Висмут-индуцированное усиление магнитооптики ферритов-гранатов. Теоретический анализ

© А.С. Москвин, А.В. Зенков

Уральский государственный университет им. А.М. Горького, 620083 Екатеринбург, Россия E-mail: andreas@r66.ru

(Поступила в Редакцию 1 октября 2001 г. В окончательной редакции 19 ноября 2001 г.)

В рамках концепции переходов с переносом заряда на основе существующих качественных представлений построена полуколичественная модель, объясняющая резкое возрастание циркулярной магнитооптики ферритов-гранатов $R_3Fe_5O_{12}$ при наличии в них примеси ионов Bi^{3+} , Pb^{2+} увеличением кислородного вклада в константу спин-орбитальной связи комплексов $(FeO_6)^{9-}$, $(FeO_4)^{5-}$ (основных магнитооптически активных центров ферритов-гранатов). Увеличение достигается за счет гигантской одноэлектронной константы спин-орбитального взаимодействия 6p-орбиталей ионов Bi^{3+} , Pb^{2+} , ковалентно примешивающихся к кислородным 2p-орбиталям. Влияние замещения не сводится просто к возрастанию спин-орбитального взаимодействия на кислороде, а выражается также в возникновении эффективной анизотропной тензорной добавки к спин-орбитальному взаимодействию и циркулярной магнитооптике. Сделаны оценки соответствующих вкладов в магнитооптику гранатов. Проведено компьютерное моделирование влияния неоднородности распределения висмута на магнитооптику граната $Y_{3-x}Bi_xFe_5O_{12}$.

Анализ имеющихся экспериментальных данных по магнитооптике гранатов свидетельствует в пользу предлагаемой теоретической модели.

Работа частично поддержана грантом CRDF NREC-005.

Как известно, циркулярная магнитооптика ферритовгранатов ($\Phi\Gamma$) R₃Fe₅O₁₂ резко усиливается уже при сравнительно малой примеси изоэлектронных ионов Bi³⁺, Pb²⁺, замещающих в решетке $\Phi\Gamma$ редкоземельные (R) ионы. Попытки объяснения данного феномена предпринимались неоднократно [1–3], но вопрос по-прежнему сохраняет актуальность. Так, например, в [1] в случае свинецсодержащего иттриевого $\Phi\Gamma$ в качестве возможных причин этого явления названы: а) внутриатомный межконфигурационный переход $s^2 - sp({}^1S_0 - {}^3P_1)$ в ионе Pb²⁺; b) фотоиндуцированный обмен электроном между ионами Fe³⁺ и Fe⁴⁺ (последний возникает как зарядовая компенсация ионов Pb²⁺); с) переход с переносом заряда между катионом Pb²⁺ и анионами.

Важнейшим недостатком перечисленных гипотез ad hoc является их неприменимость к объяснению Ві-индуцированного эффекта возрастания циркулярной магнитооптики, который, несомненно, должен иметь общее происхождение с Рb-индуцированным. Так, непригодность гипотезы b для "висмутового" случая очевидна. Механизм с, существенным образом связанный со структурой энергетических уровней ионов в кристалле, должен был бы давать различные результаты для Віи Рb-замещенных гранатов. Между тем анализ разностных эффектов, полученных вычитанием из спектров Bi(Pb)-замещенного граната соответствующего спектра чистого граната, показывает, что влияние примесей этих ионов на спектральные аномалии циркулярной магнитооптики в ближней ультрафиолетовой области практически тождественно. Данное обстоятельство является и серьезным аргументом против гипотезы а, поскольку собственный переход в ионе Bi3+ расположен слишком

далеко ($\hbar\omega_0 \approx 4.3 \,\text{eV}$ [4]) от той области $\hbar\omega_0 \approx 3 \,\text{eV}$, где влияние примеси Bi^{3+} уже весьма заметно¹ (в ионе Pb^{2+} соответствующий переход лежит значительно ниже по энергии).

Гораздо более перспективна гипотеза, высказанная, в частности, в [12] (правда, лишь на качественном уровне) и связывающая усиление циркулярной магнитооптики в Ві-, Рb-замещенных ФГ с ковалентным примешиванием 6*p*-орбиталей ионов Вi³⁺, Pb²⁺ (характеризующихся гигантскими значениями одноэлектронной константы спин-орбитального взаимодействия ξ_{6p} , равной соответственно 17 000 и 14 500 сm⁻¹ [2] для 6*p*-оболочек ионов Bi³⁺, Pb²⁺)² к кислородной 2*p*-орбитали.

В развитие этой идеи нами простроена изложенная далее полуколичественная модель. Настоящая статья является логическим продолжением более ранней работы [5].

1. Спин-орбитальное взаимодействие при наличии примеси висмута

Благодаря эффектам перекрывания электронных оболочек $2p(O^{2-})-6p(Bi^{3+})$ и виртуального переноса 2p-электрона иона O^{2-} на пустую 6p-оболочку иона

¹ Таким образом, в ближнем ультрафиолете $\hbar\omega_0 \approx 3-4 \, \mathrm{eV}$ вклад этого перехода в магнитооптику может проявиться исключительно в монотонном изменении интенсивности линий спектра, обязанных своим происхождением иным механизмам, — изменении тем более значительном, чем ближе соответствующий пик к линии собственного перехода в висмуте. Между тем реально такая монотонность не имеет места.

² В дальнейшем для краткости речь идет только о висмуте, хотя все сказанное в равной мере относится и к случаю свинца.

висмута волновая функция внешних 2p-электронов иона O^{2-} , ближайшего к иону Bi^{3+} , получает примесь его 6p-состояний

$$\varphi_{2pm} \to \psi_{2pm} = \varphi_{2pm} - \sum_{m'} \langle 6pm' | 2pm \rangle^* \varphi_{6pm'}, \quad (1)$$

где φ_{2p} , φ_{6p} — атомные волновые функции. Интеграл 2p-6p-перекрывания $\langle 6pm'|2pm\rangle^* = \langle 2pm'|6pm\rangle$ представим в виде

$$\langle 2pm'|6pm\rangle = \sum_{kq} (-1)^{1-m} \begin{pmatrix} 1 & k & 1\\ -m & q & m' \end{pmatrix} \gamma_k C_q^k(\mathbf{R}).$$
(2)

Здесь (...) — З*j*-символ Вигнера [6]; C_q^k — сферический тензор ранга *k* (обязательно четный индекс с возможными значениями 0 и 2; см. раздел 4),

$$C_q^k = \sqrt{\frac{4\pi}{2k+1}} Y_{kq},$$

где Y_{kq} — сферическая функция; **R** — орт направления связи О-Ві; γ_k — параметр ковалентности.

