Упругие свойства жидких кристаллов

© А.В. Захаров, М.Н. Цветкова*, В.Г. Корсаков*

Институт проблем машиноведения Российской академии наук, 199178 Санкт-Петербург, Россия *Санкт-Петербургский государственный технологический институт, 198013 Санкт-Петербург, Россия

E-mail: korsakov@tu.spb.ru

(Поступила в Редакцию 4 июня 2001 г.)

Структурные и упругие свойства 4-*н*⁻-пентил-4'-циаонобифенила (5ЦБ) в нематической жидкой фазе исследованы в рамках статистико-механической теории и методом молекулярной динамики.

Работа выполнена при финансовой поддержке Министерства образования РФ (грант по фундаментальным исследованиям в области естественных наук № Е00-5.0-154).

Макроскопические свойства жидких кристаллов (ЖК) вообще и коэффициенты упругости (КУ) Франка в частности являются объектом интенсивных исследований как экспериментальными [1], так и теоретическими [2] методами. При этом во многих случаях жидкокристаллическими материалами служат гомологи цианобифенилов, в частности 4-*н*'-пентил-4'-цианобифенил (5ЦБ).

Мезогенные молекулы, которые образуют эти соединения, состоят из упругого полярного ядра, к которому прикреплена одна или несколько гибких углеводородных цепей. Гибкость цепей во многом определяет физические свойства ЖК. Эти молекулы обладают также достаточно большим дипольным моментом ($\sim 4.5 - 5.0 \, \text{D}$ [3]), направленным от полярного ядра к хвосту молекулы, и образуют нематическую фазу в интервале низких температур (295-305 К [1]), что делает их интересным объектом экспериментальных исследований [4-7]. Прямые экспериментальные измерения КУ Франка достаточно сложны и осуществлены с точностью ~ 20-40% [4,5]. В связи с этим теоретические исследования упругих свойств ЖК в рамках методов статистической механики [8] или численные расчеты в рамках метода молекулярной динамики (МД) [9] приобретают дополнительное значение, так как позволяют ответить на ряд фундаментальных вопросов. Например, о том, как влияют микроскопические параметры системы, определяющие характер межмолекулярного взаимодействия, на измеряемые макроскопические характеристики реальных ЖК.

В настоящей работе указанные теоретические подходы использованы для изучения упругих свойств ЖК. Статистико-механическая теория (СМТ) основана на методе условных распределений [10], который позволяет учесть не только трансляционные и ориентационные корреляции молекул, но и смешанные корреляции. В качестве модельного межмолекулярного взаимодействия был выбран дипольный потенциал Гей–Берне (GB) [11]. При этом диполи были сориентированы вдоль длинных осей молекул, образующих ЖК. В рамках СМТ в температурном интервале, соответствующем нематической фазе, были рассчитаны бинарная, прямая корреляционые функции (КФ) распределения и ориентационная функция распределения (ОФР) 5ЦБ. В рамках метода МД также была получена ОФР и бинарная КФ, причем эти вычисления проводились с использованием реалистичных атом-атомных взаимодействий как внутри, так и между молекулами 5ЦБ [12,13].

В настоящий момент существует несколько микроскопических теорий, описывающих упругие свойства нематических ЖК (НЖК) [14-17], в которых КУ Франка K_i (*i* = 1, 2, 3) выражены с помощью ОФР и прямой КФ нематика. При этом ключевая проблема — определение прямой КФ нематика — была решена с различной степенью строгости. Так, в рамках СМТ парная КФ была получена с учетом трансляционных, ориентационных и смешанных корреляций, что позволило построить в рамках классического приближения Перкуса-Йевика [18] прямую КФ. В свою очередь прямая КФ в рамках метода МД была получена численным решением уравнения Орнштейна-Цернике [18], причем парная КФ была определена также в рамках метода МД. При этом как прямая, так и парная КФ были разложены в ряды по сферическим функциям и решение уравнения Орнштейна-Цернике ограничилось лишь младшими коэффициентами разложения.

Статья построена следующим образом. В разделе 1 изложены основные положения статистико-механического описания КУ Франка для НЖК. Описание равновесной СМТ, в рамках которой были рассчитаны ОФР, парная КФ и численное решение нелинейных интегральных уравнений, необходимых для построения этих функций, а также особенности МД-вычислений бинарной КФ и параметров порядка (ПП) НЖК, образованного молекулами 5ЦБ, даны в разделе 2. Результаты вычислений КУ Франка и структурных свойств 5ЦБ, а также выводы изложены в разделе 3.

