Электрофизические свойства и электронная структура теллурида сурьмы, легированного оловом

© И.В. Гасенкова, М.К. Житинская*, С.А. Немов*, Л.Д. Иванова**

Институт электроники Национальной академии наук Белоруссии, Минск, Белоруссия * Санкт-Петербургский государственный технический университет, 195251 Санкт-Петербург, Россия ** Институт металлургии и материаловедения им. А.А. Байкова Российской академии наук, 117911 Москва, Россия (Поступила в Редакцию 3 октября 2001 г.

В окончательной редакции 24 декабря 2001 г.)

Исследовано влияние атомов Sn на электрофизические свойства и рентгеновские фотоэлектронные (РФЭ) спектры монокристаллов Sb₂Te₃, выращенных методом Чохральского.

Показано, что характер температурных зависимостей кинетических коэффициентов существенным образом определен строением валентной зоны, состоящей из двух валентных подзон. Сделанные оценки значений эффективных масс плотности состояний дырок и зазора между экстремумами валентной зоны в Sb₂Te₃: Sn согласуются с данными для нелегированного оловом Sb₂Te₃.

В РФЭ спектрах монокристаллов Sb₂Te₃: Sn не наблюдается значительных сдвигов остовных уровней и перераспределения электронной плотности в валентной зоне.

Влияние атомов олова на электрические свойства Sb_2Te_3 исследовалось в ряде работ [1-3]. Установлено [1,2], что Sn обладает сильным акцепторным действием в этом соединении. В [3] были обнаружены необычные свойства олова в Sb_2Te_3 , а именно отрицательное магнетосопротивление, аномалии в температурной зависимости коэффициента Холла и его зависимость от приложенного магнитного поля. Связаны ли эти аномалии с особенностями в энергетическом спектре, в работе не сообщалось.

В статье [4] мы показали, что комплексное изучение кинетических коэффициентов: электропроводности, Холла, Зеебека и Нернста–Эттингсгаузена, а также рентгеновских фотоэлектронных спектров (РФЭ) позволяет сделать достаточно обоснованный вывод о наличии или отсутствии особенностей в энергетическом спектре соединения.

В настоящей работе представлены результаты изучения влияния Sn на явления переноса и на спектры $P\Phi \Im$ монокристаллов Sb₂Te₃.

1. Образцы

Монокристаллы Sb₂Te₃ были выращены методом Чохральского с использованием плавающего тигля для подпитки растущего кристалла жидким расплавом по технологии, разработанной в Институте металлургии и материаловедения им. А.А. Байкова [5]. Этот метод позволяет получать кристаллы высокого качества и достаточно больших размеров в заданных кристаллографических направлениях. Концентрационная однородность образцов оценивалась по локальным значениям коэффициента термоэдс на поверхности монокристаллов. Разброс значений термоэдс не превышал 2-3%. Эксперимент проводился на образцах двух типов: стехиометрического состава и легированных гетеровалентной примесью Sn. Кристаллы получали из компонентов: Te, Sb, Sn, содержащих 99.9999 wt.% основного вещества. Содержание примесей оценивалось с помощью химического анализа. Все выращенные кристаллы обладали дырочной проводимостью.

2. Эксперимент и обсуждение результатов

2.1. Кинетические эффекты. На каждом из исследованных образцов Sb₂Te₃ были измерены следующие независимые компоненты тензоров переноса: Зеебека S_{11} и S_{33} , Холла R_{123} и R_{321} , Нернста–Эттингсгаузена Q_{123} и электропроводности σ_{11} и σ_{33} . Измерения проводились в интервале температур 77–350 К. Концентрация носителей заряда, как и ранее, определялась из большей компоненты тензора Холла R_{321} при температуре 77 К по формуле

$$p = (eR_{321})^{-1}. (1)$$

Согласно нашим данным, примесь олова проявляет сильное акцепторное действие в Sb₂Te₃, что согласуется с результатами работ [1,2].