Большей наглядностью обладают линейные комбинации γ_0 , γ_2 , соответствующие параметрам ковалентности для σ - и π -связи,

$$\langle 6p_z | 2p_z \rangle \equiv \langle 6p0 | 2p0 \rangle \equiv \gamma_\sigma = \frac{1}{\sqrt{3}} \gamma_0 - \frac{2}{\sqrt{30}} \gamma_2,$$

 $\langle 6p_x | 2p_x \rangle \equiv \langle 6p \pm 1 | 2p \pm 1 \rangle \equiv \gamma_\pi = \frac{1}{\sqrt{3}} \gamma_0 + \frac{2}{\sqrt{30}} \gamma_2$

Благодаря эффектам ковалентности виртуальный переход кислородного 2*p*-электрона на пустую Ві 6*p*-оболочку с интенсивным спин-орбитальным взаимодействием

$$V_{so} = \xi_{6p} \sum_{\alpha=1}^{3} (-1)^{\alpha} \hat{l}_{\alpha} \hat{s}_{-\alpha}$$
(3)

(скалярное произведение орбитального и спинового моментов $\hat{\mathbf{l}}$, $\hat{\mathbf{s}}$ записано в сферических компонентах [6]) обусловливает усиление V_{so} и на ионе кислорода. Однако данным "тривиальным" эффектом влияние примеси висмута не ограничивается: претерпевает изменение сама структура спин-орбитального взаимодействия, приобретающего анизотропный тензорный характер.

Рассмотрение матричного элемента $\langle 2pm_1|V_{so}|2pm_2\rangle$ оператора (3) на гибридных волновых функциях ψ_{2pm} (1) приводит к эффективному спин-орбитальному взаимодействию на кислороде

$$V_{so}^{\text{eff}}(2p) = V_{so} + \Delta V_{so}^{\text{iso}} + \Delta V_{so}^{\text{an}}, \qquad (4)$$

причем входящие в (4) слагаемые имеют следующий смысл:

$$V_{so} = \xi_{2p} (\mathbf{l} \cdot \mathbf{s}) \tag{5}$$

— обычное (имеющееся и в отсутствие примеси висмута) спин-орбитальное взаимодействие; ΔV_{so}^{iso} есть изотропная добавка к V_{so} за счет Ві-индуцированного приращения $\Delta \xi_{2p}$ эффективной константы спин-орбитального взаимодействия для 2p-оболочки,

$$\Delta V_{so}^{\rm iso} = \Delta \xi_{2p} (\mathbf{l} \cdot \mathbf{s}), \tag{6}$$

причем

$$\Delta\xi_{2p} = \frac{1}{3} \gamma_{\pi} (2\gamma_{\sigma} + \gamma_{\pi}) \xi_{6p}.$$
⁽⁷⁾

При разумных оценочных значениях $|\gamma_{\sigma}| = |\gamma_{\pi}| \approx 0.4$ (см. раздел 3) в расчете на одни ион Bi^{3+} согласно (7) получаем $\Delta \xi_{2p} \approx 4000 \,\mathrm{cm}^{-1}$. Эта величина на порядок превышает одноэлектронную константу спин-орбитального взаимодействия для железа ($\xi_{3d} \approx 420 \,\mathrm{cm}^{-1}$ [7]) и позволяет "кислородному" вкладу в V_{so} конкурировать с "железным" (см. раздел 2).

 ΔV_{so}^{an} в (4) есть анизотропная добавка к V_{so} , имеющая тензорный характер и представимая в неприводимой тензорной форме в виде свертки сферического тензора с тензорным произведением операторов орбитального и спинового моментов

$$\Delta V_{so}^{\rm an} = \sqrt{\frac{2}{3}} \gamma_{\pi} (\gamma_{\pi} - \gamma_{\sigma}) \left(C^2(\mathbf{R}) \cdot [\mathbf{l} \cdot \mathbf{s}]^2 \right)_0^0 \xi_{6p}.$$
 (8)

В декартовых координатах выражение для ΔV_{so}^{an} принимает форму

$$\Delta V_{so}^{an} = \lambda_{ij} l_i s_j,$$

причем эффективный тензор спин-орбитального взаимодействия λ_{ij} — аналог константы λ в традиционной записи $V_{so} = \lambda(\mathbf{l} \cdot \mathbf{s})$ — имеет вид

$$\lambda_{ij} = \gamma_{\pi}(\gamma_{\sigma} - \gamma_{\pi})\xi_{6p}\left(R_iR_j - \frac{1}{3}\,\delta_{ij}\right)$$

2. Микроскопические механизмы магнитооптики в ферритах-гранатах

Таким образом, влияние ионов Bi³⁺ на циркулярную магнитооптику $\Phi\Gamma$ существенным образом связано с кислородными 2*p*-состояниями в комплексах (FeO₆)⁹⁻, (FeO₄)⁵⁻ — основных магнитооптически активных центрах $\Phi\Gamma$.³ Это служит веским аргументом в пользу концепции переходов (типа ${}^{6}A_{1g} - {}^{6}T_{1u}$ в (FeO₆)⁹⁻ или ${}^{6}A_{1} - {}^{6}T_{2}$ в (FeO₄)⁵⁻) с переносом заряда лиганд (ион O²⁻) — центральный Fe³⁺-ион комплекса [8–10] как основного источника формирования наблюдаемых магнитооптических свойств ферритов, поскольку лишь в данном подходе естественно учитывается роль лигандных состояний в магнитооптике ферритов.