1. Коэффициенты упругости Франка

В идеальном НЖК молекулы в среднем ориентированы вдоль направления директора **n** [1,2]. В случае искажения идеальной конфигурации, обусловленного наличием ограничивающих НЖК поверхностей или термофлуктуаций, ориентация молекул начинает меняться от точки к точке и искажение поля директора $\mathbf{n}(\mathbf{r})$ может быть определено с помощью минимизации функционала плотности свободной энергии

$$f = f_0 + K_{ij}n_{i,j} + K_{ijk}n_{i,jk} + \frac{1}{2}K_{ijkl}n_{i,j}n_{k,l} + \dots, \quad (1)$$

где f_0 — функционал плотности недеформированного состояния, K_{ij} , K_{ijk} , K_{ijkl} — тензоры упругости, а $n_{i,j} = \frac{\partial n_i}{\partial x_j}$ [1,2]. В объеме НЖК $K_{ij} = 0$, а вклады $K_{ijk}n_{i,jk}$ могут быть выражены в форме [19,20]

$$f_{13} + f_{24} = k_{13} \nabla (\mathbf{n} \cdot \nabla \mathbf{n}) - (K_2 + k_{24}) \nabla [\mathbf{n} \cdot \nabla \mathbf{n} + \mathbf{n} \times \nabla \times \mathbf{n}], \quad (2)$$

в то время как другая важная часть функционала (1), пропорциональная квадрату производной директора, может быть записана в форме Франка [14,15]

$$f_F = \frac{1}{2} \left[K_1(\boldsymbol{\nabla} \mathbf{n})^2 + K_2(\mathbf{n} \times \boldsymbol{\nabla} \mathbf{n})^2 + K_3(\mathbf{n} \times \boldsymbol{\nabla} \times \mathbf{n})^2 \right], \quad (3)$$

где K_i (i = 1, 2, 3) — основные три упругие деформационные моды, соответствующие продольным, вращательным и изгибным деформациям.

Таким образом, полное выражение для свободной энергии принимает вид

$$F = \int dV f_F + \int dS(f_{13} + f_{24}) + \int dS f_S, \quad (4)$$

где $f_{13} = k_{13}\mathbf{k} \cdot (\mathbf{n} \cdot \nabla \cdot \mathbf{n}), f_{24} = -(K_2 + k_{24})\mathbf{k} \cdot [\mathbf{n} \nabla \cdot \mathbf{n} + \mathbf{n} \times (\nabla \times \mathbf{n})], \mathbf{k}$ — нормаль к поверхности *S*, ограничивающей объем *V*.

В последнее время было предложено несколько микроскопических подходов для описания коэффициентов K_i [14–17,19,21], в которых эти коэффициенты связывались со структурными характеристиками нематической фазы, такими как ОФР и прямая КФ. В наиболее общей форме выражения для КУ Франка могут быть записаны в следующем виде [14,15]:

$$K_{1} = \frac{k_{B}T\rho^{2}}{2} \int r_{x}^{2}C(\mathbf{r}, \mathbf{e}_{i}, \mathbf{e}_{j})f_{0}'(\cos\beta_{i})$$
$$\times f_{0}'(\cos\beta_{j})e_{i,x}e_{j,x}r^{2}drd\Omega d\Omega_{i}d\Omega_{j}, \qquad (5)$$

$$K_2 = \frac{k_B T \rho^2}{2} \int r_x^2 C(\mathbf{r}, \mathbf{e}_i, \mathbf{e}_j) f_0'(\cos \beta_i)$$

$$\times f_0'(\cos\beta_j)e_{i,y}e_{j,y}r^2drd\Omega d\Omega_i d\Omega_j, \qquad (6)$$

$$K_{3} = \frac{k_{B}T\rho^{2}}{2} \int r_{z}^{2}C(\mathbf{r}, \mathbf{e}_{i}, \mathbf{e}_{j})f_{0}'(\cos\beta_{i})$$
$$\times f_{0}'(\cos\beta_{j})e_{i,x}e_{j,x}r^{2}drd\Omega d\Omega_{i}d\Omega_{j}, \qquad (7)$$

где $C(\mathbf{r}, \mathbf{e}_i, \mathbf{e}_j)$ — прямая КФ; $f_0(\cos\beta_i)$ — ОФР; β_i — полярный угол, т.е. угол между осью *z*, совпадающей с