Наблюдаемые картины температурных зависимостей кинетических коэффициентов в Sb_2Te_3 : Sn качественно подобны результатам, полученным для нелегированного Sb_2Te_3 . Поэтому экспериментальные данные для кристаллов с оловом могут быть интерпретированы так же как и для стехиометрического Sb_2Te_3 , т.е. при обсуждении результатов необходимо учесть сложное строение валентной зоны и участие в явлениях переноса по крайней мере двух сортов носителей заряда с заметно отличающимися подвижностями.

Введение примеси олова дало возможность продвинуть уровень Ферми в глубь валентной зоны по энергетической шкале на величину $\Delta \varepsilon_F \sim 0.1 \text{ eV}$ по сравнению с нелегированными Sn образцами. При этом основные закономерности в кинетических явлениях остались прежними. На концентрационных зависимостях холловской подвижности и коэффициента Зеебека не наблюдалось ярких эффектов, характерных для межзонного или резонансного рассеяния, однако в связи с увеличением концентрации дырок имеются некоторые количественные отличия.

Полученные нами данные по комплексу кинетических коэффициентов позволили сделать оценку величины эффективной массы плотности состояний на уровне Ферми $m_d^*(\varepsilon_F)$ и параметра рассеяния r (r — показатель степени в зависимости времени релаксации от энергии $\tau(\varepsilon) \sim \varepsilon^{r-1/2}$). Оценка $m_d^*(\varepsilon_F)$ и r проводилась по формулам для однозонной модели с использованием совокупности четырех измеренных кинетических коэффициентов

$$m_d^*(\varepsilon_F) = A(S_{11} - Q_{123}/R_{123}\sigma_{11}), \qquad (2)$$

$$Q_{123}/R_{123}\sigma_{11}S_{11} = (r - 1/2)/(r + 1),$$
 (3)

где $A = (3/\pi)^{2/3} h^2 / T p^{2/3} e/k_0$, σ_{11} , S_{11} — электропроводность и коэффициент Зеебека в направлении, перпендикулярном тригональной оси, Q_{123} , R_{123} — коэффициенты Нернста–Эттингсгаузена и Холла, измеренные в магнитном поле, ориентированном вдоль тригональной оси c_3 . Эти формулы справедливы для вырожденной статистики носителей заряда и их использование в данном случае оправдано тем, что образцы имели высокую концентрацию дырок. По данным измерений коэффициента Холла она составляла $(1.2-4.0)10^{20}$ cm⁻³.

Рассчитанные по однозонной модели значения m_d^* изменяются от величины (0.8-0.9) m_0 (m_0 — масса свободного электрона), характерной для Sb₂Te₃ $(p = 1.2 \cdot 10^{20} \,\mathrm{cm}^{-3}),$ до $0.6m_0$ для $Sb_2Te_3:Sn$ $(p = 3.7 \cdot 10^{20} \,\mathrm{cm}^{-3}).$ В этой модели найденные из (2) величины m_d^* имеют промежуточные значения между эффективными массами легких и тяжелых дырок. Это уменьшение можно объяснить в рамках двухзонной модели продвижением уровня Ферми ε_F в глубь дополнительного экстремума валентной зоны возможным проявлением влияния межзонного И рассеяния или непараболичности зон. Параметр рассеяния r, рассчитанный по формуле (3), для образцов с оловом имел отрицательное значение. Это также может указывать и на влияние межзонного рассеяния, и на непараболичность зоны. В пользу существования дополнительного экстремума в валентной зоне Sb₂Te₃ с меньшей эффективной массой дырок свидетельствуют не только наши данные, но и результаты работ [6-9].

Из имеющихся данных по анизотропии коэффициента Зеебека мы смогли оценить величину энергетического зазора между основным и дополнительным экстремумами $\Delta \varepsilon_v$ аналогично тому, как это было сделано в нашей

работе [6]. В области температур, когда вклад дырок второй зоны p_2 в проводимость только начинается, т.е. когда $\nu = p_2/p_0 \ll 1$, формула для анизотропии коэффициента Зеебека принимает вид, экспоненциально зависящий от величины энергетического зазора между двумя валентными подзонами,

$$\Delta S \sim \nu \sim \exp(-\Delta \varepsilon_v / k_0 T).$$

 $p_0 = p_1 + p_2$ — полная концентрация дырок.