Состояние комплекса с переносом заряда характеризуется наличием двух незаполненных оболочек: лигандной 2p- и 3d-оболочки, и соответственно эффективная константа спин-орбитальной связи λ для комплекса содержит два слагаемых

$$\lambda = \lambda(2p) + \lambda(3d). \tag{9}$$

Значения λ для различных состояний с переносом заряда в комплексах (FeO₆)⁹⁻, (FeO₄)⁵⁻ приведены в табл. 1;

³ Помимо рассматриваемого теоретически возможен и процесс $3d(Fe^{3+})-6p(Bi^{3+})$ -гибридизации, однако в качестве промежуточного звена здесь снова выступает ион кислорода; вклад данного механизма имеет порядок малости ~ γ .

№ п/п	Переход с переносом заряда [9]	Эффективный фактор Ланде g _L *[9]	Эффективная константа спин-орби- тальной связи λ [9]	Энергия, eV		Сила оснилля-	Полуширина
				СП-ХаДВ-расчет [9]	Обработка спектров $Y_{3-x}Bi_xFe_5O_{12}$ [2]	Topa ^{**} f , 10^{-3}	линии ^{**} Г, eV
1	$t_{2u} \rightarrow t_{2g}$	$-\frac{1}{2}-\frac{1}{4}$	$\frac{1}{10}\xi_{3d}+\frac{1}{20}\xi_{2p}$	3.1	2.78	1.5	0.2
2	$t_{1u}(\pi) \to t_{2g}$	$\frac{1}{2} - \frac{1}{4}$	$-\frac{1}{10}\xi_{3d}+\frac{1}{20}\xi_{2p}$	3.9	3.6	40	0.3
3	$t_{2u} \rightarrow e_g$	$0 + \frac{1}{4}$	$-\frac{1}{20}\xi_{2p}$	4.4	4.3	60	0.3
4	$t_{1u}(\sigma) \rightarrow t_{2g}$	$\frac{1}{2} + 0$	$-\frac{1}{10}\xi_{3d}$	5.1	4.8	50	0.3
5	$t_{1u}(\pi) \to e_g$	$0 - \frac{1}{4}$	$\frac{1}{20} \xi_{2p}$	5.3	_****	_****	_****
6***	$t_{1u}(\sigma) \to e_g$	0+0	0+0	6.4	****	_****	_****
7	$1t_1 \rightarrow 2e$	0 + 0.30	$-0.06\xi_{2p}$	3.4	3.4	10	0.4
8	$6t_2 \rightarrow 2e$	-0.01 + 0.05	$0.002\xi_{3d} - 0.01\xi_{2p}$	4.3	4.6	40	0.3
9	$1t_1 \rightarrow 7t_2$	0.42 - 0.41	$-0.09\xi_{3d} + 0.08\xi_{2p}$	4.5	-****	_****	_****
10	$5t_2 \rightarrow 2e$	-0.07 + 0.13	$0.02\xi_{3d} - 0.03\xi_{2p}$	5.0	-****	-****	-****
11	$6t_2 \rightarrow 7t_2$	-0.43 + 0.16	$0.09\xi_{3d} - 0.03\xi_{2p}$	5.4	5.1	185	0.3
12	$1e \rightarrow 7t_2$	-0.42 + 0.11	$0.09\xi_{3d} - 0.02\xi_{2p}$	5.6	-****	****	****
13	$5t_2 \rightarrow 7t_2$	-0.49 + 0.24	$0.10\xi_{3d} - 0.05\xi_{2p}$	6.0	-****	_****	-****

Таблица 1. Характеристики состояний и переходов с переносом заряда в октаэдрических (№ 1-6) и тетраэдрических (№ 7-13) комплексах ферритов-гранатов

* Орбитальные факторы Ланде представлены в виде суммы 3d-вклада (первое слагаемое) и лигандного 2p-вклада.

** Приведены данные для Y₃Fe₅O₁₂.

*** Ненулевой вклад в циркулярную магнитооптику состояние с переносом заряда, соответствующее данному переходу, вносит только в механизме смешивания [10].

**** Переход не учитывается при моделировании экспериментальных спектров, так как лежит за пределами области измерений (№ 5, 6, 12, 13) или слишком тесно примыкает к уже учтенному переходу, так что их линии практически сливаются (№ 9, 10).

методика вычислений описана в [9]. Приращение константы ξ_{2p} за счет ΔV_{so}^{iso} (6), (7) приводит и к возрастанию кислородного вклада $\lambda(2p)$ (9).⁴ Тем самым увеличивается так называемый ферромагнитный вклад в вектор гирации **g** $\Phi\Gamma$ (первые два слагаемых в нижеследующей формуле), пропорциональный векторам ферромагнетизма **m**_a, **m**_d для *a*- и *d*-подрешеток граната соответственно и связанный по своему происхождению с орбитальным расщеплением и смешиванием [10] возбужденный ${}^{6}T_{1u}({}^{6}T_{2})$ -состояний с переносом заряда под действием V_{so} ,

$$\mathbf{g} = A_a \mathbf{m}_a + A_d \mathbf{m}_d + C \mathbf{H} \tag{10}$$

(*A_a*, *A_d*, *C* — коэффициенты пропорциональности).

С другой стороны. последнее слагаемое в (10) — полевой вклад в вектор гирации, пропорционалный внешнему магнитному полю **H** и обязанный своим происхождением орбитальному расщеплению и смешиванию возбужденных ${}^{6}T_{1u}({}^{6}T_{2})$ -состояний с переносом заряда за счет орбитальной части зеемановского взаимодействия $V_{Z} = \mu_{B}g_{L}(\mathbf{L} \cdot \mathbf{H})$, — влиянию примеси висмута не подвержен. Однако в формировании полевого вклада в **g** роль кислородных состояний изначально велика (эффективные орбитальные факторы Ланде $g_{L}(2p)$ и $g_{L}(3d)$ сравнимы по величине; см. табл. 1). В случае же ферромагнитного вклада те переходы, для которых λ в возбужденном состоянии с переносом заряда содержит только кислородную часть $\lambda(2p)$ (например, переходы № 3, 5 в комплексе (FeO₆)⁹⁻, табл. 1), не будут вносить ощутимого вклада в **g** (так как $\lambda(2p)$ существенно меньше, чем $\lambda(3d)$); в Ві-замещенном ФГ благодаря многократному увеличению $\lambda(2p)$ такие переходы "возгорят".