направлением директора **n**, и длинной осью молекулы *i*; $d\Omega_i = \sin \beta_i d\beta_i d\varphi_i; d\Omega = \sin \beta_{ij} d\beta_{ij} d\varphi_{ij}; \beta_{ij}$ и φ_{ij} полярный и азимутальный углы единичного вектора $\mathbf{e} = \mathbf{r}/|\mathbf{r}|;$ вектор $\mathbf{r} = \mathbf{r}_i - \mathbf{r}_j; \mathbf{r}_i$ и \mathbf{r}_j — координаты центров масс молекул *i* и *j* соответственно; *T* температура; $\rho = N/V$ — плотность системы; k_B постоянная Больцмана и, наконец, $f'_0(\cos \beta_i)$ — производная ОФР относительно $\cos \beta_i$.

Существует несколько упрощенных подходов к проблеме вычисления КУ Франка [17,19–21], основанных на приближенном вычислении прямой КФ $C(\mathbf{r}, \mathbf{e}_i, \mathbf{e}_j) = C(r/\sigma)$, где σ — параметр потенциала GB [11], зависящий от ориентации молекул $\mathbf{e}_i, \mathbf{e}_j$ и единичного вектора \mathbf{e} .

Например, в подходе [8,17] КУ Франка могут быть записаны в виде

$$\frac{K_1}{K} = 1 + \lambda(5 - 9z),$$
 (8)

$$\frac{K_2}{K} = 1 - \lambda (1 + 3z), \tag{9}$$

$$\frac{K_3}{K} = 1 - 4\lambda(1 - 3z),$$
 (10)

где

$$z = \overline{\frac{\cos^4 \beta - \cos^6 \beta}{\cos^2 \beta - \cos^4 \beta}}, \quad \lambda = \frac{\omega}{2(3-\omega)}, \quad \omega = \frac{\gamma^2 - 1}{\gamma^2 + 1},$$

а величина $\gamma = \sigma_{\parallel}/\sigma_{\perp}$ есть отношение длины к ширине молекулы;

$$\overline{K} = \frac{1}{3} \left(K_1 + K_2 + K_3 \right) = B \overline{P}_2^2 \frac{10\overline{P}_2 - 24\overline{P}_4 + 14}{105} \frac{3-\omega}{6\omega}.$$
 (11)

Здесь фактор В имеет размерность силы и равен

$$B = 3M_4 b^2 \rho^2 \sigma^5 \pi \omega^3 k_B T \, \frac{1 + (1/14)\omega^2}{(1 - \omega^2)^2}, \qquad (12)$$

$$b = 4\pi \sigma_{\perp}^{3} \rho \omega^{2} M_{2} \frac{1 + (3/14)\omega}{(1-\omega^{2})^{2}},$$
(13)

$$\overline{\cos^2\beta} = \frac{2\overline{P}_2 + 1}{3},$$
$$\overline{\cos^4\beta} = \frac{20\overline{P}_2 + 8\overline{P}_4 + 7}{35},$$
$$\overline{\cos^6\beta} = \frac{110\overline{P}_2 + 72\overline{P}_4 + 16\overline{P}_6 + 33}{231}.$$

Безразмерный параметр M_{2L} (L = 1, 2) равен

$$M_{2L} = -\int_{0}^{\infty} dr C(r) r^{2L},$$
 (14)

$$\overline{P}_{2L} = \int_{0}^{\pi} P_{2L}(\cos\beta) f_0(\cos\beta) \sin\beta d\beta \qquad (15)$$

являются ПП степени 2*L*. Здесь $P_{2L}(\cos\beta)$ (L = 1, 2, 3) — полиномы Лежандра четного порядка.

Таким образом, уравнения (8)–(10) позволяют вычислить КУ Франка при наличии ПП \overline{P}_{2L} , ОФР $f_0(\cos\beta)$ и прямой КФ C(r). В то время как расчет первых двух факторов представляют собой достаточно простую задачу, вычисление прямой КФ нематической фазы значительно сложнее.