Найденная величина энергетического зазора $\Delta \varepsilon_v$ в Sb₂Te₃: Sn практически не отличалась от $\Delta \varepsilon_v$, определенного для Sb₂Te₃, и составила также $\Delta \varepsilon_v \sim 0.1$ eV. Таким образом, оценки параметров энергетического спектра из экспериментальных данных по кинетическим коэффициентам свидетельствуют об отсутствии (в отличие от Bi₂Te₃) заметного влияния примеси Sn на энергетический спектр Sb₂Te₃.

2.2. Электронная структура по данным рентгеновских фотоэлектронных спектров. Вывод об отсутствии резонансных состояний Sn, сделанный на основе данных по кинетическим коэффициентам, нуждается в независимой проверке. В связи с этим для изучения особенностей в распределении полной плотности электронных состояний атомов в валентной зоне нелегированного и легированного оловом Sb₂Te₃ были получены рентгеновские фотоэлектронные спектры валентной зоны на электронном спектрометре ЭС 2401 с использованием $Mg K_{\alpha}$ -излучения. Распределение валентных электронов в легированном оловом Sb₂Te₃ практически такое же, как и в нелегированном теллуриде сурьмы. В формирование потолка валентной зоны Sb₂Te₃ основной вклад вносят 5p_{3/2}-состояния Те и 5*p*-состояния Sb, они локализованы при энергии 1.7 eV. $(Te5p_{1/2} + Sb5p)$ -состояния сосредоточены при энергии 3.4 eV, имеют наибольшую интенсивность (главный максимум) и составляют с указанным выше максимумом полосу шириной порядка 5 eV. При введении атомов олова в образовании потолка валентной зоны участвуют и 5*p*-состояния Sn. Однако, это не приводит ни к сдвигу состояний относительно уровня Ферми (положение максимумов спектра Sb₂Te₃:Sn соответствует той же энергии, что и в Sb₂Te₃), ни к изменению их плотности.

Спектры остовных уровней в Sb₂Te₃ представлены узкими пиками с энергией связи (E_b) , равной 538.6 eV $3d_{3/2}$ (ширина пика для Sb на половине высоты (ШПВ) = 1.3 eV), $E_b = 529.4 \text{ eV}$ для Sb $3d_{5/2}$ (ШПВ = 2.1 eV), $E_b = 573.0$ eV для Te $3d_{5/2}$ $(\Pi\Pi\Pi B = 1.5 \,\mathrm{eV}),$ $E_b = 583.3 \,\mathrm{eV}$ для Te $3d_{3/2}$ (ШПВ = 1.4 eV). Спектры Te 4d с ШПВ = 3.2 eV были разложены на два максимума: один соответствовал Te $4d_{5/2}$ с $E_b = 40.3$ eV, другой — Te $4d_{3/2}$ с $E_b = 41.7 \,\mathrm{eV}$. Аналогичное разложение спектров Sb 4d (ШПВ = 2.6 eV) дало значение максимумов Sb $4d_{5/2}$ и Sb $4d_{3/2}$, равное 33.1 и 34.2 eV соответственно. Данные по энергиям связи приведены относительно уровня С 1s = 284.6 eV. Заметных химических сдвигов остовных

уровней, изменения формы спектров и их уширения при введении примеси олова не наблюдалось. Энергии связи в $Sb_2Te_3:Sn$ указанных выше уровней остались неизменными с учетом воспроизводимости значений энергии связи 0.1-0.2 eV.

2.3. Анизотропия коэффициентов Зеебека и Холла. Как уже указывалось выше, введение Sn позволило продвинуть уровень Ферми ε_F в глубь валентной зоны, где влияние дополнительного экстремума на кинетические коэффициенты должно было проявиться более четко. Экспериментально наблюдалось изменение анизотропии коэффициента Зеебека (рис. 1) и изменение соотношения между компонентами тензора Холла (рис. 2). В рамках модели с дополнительным, более легким экстремумом и с учетом смешанного механизма