Наоборот, на те переходы с переносом заряда, в конечном состоянии которых значение λ формируется только 3*d*-подсистемой молекулярной орбитали комплекса (например, переход № 4 в комплексе (FeO₆)⁹⁻, табл. 1), замещение не окажет существенного влияния.

Приведем здесь необходимую для дальнейшего рассмотрения (разделы 3, 4) фомрулу для ферромагнитного вклада (10) в вектор гирации $\Phi\Gamma$ за счет переходов с переносом заряда в окта- и тетракомплексах (индексы *a* и *d* соответственно) в механизме расщепления [10]

$$\mathbf{g}_{a,d} = 2 \sum_{j={}^{6}T_{1u},{}^{6}T_{2}} \frac{\pi e^{2} L N_{a,d}}{\hbar m_{e} \omega_{0j}} \lambda^{j} \langle \mathbf{S} \rangle f_{j} \frac{\partial F_{1}(\omega, \omega_{0j}, \Gamma_{j})}{\partial \omega_{0j}}.$$
 (11)

Здесь $L = (n_0^2 + 2)/3$ — фактор Лорентц–Лоренца, $N_{a,d}$ — концентрация ионов Fe³⁺ в *a*- и *d*-позициях, λ^j — константа спин-орбитальной связи в *j*-м возбужденном состоянии с переносом заряда, f_j — сила осциллятора перехода, $\langle \mathbf{S} \rangle$ — средний спин. Дисперсионная функ-

⁴ Заметим, что одноэлектронная константа ξ_{2p} и относящаяся к многоэлектронному состоянию комплекса величина λ отнюдь не эквивалентны.

ция F₁ имеет вид

$$F_1(\omega, \omega_0, \Gamma) = rac{2(\omega + i\Gamma)}{(\omega + i\Gamma)^2 - \omega_0^2},$$

*ω*₀ — резонансная частота, Г — полуширина линии перехода.

Полевой вклад в **g** в механизме расщепления выглядит как

$$\mathbf{g}_{a,d} = 2 \sum_{j={}^{6}T_{1u},{}^{6}T_{2}} \frac{\pi e^{2}LN_{a,d}}{\hbar m_{e}\omega_{0j}} \mu_{B}g_{L}^{j}\mathbf{H}f_{j} \frac{\partial F_{1}(\omega,\omega_{0j},\Gamma_{j})}{\partial\omega_{0j}}.$$
(12)

причем g_L^j есть эффективный орбитальный фактор Ланде в *j*-м состоянии с переносом заряда.

Наконец, отметим возможность влияния висмута на квадратичную (по намагниченности) магнитооптику гранатов. Во втором порядке теории возмущений вклад в тензор поляризуемости комплекса $(FeO_6)^{9-}$ за счет орбитального расщепления возбужденных ${}^6T_{1u}$ -состояний спин-орбитальным взаимодействием имеет вид [11]

$$\begin{aligned} \alpha_{kl} &= \frac{1}{2\sqrt{3}} \sum_{j={}^{6}T_{1u}} \frac{e^{2} (\lambda^{j})^{2} f_{j}}{\hbar^{2} m_{e} \omega_{0j}} \left\langle S_{k} S_{l} - \frac{1}{3} S(S+1) \right\rangle \\ &\times \frac{\partial^{2} F_{2}(\omega, \omega_{0j}, \Gamma_{j})}{\partial \omega_{0j}^{2}}, \end{aligned}$$
(13)

причем дисперсионная функция

$$F_2(\omega,\omega_0,\Gamma)=rac{2\omega_0}{(\omega+i\Gamma)^2-\omega_0^2}$$

Таким образом, благодаря Ві-индуцированному возрастанию константы спин-орбитальной связи λ^{j} комплекса магнитное линейное двупреломление наряду с циркулярным также усиливается (эффект должен быть даже более резким, так как в отличие от (11) константа λ^{j} возводится здесь в квадрат).

Вместе с тем магнитное линейное двупреломление может обусловливаться не только V_{so} , но и низкосимметричным кристаллическим полем; последнее порождает анизотропный упругооптический вклад в α_{kl} [11], нечувствительный к влиянию висмута (впрочем сильное искажение кристаллической решетки висмутом сказывается на параметрах низкосимметричного кристаллического поля, поэтому и данный вклад в действительности зависит от концентрации висмута, оданко характер этой зависимости не столь очевиден, как в случае (13)).

3. Теоретический анализ экспериментальных спектров

Опишем методику теоретической обработки оптических и магнитооптических спектров ФГ, использованную в настоящей работе.

Спектральная зависимость действительной и мнимой частей *z*компоненты вектора гирации в гранате Y_{2.2}Bi_{0.8}Fe₅O₁₂: экспериментальные данные [2] (жирные линии) и результаты их модельной обработки (тонкие линии).

Применение формул (11)–(13) требует знания силы осцилляторов f_j переходов с переносом заряда. Для этого нами была проведена визуальная подгонка спектральной зависимости мнимой части диагональной компоненты Im α_0^0 неприводимого тензора поляризуемости, определяющей изотропное поглощение в гранате Y₃Fe₅O₁₂. Привлекались данные относительно действительной и мнимой частей диэлектрической проницаемости $\varepsilon_0 = \varepsilon'_0 + i\varepsilon''_0$, взятые из [2]. В кубических диэлектриках α_0^0 и ε_0 связаны соотношением Клаузиуса–Моссотти $\frac{\varepsilon_0 - 1}{\varepsilon_0 + 2} = \frac{4\pi}{3} N \alpha_0^0$,

откуда

$$\frac{4\pi}{3} \operatorname{NIm} \alpha_0^0 = \frac{3\varepsilon_0''}{(\varepsilon_0' + 2)^2 + (\varepsilon_0'')^2}.$$
 (14)

Для Im α_0^0 справедлива формула

$$\operatorname{Im} \alpha_0^0 = -\sum_j \frac{e^2 \hbar f_j}{2m_e \omega_{0j}} \operatorname{Im} F_2(\omega, \omega_{0j}, \Gamma_j), \qquad (15)$$

использовавшаяся для результатов подгонки.