2. Корреляционные функции

Проблема вычисления прямой КФ такой анизотропной системы, как нематическая фаза 5ЦБ, была решена в рамках двух независимых подходов: равновесной статистической теории [8,17,22], основанной на методе условных распределений [10], и метода МД, примененного к описанию НЖК [9,12,13]. В рамках равновесной СМТ была рассмотрена однокомпонентная система эллипсоидальных молекул длиной σ_{\parallel} и шириной σ_{\perp} в объеме V при температуре T. При этом весь объем, занимаемый системой, был разбит на N ячеек, каждая объемом v = V/N, и в качестве первого приближения были учтены лишь такие состояния системы, когда в каждой ячейке находилось по одной молекуле [8,17,22].

Потенциальная энергия такой системы может быть записана в виде $U = \sum_{i < j} \Phi(ij)$, где $\Phi(ij)$ — парный межмолекулярный потенциал, $i \equiv (\mathbf{r}_i, \mathbf{e}_i)$, а \mathbf{r}_i и \mathbf{e}_i векторы, определяющие положение и ориентацию молекулы *i*. Интегрированием величины $\exp\left[-\frac{U}{k_BT}\right]$, представляющей собой плотность вероятности обнаружения системы в точках *i* при температуре *T* [10,18], можно ввести частные функции распределения: F(i) — одночастичная функция распределения имеющая смысл плотности вероятности обнаружения частицы внутри ячейки *i*; F(ij) — бинарная функция распределения, имеющая смысл плотности вероятности обнаружения двух частиц в двух различных ячейках (*i* и *j* соответственно), и т.д. [8,10,17,22].

В настоящем подходе мы ограничимся учетом лишь двухъячеечных корреляций. Функции F(i) и F(ij) могут быть записаны в форме потенциалов средних сил (ПСС) [8,10,17]

$$F_j(j) = \frac{\psi_j(j)}{\int\limits_j d(j)\psi_j(j)},\tag{16}$$

$$F_{ij}(ij) = F_i(i)F_j(j)V(ij)\psi_{i,j}(i)^{-1}\psi_{j,i}(j)^{-1}, \qquad (17)$$

где

$$\psi_j(j) = \prod_{i \neq j} \psi_{j,i}(j), \quad \int_j d(j) = \int_{\omega} d\mathbf{r}_j d\mathbf{e}_j,$$
$$V(ij) = \exp\left[-\frac{\Phi(ij)}{k_B T}\right],$$
$$\omega = \upsilon \otimes \alpha,$$

 α — объем, ассоциированный с ориентацией молекулы *i*. Одночастичная функция F(i) автоматически удовлетворяет условию нормировки $\int_{i} d(i)F_{i}(i) = 1$, а условие

двухчастичную функции, позволяет нам получить замкнутое интегральное уравнение (ИУ) относительно ПСС [8,10,17,22]

$$\psi_{i,j}(i) = \int_{i} d(j) V(ij) \psi_{j,i}^{-1}(jF_j(j).$$
(18))

Уравнение (18) может быть решено только численным методом, детали которого подробно описаны в [8,22].

Располагая решением $\psi_{i,j}(i)$, мы можем рассчитать бинарную функцию F(ij) и ОФР $f_0(\cos \beta_i) = \int d\mathbf{r}_i \int d\varphi_i F(i)$, где φ_i — азимутальный угол единичного вектора \mathbf{e}_i . В рамках классического приближения Перкуса–Йевика [18] выражение для прямой КФ принимает вид

$$C_{ij}(ij) = F_{ij}(ij) \left(1 - V^{-1}(ij) \right), \tag{19}$$

где V(ij) — ядро ИУ (18), определенное парным межмолекулярным потенциалом $\Phi(ij) = \Phi_{GB}(ij) + \Phi_{dd}(ij)$, выбранным в виде суммы потенциала GB [11] и дипольдипольного взаимодействия. Первый потенциал может быть записан в виде $\Phi_{GB}(ij) = 4\varepsilon_0\varepsilon(R^{-12} - R^{-6})$, где $R = (r - \sigma + \sigma_\perp)/\sigma_\perp$ и $r = |\mathbf{r}_i - \mathbf{r}_j|$. Величины σ и ε [11] представляют собой ширину и глубину потенциальной ямы и зависят от ориентации единичных векторов $\mathbf{e}_i, \mathbf{e}_j$ и \mathbf{e} , геометрического параметра γ и двух экспоненциальных параметров ν и μ , которые включены в выражение $\varepsilon = \varepsilon_1^{\nu}(\mathbf{e}_i, \mathbf{e}_j)\varepsilon_2^{\mu}(\mathbf{e}, \mathbf{e}_i, \mathbf{e}_j)$. Диполь-дипольное взаимодействие было выбрано в виде $\Phi_{dd}(ij) = \frac{\Delta^2}{r^3}(\mathbf{e}_i \cdot \mathbf{e}_j - 3\mathbf{e}_j \cdot \mathbf{e} \cdot \mathbf{e}_j)$, где Δ — величина дипольного момента молекулы 5ЦБ ($\Delta \sim 5$ D [3]).