Рис. 1. a — температурные зависимости компонент коэффициента Зеебека S_{11} (I-3) и S_{33} (I'-3') для образцов Sb₂Te₃ с различной исходной концентрацией дырок p, cm⁻³: 1.21 \cdot 10²⁰ (I, I'), 2.58 \cdot 10²⁰ (2, 2'), 3.68 \cdot 10²⁰ (3, 3'); b — температурные зависимости анизотропии коэффициента Зеебека $\Delta S = S_{33} - S_{11}$. I-3 — экспериментальные данные, I'-3' — рассчитанные в предположении двухзонной модели, I'' — результаты расчета по однозонной модели с учетом анизотропии рассеяния и непараболичности зоны (из работы [10]). Использованная двухзонная модель имела следующие параметры: $\Delta \varepsilon_v \sim 0.1$ eV, $m_{d1}^* = 0.3m_0$, $m_{d2}^* = 0.9m_0$, $b_a = 0.9$, $b_c = 0.5$, $A_a^{(2)} = 0.83$, $A_c^{(2)} = 0.76$, $\chi_c = 1.1$, $\chi_a = 1.2$.

Рис. 2. Температурные зависимости компонент коэффициента Холла R_{123} ($\mathbf{j} \perp \mathbf{c} \parallel \mathbf{B}$) (1, 1') и R_{321} ($\mathbf{j} \perp \mathbf{c} \perp \mathbf{B}$) (2, 2') для двух образцов Sb₂Te₃ с концентрацией дырок p cm⁻³: $1.21 \cdot 10^{20}$ (a) и 2.58 $\cdot 10^{20}$ (b); 1, 2 — эсперимент, 1', 2' — теоретические значения, рассчитанные по двухзонной модели.

рассеяния находят объяснение наблюдаемое изменение как абсолютной, так и относительной величины анизотропии термоэдс с ростом температуры и концентрации дырок и отсутствие пересечения компонент тензора Холла R_{123} и R_{321} в образце с самой высокой концентрацией дырок. Расчеты проводились по формулам (14 P) и (17 P), приведенным в пункте 3.2 нашей работы [6],

$$\begin{split} \Delta S &= S_c - S_a = [S^{(1)} - S^{(2)}] \nu (1 - \nu) \\ &\times (b_c - b_a) / \left\{ [(1 - \nu)b_c + \nu][(1 - \nu)b_a + \nu] \right\}, \\ R_c &= [A_c^{(1)}/p_0][(1 - \nu)b_a^2 + \nu/\chi_c] / [(1 - \nu)b_a + \nu]^2, \\ R_a &= [A_a^{(1)}/p_0][(1 - \nu)b_c b_a + \nu/\chi_a] / \left\{ [(1 - \nu)b_c + \nu] \right. \\ &\times [(1 - \nu)b_a + \nu] \right\}. \end{split}$$

Здесь индекс *c* относится к тригональной оси кристалла, индекс *a* — к направлению в плоскости скола кристалла. Введены следующие обозначения: $v = p_2/p_0$ отношение концентрации дырок во второй зоне к полной концентрации в обеих зонах; если $p_0 = p_1 + p_2$, то $p_1/p_0 = 1 - v$; $b_a = u_a^{(1)}/u_a^{(2)}$; $b_c = u_c^{(1)}/u_c^{(2)}$ — отношения подвижностей дырок первой и второй зон в направлении плоскости скола и в перпендикулярном направлении соответственно; $\chi_c = A_c^{(1)}/A_c^{(2)}$; $\chi_a = A_a^{(1)}/A_a^{(2)}$; $A_c^{(1)}$, $A_c^{(2)}$, $A_a^{(1)}$, $A_a^{(2)}$ — структурные Холл-факторы для первой и второй зон при **H** \parallel **c** (индекс *c*) и **H** \perp **c** (индекс *a*).