Таблица 2. Зависимость параметра ковалентности от концентрации висмута в иттриевом ФГ

Х	γ
0.25	0.53
0.8	0.47
1.0	0.42

Таким путем были получены значения (табл. 1) f_j , а также ω_{0j} , Γ_f (для последних в силу малоструктурного характера спектра (14) значения определялись в основном из подгонки недиагональной части ε^1 , но согласованно с (14)).

В рамках теории переходов с переносом заряда с параметрами типа частот переходов ω_{0j} , полуширин линий Г_і и т.п. (табл. 1), характерными для иттриевого ФГ, нами с помощью пакета программ Mathematica-4 проведена модельная обработка экспериментальных [2] спектров *z*-компоненты вектора гирации $g_z(\omega)$ в Bi-замещенных $\Phi\Gamma$ типа $Y_{3-x}Bi_xFe_5O_{12}$ (x = 0.25, 0.8, 1.0) с учетом как разрешенных, так и ряда запрещенных переходов с переносом заряда в октаи тетракомплексах. Принимались во внимание вклады механизма расщепления состояний (с дисперсионной зависимостью $\propto \frac{\partial F_1}{\partial \omega_0}$) и вклады механизма их смешивания $(\propto F_1)$. На рисунке представлены модельная подгоночная зависимость Re $g_{z}(\omega)$ и вычисленная с теми же значениями параметров зависимость $\text{Im} g_{7}(\omega)$ в Y_{2.2}Bi_{0.8}Fe₅O₁₂ (тонкие линии), а также экспериментальные данные [2] (жирные линии).⁵ Достаточно хорошее согласие модельного расчета с экспериментом в широком спектральном диапазоне (2-5 eV) свидетельствует в пользу представления о доминирующей роли вклада переходов с переносом заряда в циркулярной магнитооптике ФГ.

Результаты моделирования позволяют оценить величину $\Delta \xi_{2p}$ при разных концентрациях *x* висмута в гранате $Y_{3-x}Bi_xFe_5O_{12}$. Заметим, что модельные "макроскопически наблюдаемые" значения $\Delta \xi_{2p}^{mod}$ вследствие их зависимости от конентрации и распределения по кристаллической решкетке ионов Bi^{3+} отличаются от "микроскопической" $\Delta \xi_{2p}$ (7).

Предполагая, что висмут однородно распределяется по объему кристалла, а ион Bi^{3+} с равной вероятностью (определяемой относительной концентрацией $\xi = x/3$) занимает каждую из двух с-позиций, ближайших к некоторому выделенному иону O^{2-} , получим

$$\Delta\xi_{2p}^{\text{mod}} = \Delta\xi_{2p} [P_2(1) + 2P_2(2)],$$

где $P_n(k)$ — вероятность заполнения k позиций среди n имеющихся. Применяя биноминальный закон распреде-

ления вероятностей $P_n(k) = C_n^k \xi^k (1-\xi)^{n-k} (C_n^k$ — число сочетаний), с учетом восьми связей $\text{Bi}^{3+}-\text{O}^{2-}$ для каждого иона Bi^{3+} окончательно имеем

$$\Delta \xi_{2p}^{\text{mod}}(x) = \frac{16}{3} x \Delta \xi_{2p}.$$
 (16)

Таким образом, в простейшей модели, не предполагающей избирательного упрорядочения примесных ионов ${\rm Bi}^{3+}$ по кристаллической решетке, изменение $\Delta \xi_{2p}^{{\rm e}\,{\rm mod}}$, а следовательно и циркулярной магнитооптики $\Phi\Gamma$, оказывается линейным по концентрации висмута.

Используя (7), (11), (16), а также данные табл. 1, можно оценить величину параметров ковалентности $\gamma_{\sigma}, \gamma_{\pi}$. Например, для низшего по энергии перехода с переносом заряда в тетракомплексе ($\hbar\omega_0 = 3.4 \text{ eV}$) при x = 0.25 на основании (11) получаем в результате моделирования "подгоночное" значение константы спинорбитальной связи $\lambda^{\text{mod}} = -380 \text{ cm}^{-1} = -0.06\Delta\xi_{2p}^{\text{mod}}$ (табл. 1), откуда согласно (16), $\Delta\xi_{2p} \approx 4700 \text{ cm}^{-1}$. В грубом приближении равенства параметров ковалентности $|\gamma_{\sigma}| = |\gamma_{\pi}| \equiv \gamma$ можно, используя (7), легко оценить эти параметры. Для разных концентраций висмута получаем следующие разумные значения (табл. 2).

Отметим уменьшение γ при возрастании доли висмута в ФГ. Одной из причин этого уменьшения может быть изменение геометрии связей Ві–О за счет искажения решетки висмутом. Учет этих искажений, а также возможной неоднородности распределения висмута по объему образца приведет к отклонениям от линейности в концентрационной зависимости циркулярной магнитооптики ФГ.