В наших вычислениях были выбраны следующие параметры межмолекулярного взаимодействия: $\gamma = 3$ ($\sigma_{\parallel} \approx 1.8$ nm, $\sigma_{\perp} \approx 0.59$ nm), $\nu = 2.0$, $\mu = 0.98$ и $\varepsilon_0 = 2.07 \cdot 10^{-21}$ J. Были также использованы следующие безразмерные величины: безразмерная плотность $\rho^* = N\sigma_{\perp}^3/N \approx 0.512$, соответствующая плотности 5ЦБ в 10^3 kg/m³, температура $\Theta^* = k_B T/\varepsilon_0$ и дипольный момент $\mu^* = \frac{\Delta}{(\varepsilon_0 \sigma_{\perp}^3)^{1/2}} \approx 2.5$. В МД-вычислениях были учтены 120 молекул 5ЦБ, помещенных в кубическую ячейку с величиной ребра, равной 3.647 nm, что соответствует плотности 10^3 kg/m³. Температура поддерживалась постоянной: 300 К ($\Theta^* = 2.0$) (большой канонический ансамбль).

Решение уравнения движения было осуществлено с помощью алгоритма Верле [23] с шагом в 2 fs. Начальная конфигурация соответствовала смектической фазе 5ЦБ [9]. Ориентация директора **n** была определена с помощью матрицы $Q_{zz}^{\nu\nu'}$ [24]

$$Q_{zz}^{\nu\nu'} = \frac{1}{N_0} \sum_{j=1}^{j} \frac{1}{2} \left(3\cos\beta_{z\nu}^j \cos\beta_{z\nu'}^j - \delta_{\nu\nu'} \right),$$
(20)

где N_0 — число молекул 5ЦБ, а β_{zv}^j — угол между длинной осью молекулы j и осью v, связанной

4

3

с кубической ячейкой. Молекулярные координаты системы были сконструированы с использованием собственных векторов тензора момента инерции [9,12,13]. Диагонализация $Q_{zz}^{\nu\nu'}$ дала три собственных вектора, наибольший из которых соответствовал направлению директора n. На рис. 1 представлены результаты вычисления ОФР $f_0(\cos\beta_i)$, полученные непосредственно методом МД с учетом потенциальной энергии системы, образованной как внутри-, так и вне-атом-атомными вкладами [9,12,13], а также рассчитанные в рамках ИУ для полярной ($\mu^* \approx 2.5$) и неполярной ($\mu^* = 0$) систем при T = 300 К. Учитывая то, что результаты были получены с использованием различных потенциалов межмолекулярного взаимодействия, совпадение следует признать хорошим. Более того, ПП \overline{P}_2 и \overline{P}_4 , вычисленные в рамках СМТ ($\overline{P}_2 = 0.4, \overline{P}_4 = 0.13$) и МД-метода ($\overline{P}_2 = 0.504$, $\overline{P}_4 = 0.188$), сравнивались с экспериментальными значениями, определенными методом рассеяния Рамана [25] ($\overline{P}_2 = 0.58, \overline{P}_4 = 0.14$).

Отклонения от экспериментальных данных оказались незначительными. В рамках метода МД, описанного выше, парная КФ F(ij) анизотропной системы, образованной молекулами 5ЦБ, была рассчитана при T = 300 К. На рис. 2 (кривая I) представлена радиальная функция распределения $G(r) = \int F(ij) d\Omega d\Omega_i d\Omega_j$, где $d\Omega = \sin \beta_{ij} d\beta_{ij} d\varphi_{ij}$.

Рис. 1. Ориентационная функция распределения молекул 5ЦБ при T = 300 K, рассчитанная методом МД (1), в рамках СМТ с учетом (2) и без учета (3) диполь-дипольного взаимодействия.

Рис. 2. Радиальная функция G(r) распределения (1) и прямая корреляционная функция C(r) распределения (2) молекул 5ЦБ при T = 300 К, рассчитанные методом МД.

