфата моногидрата [2], предпринята также попытка связать температурные зависимости пьезохарактеристик этих кристаллов с изменениями структуры с температурой. Измерения интенсивностей рентгеновских отражений были выполнены на одном и том же кристалле при различных температурах: комнатной (295 K), при которой величина пьезоотклика достаточно велика; 233 K, при которой сигнал исчезает, и 343 K, при которой пьезоотклик резко уменьшается и стремится к нулю [1]. Температуры выше и ниже комнатной достигались путем обдувания кристалла во время рентгеновского эксперимента струей сухого азота соотвествующей температуры. Регулирующая система поддерживала заданную температуру в пределах ± 1 градус.

Интенсивности рентгеновских отражений измерялись на автоматическом монокристальном дифрактометре, работающем по схеме перпендикулярного пучка, при по-

Проекция структуры вдоль оси с.

Структура	<i>Т</i> ,К	a,Å	b, Å	c,Å	F(nkl)	R	Пр. гр. симметрии
I	295	10.62(1)	21.41(1) 21.20(1)	5.89(1)	1791	0.027	$P 2_1 2_1 2_1$
III	233	10.63(1) 10.61(1)	21.39(1) 21.42(1)	5.90(1) 5.90(1)	1364	0.029	$P 2_1 2_1 2_1$ $P 2_1 2_1 2_1$

Таблица 1. Основные кристаллографические параметры исследованных структур

слойной регистрации с использованием MoK_{α} -излучения и монохроматора из пиролитического графита. Оценка интегральных интенсивностей и учет фона выполнены с использованием алгоритма профильного анализа. Стабильность кристалла контролировалась периодическим измерением интенсивности эталонного отражения.

Как следует из табл. 1, при всех температурах измерения кристалл остается ромбическим, пр. гр. симметрии $P2_12_12_1$. Однако измерения, выполненные при 233 К, показали, что главные рефлексы, определяющие базовую ячейку, сопровождаются небольшим количеством сателлитов первого и втрого порядков, расположение которых указывает на одномерную несоразмерную модуляцию вдоль оси **b**. Согласно [3,4], положение сателлитных отражений определяется вектором $\mathbf{H} = h\mathbf{a}^* + k\mathbf{b}^* + l\mathbf{c}^* + m\mathbf{q}$, где m — порядок сателлита, а \mathbf{q} — волновой вектор модуляции.

Для исследованного кристалла $\mathbf{q} = 0.23(1)\mathbf{b}^*$. Координаты неводородных атомов были определены прямыми методами с использованием комплекса программ AREN [5] по набору F(hkl), измеренному при комнатной температуре. Все атомы водорода были локализованы из серии разностных синтезов, чередующихся с уточнением позиционных и температурных параметров атомов методом наименьших квадратров (МНК), с использованием модифицированной программы ORFLS [6] и весовой функции $w = [\sigma^2(F_0) + 0.001F_0^2]^{-1}$; применялись атомные факторы нейтральных атомов. Температурные факторы неводородных атомов уточнялись в анизотропном приближении, а атомов водорода — в изотропном. Далее были определены структуры из измерений, выполненных при температурах 233 К (в приближении базовой ячейки) и 343 К. Первоначально задавались параметры неводородных атомов, полученные для кристалла при комнатной температуре. Затем эти параметры уточнялись МНК и параметры атомов водорода находились из разностных синтезов электронной плотности. Полученные значения *R*-факторов представлены в табл. 1.

Поскольку было установлено, что найденные параметры атомов мало отличаются от полученных для структуры, измеренной при комнатной температуре, в табл. 2 приведены координаты атомов и эквивалентные температурные факторы только для этой структуры (структуры I).

Проекция структуры дисеринсульфата моногидрата вдоль оси *c* показана на рисунке. Видно, что левые и правые молекулы серина связаны попарно двумя сильными H-связями между ионами гирдоксилов (O6-O10 = 2.627 Å и O9-O7 = 2.599 Å), образуя слои,

параллельные оси *а*. Эти положительно заряженные слои чередуются со слоями, образованными ионами [SO₄]²⁻ и молекулами воды.

Молекулы серина, объединяясь, образуют группировку с локальным центром симметрии, которая своими активными NH₃-группами связывает соседние отрицательно заряженные слои, состоящие из [SO₄]^{2–} и молекул

Таблица 2. Координаты и тепловые параметры атомов в структуре I (в скобках приведены стандартные среднеквадратичные отклонения). $B_{\text{equi}} = 4/3 \Sigma (B_{ij} \cdot a_i \cdot a_j)$