Роль тензорных вкладов в магнитооптике ферритов-гранатов

Согласно формуле Крамерса–Гейзенберга в неприводимой тензорной форме [10], вклад в компоненты α_p^1 антисимметричной части тензора поляризуемости $\hat{\alpha}$ комплекса (FeO₆)^{9–} за счет разрешенных электродипольных переходов типа ${}^{6}A_{1g} - {}^{6}T_{1u}$ (${}^{6}S - {}^{6}P$) с переносом заряда вычисляется как

$$\alpha_{p}^{1} = \frac{1}{\hbar} \sum_{j=^{6}T_{1u}} \sum_{r_{1}, r_{2}} \sum_{m_{1}, m_{2}} \begin{bmatrix} 1 & 1 & 1 \\ r_{1} & r_{2} & p \end{bmatrix} \langle 00|d_{r_{1}}|1m_{1}\rangle$$
$$\times \langle 1m_{1}|V_{so}|1m_{2}\rangle\langle 1m_{2}|d_{r_{2}}|00\rangle \frac{\partial F_{1}(\omega, \omega_{0j}, \Gamma_{j})}{\partial \omega_{0}}, \quad (17)$$

где [...] — коэффициент Клебша-Гордана, d_r — компонента электрического дипольного момента. После

⁵ Одинаковое качество приближения Re g, Im g невозможно хотя бы потому, что сами зависимости Re $g(\omega)$, Im $g(\omega)$ являются результатом обработки экспериментальных данных в рамках некоторого приближенного вычислительного алгоритма.

$$\begin{aligned} \alpha_{p}^{1} &= \frac{\sqrt{2}}{\hbar} \sum_{\substack{k_{1},k_{2} \\ k,q \\ \alpha}} (-1)^{-p+k+k_{1}} (2k+1) \gamma_{k_{1}} \gamma_{k_{2}} \\ &\times C_{-q}^{k}(\mathbf{R}) s_{-\alpha} \big| \langle 0 ||d| |1 \rangle \big|^{2} \begin{pmatrix} k_{1} & k_{2} & k \\ 0 & 0 & 0 \end{pmatrix} \\ &\times \frac{\partial F_{1}}{\partial \omega_{0}} \xi_{6p} \begin{pmatrix} k & 1 & 1 \\ q & p & \alpha \end{pmatrix} \begin{cases} k & 1 & 1 \\ k_{2} & 1 & 1 \\ k_{1} & 1 & 1 \end{cases} \end{aligned}$$
(18)

где $\langle 0||d||1\rangle$ — привденыый матричный элемент электрического дипольного момента **d**, $\{ \cdots \} = 9j$ -символ [6].

Заметим, что другой вариант связывания моментов приводит к (8).

Из физических соображений индекс k четен, так как в противном случае пространственная инверсия $\mathbf{R} \rightarrow -\mathbf{R}$ меняла бы знак $C^k(\mathbf{R})$, а следовательно, и всего выражения (18). Правило треугольника для 9*j*-символов и требование четности суммы элементов верхней строки в $\binom{k_1k_2k_3}{0\ 0\ 0}$ допускают тогда лишь значения k = 0 и 2, причем значение k = 0 соответствует изотропной скалярной связи между антисимметричной частью тензора поляризуемости $\hat{\alpha}$ и средним спином $\langle \hat{\mathbf{s}} \rangle$ (ср. с (6)); для получения же анизотропного тензорного вклада в α^1 (ср. с (8)) следует взять k = 2.

Соответствующие формулы имеют вид: изотропный вклад

$$\boldsymbol{\alpha} = \frac{\sqrt{2}}{\hbar} \left[-\frac{1}{9} \gamma_0^2 + \frac{1}{90} \gamma_2^2 \right] \left| \langle 0 || d || 1 \rangle \right|^2 \frac{\partial F_1}{\partial \omega_0} \xi_{6p} \langle \mathbf{s} \rangle$$
$$= -\frac{\sqrt{2}}{9\hbar} \gamma_\pi (\gamma_\pi + 2\gamma_\sigma) \left| \langle 0 || d || 1 \rangle \right|^2 \frac{\partial F_1}{\partial \omega_0} \xi_{6p} \langle \mathbf{s} \rangle; \quad (19)$$

анизотропный вклад

$$\begin{aligned} \alpha_{p}^{1} &= \frac{5\sqrt{2}}{\hbar} \frac{\partial F_{1}}{\partial \omega_{0}} \xi_{6p} |\langle 0||d||1\rangle |^{2} \\ &\times \sum_{k_{1},k_{2}=0,1,2} \sum_{q=-2}^{2} \sum_{\alpha=-1}^{1} (-1)^{-p+k_{1}} \begin{pmatrix} 2 & 1 & 1 \\ q & p & \alpha \end{pmatrix} \begin{cases} 2 & 1 & 1 \\ k_{2} & 1 & 1 \\ k_{1} & 1 & 1 \end{cases} \gamma_{k_{1}} \\ &\times \gamma_{k_{2}} C_{-q}^{2}(\mathbf{R}) s_{-\alpha} \begin{pmatrix} k_{1} & k_{2} & 2 \\ 0 & 0 & 0 \end{pmatrix}; \end{aligned}$$

$$(20)$$

он же в декартовой форме

$$\boldsymbol{\alpha} = \frac{\sqrt{2}}{6\hbar} \gamma_{\pi} (\gamma_{\sigma} - \gamma_{\pi}) \big| \langle 0 || d || 1 \rangle \big|^2 \frac{\partial F_1}{\partial \omega_0} \xi_{6p} \hat{\Lambda} \langle \mathbf{s} \rangle, \qquad (21)$$

причем тензор Λ имеет вид

$$\begin{pmatrix} \sin^2\theta\cos 2\varphi - \frac{1}{3}(3\cos^2\theta - 1) & \sin^2\theta\sin 2\varphi & \sin 2\theta\cos\varphi \\ \sin^2\theta\sin 2\varphi & -\sin^2\theta\cos 2\varphi - \frac{1}{3}(3\cos^2\theta - 1) & \sin 2\theta\sin\varphi \\ \sin 2\theta\cos\varphi & \sin 2\theta\sin\varphi & \frac{2}{3}(3\cos^2\theta - 1) \end{pmatrix}$$

 θ, φ суть полярные углы вектора **R** — орта направления связи $O^{2-}-Bi^{3+}$.

На основании формулы (21) нами проведены расчеты вектора гирации $\mathbf{g} = 4\pi N L_{\boldsymbol{\alpha}}$ и удельного фарадеевского вращения $\theta_F = \frac{\omega}{2n_0c} \operatorname{Re} (\mathbf{g} \cdot \mathbf{n})$ (\mathbf{n} — орт направления распространения света, n_0 — средний показатель преломления двух циркулярно поляризованных волн). Для расчета был взят кластер в виде куба из восьми элементарных ячеек $\Phi\Gamma$ с положениями атомов по [12] и параметрами идеального $Y_3\operatorname{Fe}_5O_{12}$ [13] (параметры элементарной ячейки и положения атомов полагались не зависящими от концентрации висмута).