Уравнение Орнштейна–Цернике, которое связывает прямую и бинарную КФ,

$$C(r_{12}) = G(r_{12}) - 1 - \frac{\rho}{4\pi} \int dr_3 C(r_{13}) (G(r_{23}) - 1)$$
(21)

позволяет рассчитать прямую КФ с использованием итерационной процедуры, описанной в [9]. На рис. 2 (кривая 2) представлена радиальная часть прямой КФ, полученной численным решением уравнения (21). Таким образом, мы располагаем ОФР $f_0(\cos \beta_i)$, необходимыми ПП $\overline{P_{2L}}$ и прямой КФ C(r), что позволяет нам вычислить КУ Франка.

Результаты вычисления коэффициентов Франка и структурных свойств 5ЦБ

Вычисление коэффициентов Франка K_i (i = 1, 2, 3) с помощью уравнений (8)–(10) требует знания моментов прямой КФ M_{2L} (L = 1, 2) и ПП $\overline{P_{2L}}$ (L = 1, 2, 3). Первые были рассчитаны как в рамках СМТ с помощью уравнений (19), так и в рамках МД-метода с помощью уравнения (21). На рис. 3 представлены результаты расчета абсолютных значений K_i (i = 1, 2, 3) в температурном интервале, соответствующем нематической фазе 5ЦБ.

Принимая во внимание приближенный характер уравнений (8)–(10) и точность экспериментальных измере-

Рис. 3. Температурная зависимость коэффициентов Франка K_i (i = 1, 2, 3). I-3 — точки, рассчитанные по уравнениям (8)–(10) с учетом прямой КФ, полученной по уравнению (19) $(I - K_3, 2 - K_1, 3 - K_2)$; 4-6 — точки, рассчитанные по уравнениям (8)–(10) с учетом прямой КФ, полученной с помощью уравнения (21) $(4 - K_3, 5 - K_1, 6 - K_2)$.

ний (20–40% [4,5]), результаты сравнения следует признать удовлетворительными. Отметим, что отношения величин K_3/K_1 и K_2/K_1 могут быть непосредственно измерены с большей точностью, чем сами величины K_i [1]. Результаты расчетов и измерений этих величин представлены в таблице. Располагая радиальными частями парных и прямой КФ, можно определить в рамках при-

Коэффициенты Франка^{*} K_i (i = 1, 2, 3) и их отношения K_3/K_1 и K_2/K_1 для 5ЦБ при температуре 300 К

Коэффициенты	Модель		Эксперимент
Франка	CMT	МД	
K_1 , pN	19.4	9.5	10.5
K_2 , pN	10.0	5.1	5.4
K_3 , pN	30.1	13.8	13.8
K_{3}/K_{1}	1.55	1.45	1.31
K_{2}/K_{1}	0.52	0.54	0.51

*Вычисления проведены с помощью (8)–(10), причем прямая КФ была рассчитана двумя методами: в рамках СМТ по уравнению (19) и в рамках метода МД по уравнению (21). Экспериментальные данные определены техникой переходов Фредерикса [5]. ближения гиперпереплетающихся цепочек [18] радиальную часть эффективного парного взаимодействия $\Phi(r)$

$$\frac{\Phi(r)}{k_B T} = G(r) - 1 - \ln G(r) - C(r)$$
(22)

и эффективную силу, действующую между двумя молекулами 5ЦБ $F^{\text{eff}}(r) = -\frac{d\Phi(r)}{dr}$ е. Результаты вычислений представлены на рис. 4. Потенциал $\Phi(r)/k_BT$ демонстрирует ярко выраженную отталкивательную часть на расстояниях вплоть до $\bar{r} = 0.6$ (что соответствует

Рис. 4. Радиальная часть эффективного межмолекулярного потенциала $\Phi(r)/(k_BT)$, определенного с помощью уравнения (21) (1); эффективные силы $F^{\text{eff}}(r)$, действующие между двумя молекулами 5ЦБ (2).