На рис. 1 представлены экспериментальные данные по термоэдс S_{11} и S_{33} и ее абсолютной (ΔS) анизотропии, на рис. 2 — температурные зависимости компонент коэффициента Холла для образцов Sb₂Te₃, стехиометрического и легированного оловом, и их сравнение с рассчитанными значениями. Изменение анизотропии термоэдс и соотношения между компонентами тензора Холла с ростом концентрации дырок связано с продвижением уровня Ферми в дополнительный экстремум валентной зоны и с изменением его относительного влияния. Из рис. 1 видно, что и экспериментальные и теоретические зависимости демонстрируют уменьшение величины ΔS с увеличением концентрации дырок. Функция, описывающая ΔS в рамках двухзонной модели (формула 14 Р из [6]), имеет максимум при соотношении основных и дополнительных дырок *v*, равном $v^2/(1+v)^2 = b_a b_c$. Смещение значения v в сторону меньших или больших значений приводит к уменьшению ΔS , что и наблюдается на эксперименте. Наблюдаемое различие между экспериментальными и рассчитанными значениями можно объяснить тем, что в наших расчетах учитывалось лишь влияние двухзонности на анизотропию термоэдс. Если же учесть анизотропию термоэдс, связанную с влиянием смешанного механизма рассеяния, как это было сделано в [10], то согласие между теорией и экспериментом станет значительно лучше.

Кроме того, при увеличении концентрации дырок р возрастает относительная роль более изотропного акустического рассеяния. Поясним это обстоятельство более подробно. Поскольку в случае смешанного механизма рассеяния и вырожденной статистики обратная величина наблюдаемой (суммарной) подвижности равна сумме вкладов обратных парциальных подвижностей, определяемых различными механизмами рассеяния, с ростом концентрации дырок парциальный вклад примесного рассеяния остается постоянным, а вклад в подвижность, обусловленный акустическим рассеянием дырок, изменяется по закону $u_{\rm ac} \sim p^{-1/3}$. На заметную роль акустического рассеяния в исследованных образцах с Sn указывает и температурная зависимость холловской подвижности $u \sim T^{-\nu}$ с показателем степени ν , близким к 1.

Сделанные нами оценки показывают, что улучшения согласия расчетов с экспериментом можно достичь, если предположить заметную непараболичность дополнительного легкого экстремума валентной зоны с величиной параметра непараболичности $\lambda = d \ln m^*/d \ln p \approx 0.3$.

Таким образом, в работе подтверждено, что олово в теллуриде сурьмы является глубоким акцептором. Это

позволило провести исследования зонного спектра в Sb_2Te_3 : Sn при энергии Ферми ε_F , продвинутой примерно на $\sim 0.1 \text{ eV}$ в глубь валентной зоны по сравнению с нелегированным Sb_2Te_3 . При этом существенных изменений параметров энергетических зон не наблюдалось. Полученные данные по анизотропии коэффициентов Зеебека и Холла подтвердили существование легкого дополнительного экстремума в валентной зоне.

Отсутствие особенностей в электронной структуре $Sb_2Te_3:Sn$ в отличие от $Bi_2Te_3:Sn$ указывает на то, что электронная структура валентной зоны Sb_2Te_3 не изменяется при легировании атомами олова и, следовательно, не содержит резонансных состояний Sn.

Список литературы

- J. Horak, P. Lostak, M. Matyas. Phys. Stat. Sol. (b) **129**, 381 (1985).
- [2] Л.Д. Иванова, Ю.В. Гранаткина, Ю.А. Сидоров. Неорганические материалы 34, 34 (1998).
- [3] П.Н. Шеров, Е.И. Шведков, Н.В. Тимофеева. Неорганические материалы 26, 2, 275 (1990).
- [4] И.В. Гасенкова, М.К. Житинская, С.А. Немов, Т.Е. Свечникова. ФТТ 41, 11, 1969 (1999).
- [5] Л.Д. Иванова, С.А. Бровикова, Г. Зуссманн, П. Ренсхаус. Неорганические материалы 31, 6, 739 (1995).
- [6] М.К. Житинская, С.А. Немов, Л.Д. Иванова. ФТТ **44**, *1*, 41 (2002).
- [7] A. Middendorf, K. Dietrich, G. Landwehr. Solid State Commun. 13, 443 (1973).
- [8] И.А. Смирнов, А.А. Андреев, В.А. Кутасов. ФТТ 10, 6, 1782 (1968).
- [9] B. Rönlund, O. Beckman, H. Levy. J. Phys. Chem. Sol. 26, 1281 (1965).
- [10] M. Stordeur. Phys. Stat. Sol. (b) 124, 439, 799 (1984).