Для каждой с-позиции определялись ближайшие ионы кислорода, соответствующие вклады в α по (21) суммировались. Рассматривались различные варианты заполнения с-позиций ионами Bi³⁺.

1) Все с-позиции в элементарной ячейке граната заняты ионами висмута.

2) Заняты только позиции № 1–3 и 10–12 и связанные с ними трансляциями $\{\frac{1}{2}, \frac{1}{2}, \frac{1}{2}\}$; нумерация позиций здесь и далее дается по [12].

3) Заняты только позиции № 4–9 и связанные с ними трансляциями $\{\frac{1}{2}, \frac{1}{2}, \frac{1}{2}\}$.

Случаи 2 и 3 относятся к (111)-ориентированной пленке ФГ, в которой возникают два равномощных множества кристаллографически неэквивалентных с-позиций.

Расчеты показывают, что вклад в α ионов Bi³⁺, замещающих позиции № 4–9 и эквивалентные им, примерно в 8 раз превышает вклад ионов висмута в позициях № 1–3 и 10–12 и эквивалентных им (сумма этих вкладов, разумеется, совпадает с величиной, получаемой в случае 1).

Удельное фарадеевское вращение θ_F , вычисленное на основании полученных данных, при значениях параметров, характерных для электродипольных переходов с переносом заряда в $\Phi\Gamma$, на длине волны $0.6\,\mu$ m достигает величины порядка $6 \cdot 10^3 \text{ deg/cm}$ для вклада "анизотропного" механизма. "Изотропный" механизм (19) обеспечивает величину $\theta_F \approx 3 \cdot 10^5 \text{ deg/cm}$, которая более чем на порядок превосходит вклад обычного спинорбитального взаимодействия (11).

В заключение заметим существенное приближение, использованное в работе. Оно состоит в пренебрежении электронно-колебательной природой состояний и переходов с переносом заряда и различных взаимодействий в состояниях с переносом заряда, в учете только электронной составляющей волновых функций. Реально достигавшаяся точность модельных расчетов не исключает возможности наличия небольшой (~ 10%) вибронной редкуции матричных элементов орбитальных операторов, являющейся проявлением электронноколебательных взаимодействий и выражающейся в возможном (потенциально весьма значительном) уменьшении абсолютной величины чисто электронных значений параметров типа g_L, λ. При этом вибронная редукция наведенного висмутом вклада в константы спин-орбитальной связи для состояний с переносом

заряда может по сравнению с Fe 3*d*-вкладом носить совсем иной характер. Последовательный учет электронно-колебательных взаимодействий в состояниях с переносом заряда представляет собой сложную задачу из-за наличия в электронных конфигурациях таких состояний двух незаполненных оболочек: преимущественно лигандной 2*p*-оболочки и Fe 3*d*-оболочки.

Проведенный анализ позволяет подвести следующие итоги.

1) Ионы Bi^{3+} индуцируют за счет вклада лигандных орбиталей комплексов (FeO₆)⁹⁻, (FeO₄)⁵⁻ эффективное анизотропное спин-орбитальное взаимодействие в состояниях с переносом заряда. Параметры этого эффективного взаимодействия зависят от геометрии связи Fe³⁺-O²⁻-Bi³⁺, от типа состояния с переносом заряда, от типа комплекса (октаэдр, тетраэдр).

2) Ві-индуцированные вклады в циркулярную магнитооптику особенно заметны в том случае, когда 3d-вклад отсутствует (например, в случае комплексов на основе ионов Cu²⁺).

 Примесь висмута практически не влияет на полевой вклад в циркулярную магнитооптику.

 Примесь висмута сильно увеличивает анизотропное магнитное двупреломление "спин-орбитальной" природы.

5) Модельная обработка экспериментальных спектральных зависимостей циркулярной магнитооптики Ві-содержащих ФГ позволила получить физически разумные оценки параметров представленной теоретической модели.

6) В рамках модели проведены теоретические оценки Ві-индуцированных вкладов в магнитооптику ΦΓ. Вклад анизотропного тензорного механизма сравним по величине с "обычным" ферромагнитным вкладом в эффект Фарадея и сильно зависит от особенностей пространственного распределения висмута в решетке ΦΓ.

Приложение

Формула (17) преобразуется к виду

$$\frac{1}{\hbar} \sum_{j=^{6}T_{1u}} \sum_{r_{1},r_{2}} \sum_{m_{1},m_{2}} (-1)^{-p} \sqrt{3} \begin{pmatrix} 1 & 1 & 1 \\ r_{1} & r_{2} & -p \end{pmatrix} \\
\times (-1)^{1-m_{1}} \frac{1}{\sqrt{3}} \delta_{r_{1},-m_{1}} \langle 1m_{1} | V_{so} | 1m_{2} \rangle (-1)^{1-m_{2}} \\
\times (-1)^{1-r_{2}} \frac{1}{\sqrt{3}} \delta_{r_{2},m_{2}} |\langle 0||d||1\rangle |^{2} \frac{\partial F_{1}(\omega, \omega_{0j}, \Gamma_{j})}{\partial \omega_{0}} \\
= \frac{1}{\hbar\sqrt{3}} \sum_{j=^{6}T_{1u}} \sum_{m_{1},m_{2}} (-1)^{-p-m_{1}-m_{2}+1-m_{2}} \begin{pmatrix} 1 & 1 & 1 \\ -m_{1} & m_{2} & -p \end{pmatrix} \\
\times \langle 1m_{1} | V_{so} | 1m_{2} \rangle |\langle 0||d||1\rangle |^{2} \frac{\partial F_{1}(\omega, \omega_{0j}, \Gamma_{j})}{\partial \omega_{0}}. \quad (22)$$