ширине молекулы 5ЦБ) и наличие малого потенциального барьера $\Delta \Phi = \Phi(0.79) - \Phi(0.59) \cong 0.26k_BT$. Величина отталкивания двух молекул 5ЦБ быстро убывает с ростом расстояния и достигает нулевого значения при $\bar{r} \cong 0.6$. Затем с увеличением расстояния в интервале $0.62 \leqslant \bar{r} \leqslant 0.8$ молекулы притягиваются, причем сила притяжения достигает максимального значения при $\bar{r} \cong 0.8$ и равна примерно 2.21 рN. Далее с ростом расстояния между молекулами величина этой силы быстро стремится к нулю. Следует отметить, что эффективный потенциал $\Phi(r)$ отличается от потенциала GB $\Phi_{\text{GB}}(ij)$ как глубиной потенциальной ямы, так и наличием потенциального барьера. Тем не менее такие структурные характеристики, как ОФР $f_0(\cos \beta_i)$ и ПП $\overline{P_{2L}}$, рассчитанные в рамках этих двух принципиально разных подходов, демонстрируют достаточно схожий характер поведения. Это в свою очередь дает основания сделать вывод о том, что правильный учет межмолекулярных корреляций позволяет сгладить различия, обусловленные выбором межмолекулярного взаимодействия. Но при вычислении таких структурных характеристик, как КУ Франка, необходим учет влияния гибкости углеводородных цепей цианобифенилов. В рамках метода МД такой учет частично осуществлен, что в конечном счете привело к лучшему по сравнению со статистической теорией согласно с экспериментальными данными. Тем не менее мы надеемся, что оба этих метода открывают независимые пути решения проблемы предсказания структурных свойств реальных ЖК.

Список литературы

- [1] W.H. de Jeu. Physical Properties of Liquid Crystal Materials. Cordon and Breach, N.Y. (1980). 129 p.
- [2] P.G. de Gennes, J. Prost. The Physics of Liquid Crystals. Oxford Univ. Press, Oxford (1995). 400 p.
- [3] F. Eikelschulte, S. Yakovenko, D. Paschek, A. Geiger. Liq. Cryst. 27, 1137 (2000).
- [4] P.P. Karat, N.V. Madhusudana. Mol. Cryst. Liq. Cryst. 40, 239 (1977).
- [5] N.V. Madhusudana, R.P. Ratibha. Mol. Cryst. Liq. Cryst. 89, 249 (1982).
- [6] M.J. Bradshow, E.P. Raynes, J.D. Bunning, T.E. Fabver. J. Phys. (Paris) 46, 1513 (1985).
- [7] M. Hara, J. Hirakata, T. Toyooka, H. Takezoe, A. Fukuda. Mol. Cryst. Liq. Cryst. 122, 161 (1985).
- [8] A.V. Zakharov, S. Romano. Phys. Rev. E58, 7428 (1998).
- [9] A.V. Zakharov, A. Maliniak. Euro. Phys. J. E4, 85 (2001).
- [10] Л.А. Ротт. Статистическая теория молекулярных систем. Наука, М. (1978). 280 с.
- [11] J.G. Gay, B.J. Berne. J. Chem. Phys. 74, 3316 (1981).
- [12] A.V. Komolkin, A. Maliniak. J. Chem. Phys. 101, 4103 (1994).
- [13] A.V. Zakharov, A.V. Komolkin, A. Maliniak. Phys. Rev. E59, 6802 (1999).
- [14] A. Poniwierski, J. Stecki. Mol. Phys. 38, 1931 (1979).
- [15] M.D. Lipkin, S.A. Rice, U. Mohanty. J. Chem. Phys. 82, 472 (1985).
- [16] A.M. Somoza, P. Tarazona. Mol. Phys. 72, 911 (1991).
- [17] A.V. Zakharov. Physica A175, 327 (1991).
- [18] R. Balescu. Equilibrium and NonEquilibrium Statistical Mechanics. John Wiley and Sons, N.Y. (1978).
- [19] J. Steltzer, L. Longa, H. Trebin. J. Chem. Phys. 103, 3098 (1995).
- [20] P.I.C. Teixeira, V.M. Pergamenshchik, T. Sluckin. Mol. Phys. 80, 1339 (1993).
- [21] M.A. Osipov, S. Hess. Mol. Phys. 78, 1191 (1993).
- [22] A.V. Zakharov, S. Romano, A. Maliniak. Phys. Rev. E60, R1142 (1999).
- [23] M.P. Allen, D.J. Tildesley. Computer Simulation of Liquids. Calderon Press, Oxford (1989).
- [24] R. Eppenga, D. Frenkel. Mol. Phys. 52, 1303 (1984).
- [25] T. Koboyashi, H. Yoshida, A.D.L. Chandani, S. Kobinata, S. Maeda. Mol. Cryst. Liq. Cryst. 136, 267 (1986).