Атом	x/a	y/b	z/c	$B_{\rm equi}/B_{\rm iso}, {\rm \AA}^2$
S	0.43850(3)	0.50423(1)	0.97266(6)	1.75(1)
N1	0.4252(2)	0.4017(1)	0.4683(3)	2.20(3)
N2	0.6526(2)	0.0940(1)	1.0255(3)	2.20(3)
01	0.3255(2)	0.5434(1)	0.9521(4)	3.67(4)
O2	0.4094(2)	0.4376(1)	0.9337(3)	2.84(3)
O3	0.5327(2)	0.5249(1)	0.8013(3)	2.90(3)
O4	0.4920(2)	0.5104(1)	1.2059(3)	2.51(3)
O5	0.3540(2)	0.3027(1)	0.7142(3)	2.80(3)
O6	0.4622(2)	0.2342(1)	0.4986(3)	2.90(3)
07	0.6605(2)	0.3483(1)	0.6619(3)	3.16(3)
08	0.7282(2)	0.1894(1)	0.7611(3)	3.21(4)
09	0.6215(2)	0.2613(1)	0.9617(3)	2.89(3)
O10	0.4213(2)	0.1451(1)	0.7969(3)	2.66(3)
Ow	0.7499(2)	0.4584(1)	0.7170(8)	8.04(9)
C1	0.4229(2)	0.2909(1)	0.5580(3)	1.98(3)
C2	0.4818(2)	0.3405(1)	0.4059(3)	1.93(3)
C3	0.6258(2)	0.3417(1)	0.4305(4)	2.62(4)
C4	0.6585(2)	0.2040(1)	0.9140(3)	2.05(3)
C5	0.5962(2)	0.1567(1)	1.0702(3)	1.97(3)
C6	0.4532(2)	0.1553(1)	1.0307(4)	2.48(3)
H1	0.438(5)	0.207(2)	0.598(6)	2.5(7)
H2	0.694(5)	0.382(2)	0.695(7)	2.5(7)
H3	0.456(4)	0.331(2)	0.258(5)	2.9(5)
H4	0.659(5)	0.305(2)	0.354(7)	2.7(7)
H5	0.657(4)	0.375(2)	0.336(6)	2.1(6)
H6	0.442(4)	0.413(2)	0.594(6)	2.8(6)
H7	0.343(4)	0.402(2)	0.447(6)	2.8(6)
H8	0.456(5)	0.434(2)	0.382(7)	2.6(7)
H9	0.643(5)	0.289(2)	0.860(6)	2.3(7)
H10	0.431(5)	0.109(2)	0.767(7)	2.8(7)
H11	0.615(4)	0.168(2)	1.221(6)	2.3(6)
H12	0.416(4)	0.196(2)	1.078(6)	2.2(6)
H13	0.412(4)	0.118(2)	1.135(6)	2.5(6)
H14	0.643(4)	0.082(2)	0.886(6)	2.3(7)
H15	0.734(5)	0.097(2)	1.044(8)	2.5(7)
H16	0.613(5)	0.065(2)	1.114(7)	2.4(7)
H17	0.697(7)	0.482(3)	0.72(1)	8.(2)
H18	0.872(7)	0.471(3)	0.73(2)	8.(2)

воды. Таким образом, атом азота молекулы образует три водородные связи с тремя ионами [SO₄]²⁻ одного слоя, атом азота другой молекулы из этой пары связан с тремя сульфат-ионами соседнего слоя. В систему водородных связей в структуре включены также молекулы воды и гидроксильные группы молекул серина. Каждая молекула воды связывает пару соседних сульфат-ионов в слое и в свою очередь соединена Н-связью с гидроксилом серина. Координационное окружение молекул воды неполное, что находит отражение в заметном увеличении теплового фактора кислорода молекулы воды по сравнению с другими атомами структуры. Таким образом, в структуре помимо электростатического взаимодействия реализуется развитая система водородных связей. Найденные величины длин валентных связей и углов в молекулах серина хорошо согласуются как между собой, так и с определенными ранее [7,8]. Сульфатион представляет собой слабо искаженный тетраэдр, для которого все длины валентных связей и углы лежат в ожидаемых пределах (1.468–1.491 Å, 108–111°).

Анализ трех структур, полученных из одного и того же кристалла при различных температурах, показал их близкое подобие. Однако появление несоразмерномодулированной структуры, возникающей при 233 К, можно рассматривать как новую фазу, а переход к этой фазе — как фазовый переход, с которым, по-видимому, связано исчезновение пьзеоотклика при указанной температуре. Эффект характеризуется сравнительно небольшим числом сателлитных отражений, и определить, какой именно фрагмент структуры в большей степени участвует в создании несоразмерной модуляции не удалось. Можно отметить только, что при уточнении несоразмерной структуры в приближении базовой ячейки, несмотря на понижение температуры на 60 К, температурные факторы атомов не только не уменьшились, но даже возросли, что свидетельствует, на наш взгляд, о кооперативном эффекте смещений атомов в модулированной структуре. Эффект угасания пьезоотклика при температуре 343 К также, по-видимому, связан с температурной разупорядоченностью структуры.

Авторы благодарны В.В. Леманову за предоставленные для исследований кристаллы.

Список литературы

- В.В. Леманов, С.Н. Попов, В.В. Бахурин, Н.В. Зайцева. ФТТ 43, 7, 1283 (2001).
- [2] Кембриджский банк структурных данных. Версия 1.3 (Октябрь 2001).
- [3] P.M. Wolff. Acta Cryst. A30, 4, 777 (1974).
- [4] P.M. Wolff. Acta Cryst. A33, 3, 493 (1977).
- [5] В.Н. Андрианов. Кристаллография 32, 1, 228 (1987).
- [6] W.R. Busing, K.O. Martin, H.A. Levy. Oak Ridge Nat. Lab. Rept. ORNL-TM-305 (1962).
- [7] T.J. Kistenmacher, G.A. Rand, E. Marsh. Acta Cryst. B30, 11, 2573 (1974).
- [8] M.N. Frey, M.S. Lenmann, T.F. Koetzle, W.C. Hamilton. Acta Cryst. B29, 4, 877 (1973).