Матричный элемент спин-орбитального взаимодействия $\langle 1m_1|V_{so}|1m_2\rangle$ включает в себя слагаемое (см. (2))

$$\left\langle \sum_{\substack{k_1,q_1 \\ m_1}} (-1)^{1-m_1} \begin{pmatrix} 1 & k_1 & 1 \\ -m_1 & q_1 & m_1' \end{pmatrix} \times \gamma_{k_1} C_{q_1}^{k_1}(\mathbf{R}) \varphi_{6pm_1'} \middle| \xi_{6p} \sum_{\alpha} (-1)^{\alpha} l_{\alpha} s_{-\alpha} \middle| \\ \times \sum_{\substack{k_2,q_2 \\ m_2'}} (-1)^{1-m_2} \begin{pmatrix} 1 & k_2 & 1 \\ -m_2 & q_2 & m_2' \end{pmatrix} \gamma_{k_2} C_{q_2}^{k_2}(\mathbf{R}) \varphi_{6pm_2'} \right\rangle,$$
(23)

после прменения теоремы Вигнера–Эккарта и ряда преобразований принимающее вид

$$\sum_{\substack{k_1,k_2\\q_1,q_2}} \sum_{\substack{m'_1,m'_2\\\alpha}} (-1)^{-m_1-m_2+\alpha} \begin{pmatrix} 1 & k_1 & 1\\ -m_1 & q_1 & m'_1 \end{pmatrix} \times \begin{pmatrix} 1 & k_2 & 1\\ -m_2 & q_2 & m'_2 \end{pmatrix} \gamma_{k_1} \gamma_{k_2} (-1)^{q_1} C^{k_1}_{-q_1}(\mathbf{R}) C^{k_2}_{q_2}(\mathbf{R}) \times (-1)^{1-m'_1} \begin{pmatrix} 1 & 1 & 1\\ -m'_1 & \alpha & m'_2 \end{pmatrix} \sqrt{6} s_{-\alpha} \xi_{6p},$$
(24)

причем произведение сферических функций $C_{-q_1}^{k_1}(\mathbf{R}) \times C_{q_2}^{k_2}(\mathbf{R})$ преобразуется к выражению (8)

$$\sum_{kq} (2k+1) \begin{pmatrix} k_1 & k_2 & k \\ -q_1 & q_2 & q \end{pmatrix} \begin{pmatrix} k_1 & k_2 & k \\ 0 & 0 & 0 \end{pmatrix} C_q^{k*}(\mathbf{R}).$$
(25)

С учетом (23)–(25) формула для α_p^1 может быть записана в виде

$$\begin{aligned} \alpha_{p}^{1} &= \frac{\sqrt{2}}{\hbar} \sum_{\substack{k_{1},k_{2} \\ k,q \\ \alpha}} (-1)^{-p+k+k_{1}+1} (2k+1) \gamma_{k_{1}} \gamma_{k_{2}} \\ &\times C_{-q}^{k}(\mathbf{R}) s_{-\alpha} |\langle 0||d||1 \rangle |^{2} \begin{pmatrix} k_{1} & k_{2} & k \\ 0 & 0 & 0 \end{pmatrix} \frac{\partial F_{1}}{\partial \omega_{0}} \xi_{6p} \\ &\times \sum_{m_{1},m_{2}} \sum_{q_{1},q_{2}} \sum_{m_{1}',m_{2}'} (-1)^{k_{1}+k_{2}+q_{2}-q_{1}+m_{1}-m_{2}+m_{2}'-m_{1}'} \\ &\times \begin{pmatrix} k_{2} & k & k_{1} \\ -q_{2} & -q & q_{1} \end{pmatrix} \begin{pmatrix} k_{1} & 1 & 1 \\ -q_{1} & -m_{1}' & m_{1} \end{pmatrix} \\ &\times \begin{pmatrix} 1 & 1 & 1 \\ -m_{1} & -p & m_{2} \end{pmatrix} \begin{pmatrix} 1 & k_{2} & 1 \\ -m_{2} & q_{2} & m_{2}' \end{pmatrix} \begin{pmatrix} 1 & 1 & 1 \\ -m_{2}' & -\alpha & m_{1}' \end{pmatrix} (26) \end{aligned}$$

(для краткости записи учтен вклад только одного перехода с переносом заряда).

Тройная сумма по проекциям моментов в (26) приводит, согласно [6] (С. 388), к формуле (18).

Список литературы

- [1] G.B. Scott, D.E. Lacklison, J.L. Page. Phys. Rev. **B10**, *3*, 971 (1974).
- [2] S. Wittekoek, T.J.A. Popma, J.M. Robertson, P.F. Bongers. Phys. Rev. B12, 7, 2777 (1975).
- [3] K. Shinagawa. Faraday and Kerr Effects in Ferromagnets // Magnetooptics / Eds S.Sugano and N.Kojima. Springer-Verlag, Berlin–Heidelberg–N.Y. (1999). P. 137–177.
- [4] S. Wittekoek, D.E. Lacklison. Phys. Rev. Lett. 28, 12, 740 (1972).
- [5] A.S. Moskvin, A.V. Zenkov. Solid. State Commun. 80, 9, 739 (1991).
- [6] Д.А. Варшалович, А.Н. Москалёв, В.К. Херсонский. Квантовая теория углового момента. Наука, Л. (1975). 440 с.
- [7] J.J. Krebs, W.G. Maisch. Phys. Rev. B4, 3, 757 (1971).
- [8] А.В. Зенков, А.С. Москвин. ФТТ 32, 12, 3674 (1990).
- [9] A.S. Moskvin, A.V. Zenkov, E.I. Yuryeva, V.A. Gubanov. Physica B168, 1, 187 (1991).
- [10] Е.А. Ганьшина, А.В. Зенков, С.В. Копцик, Г.С. Кринчик, А.С. Москвин, А.Ю. Трифонов. Деп. в ВИНИТИ 12.02.90, рег. № 788-В90. Свердловск (1990). 92 с.
- [11] А.В. Зенков. Автореф. канд. дис. Свердловск (1990). 173 с.
- [12] International Tables for X-Ray Crystallography. The Kynoch Press, Birmingham (1952). Vol. 1.
- [13] Б.В. Милль. Магнитные и кристаллохимические исследования ферритов. Изд-во МГУ, М. (1971). С. 56.