Особенности низкотемпературного фононного рассеяния в материалах с дисклинационными петлями наклонного типа

© С.Е. Красавин, В.А. Осипов

Объединенный институт ядерных исследований, 141980 Дубна, Московская обл., Россия E-mail: krasavin@thsun1.jinr.ru

(Поступила в Редакцию 7 августа 2001 г.)

Изучается вопрос о рассеянии фононов полями статических напряжений круговой клиновой дисклинационной петли в рамках метода деформационного потенциала. В результате численных вычислений средней длины свободного пробега l и теплопроводности \varkappa показано, что в области низких температур имеется минимум в температурной зависимости \varkappa при некоторой температуре T^* . С уменьшением температуры при $T < T^* \ \varkappa$ резко растет, как T^{-3} , а при $T > T^*$ с увеличением температуры изменяется дислокационным образом ($\varkappa \sim T^2$). Результаты, полученные для клиновой дисклинационной петли, сравниваются с данными для одноосного дисклинационного диполя. Показано, что одноосные дисклинационные диполи как источники рассеяния фононов по своим свойствам близки к клиновым дисклинационным петлям.

1. Хорошо известно, что дислокации наряду с другими структурными дефектами и химическими примесями являются определяющими источниками рассеяния фононов при температурах существенно ниже температуры Дебая $\Theta_{\rm D}$ [1,2]. Рассеяние фононов статическими дислокациями приводит к квадратичной по температуре T зависимости теплопроводности \varkappa . В то же время роль линейных ротационных дефектов (дисклинаций) в рассеянии фононов к настоящему времени исследована недостаточно, хотя известно, что данные дефекты играют существенную роль в нанокристаллических материалах [3], композитных [4] и топологически разупорядоченных системах [5]. Таким образом, вопрос о переносе тепла в широком спектре материалов с ротационной пластической деформацией остается открытым. Недавно [6,7] было исследовано температурное поведение теплопроводности, обусловленное вкладом статических дисклинационных диполей наклонного типа (клиновый дисклинационный диполь — КДД) в тепловой транспорт. Изучались все типа КДД: одноосный диполь, двухосный диполь со смещенными и несмещенными осями ротации. Были получены точные выражения для средней длины свободного пробега фононов за счет статических полей напряжений для каждого типа диполей в борновском приближении.

Оказалось, что особенностью КДД как эффективных центров рассеяния фононов является наличие в них характерного линейного параметра — плеча диполя L, и характер рассеяния зависит от соотношения между длиной волны падающего фонона λ и L. В частности, обнаружено, что смена режима рассеяния реализуется при условии $\lambda \sim L$, что в приближении тепловых фононов приводит к оценке температуры перехода $T^* \approx \hbar v_s/2Lk_{\rm B}$ (см., например, [6]). Было показано также, что одноосный и двухосный КДД с несмещенными осями ротации, будучи двумя предельными случаями произвольного КДД, являются совершенно разными объектами с точки зрения рассеяния фононов. Одноосный диполь является сильно экранированной системой

в отличие от двухосного КДД [6], что проявляется в сильной зависимости длины свободного пробега lот волнового вектора **k** в длинноволновом пределе $(l(k) \sim k^{-5}$ при $\lambda \ll L$). В пределе коротких волн для одноосного КДД наблюдается дислокационный характер рассеяния с $l(k) \sim k^{-1}$. В то же время для двухосного КДД с несмещенными осями ротации $l(k) \sim k^{-1}$, если $\lambda \ll L$, и $l(k) \rightarrow$ const в противоположном пределе. Такое поведение двухосного КДД заметно выделяет его среди других подобных дефектов.

В данной работе рассматривается другой стабильный дисклинационный объект — круговая клиновая дисклинационная петля (КДП) [8,9]. Интерес к задаче о рассеянии фононов статическими полями напряжений КДП вызван тем, что дисклинационные петли являются, по всей видимости, наиболее распространенными элементами трехмерной дисклинационной структуры в большинстве реальных сред. Результаты, полученные для КДП, сравниваются с другим дисклинационным дефектом — одноосным КДД.

2. Рассмотрим задачу об упругом рассеянии фононов статическими полями напряжений клиновой дисклинационной петли в рамках метода потенциала деформации [1,10]. Энергия возмущения фонона в данном подходе связана с относительным изменением объема, возникающим из-за деформаций, созданных в результате помещения в среду КДП. В этом случае потенциал деформации имеет вид [1]

$$U(\mathbf{r}) = \hbar \omega \gamma \operatorname{Sp} E_{ij}, \qquad (1)$$

где $\hbar \omega$ — энергия фонона с волновым вектором **k**, $\omega = kv_s, v_s$ — средняя скорость звука в среде, γ — постоянная Грюнайзена и Sp E_{ij} — след тензора деформации, обусловленный КДП.

Пусть петля радиуса R находится в плоскости z = 0 цилиндрической системы координат (r, φ, z) с осью поворота, проходящей через начало координат, и вектором Франка, имеющим координаты $(0, \Omega, 0)$ относительно

выбранного базиса (несмещенная КДП). Используя явное выражение для тензора деформации КДП с несмещенной осью ротации E_{ij} (см. [9,11]), получаем для энергии возмущения (1)

$$U(\mathbf{r}) = A\cos\varphi J(2, 1; 1), \qquad (2)$$

где $A = \hbar k v_s \pi \gamma v (1 - 2\sigma)/(\sigma - 1), v = \Omega/2\pi$ — индекс Франка, σ — коэффициент Пуассона, $J(2, 1; 1) = \int_{0}^{\infty} J_2(K) J_1(Kr/R) \exp(-K|z|/R) K dK$ — интеграл Лифшица–Ханкеля, $J_m(x)$ — функция Бесселя первого рода.

В борновском приближении матричный элемент, описывающий переход фонона из состояния \mathbf{k} в состояние \mathbf{k}' , имеет вид

$$\langle \mathbf{k}|U(r)|\mathbf{k}'\rangle = \frac{1}{V}\int d^3r U(\mathbf{r})\exp(i\mathbf{q}\mathbf{r}),$$
 (3)

где $\mathbf{q} = \mathbf{k} - \mathbf{k}''$. Учитывая осевую симметрию рассматриваемого дефекта, удобно ввести цилиндрическую систему координат в (3). В этом случае с учетом (2) матричный элемент имеет следующий вид:

$$\left\langle \mathbf{k}|U(r)|\mathbf{k}'\right\rangle = 4\pi i R^2 \cos\alpha \frac{A}{V} \frac{q_{\perp}}{q_{\perp}^2 + q_z^2} J_2(q_{\perp}R), \qquad (4)$$

где α определяет угол между $\mathbf{q}_{\perp} = (q_x, q_y)$ и осью x. Для упрощения дальнейших вычислений рассмотрим ситуацию, когда импульс падающего фонона направлен вдоль оси k_x и выберем цилиндрическую систему координат (k_{\perp}, ϕ, k_z) в k-пространстве. В этом случае можно получить следующее выражение для средней длины свободного пробега:

$$l^{-1}(k) = \frac{VNk}{(2\pi\hbar\nu_s)^2} \int_0^{2\pi} d\phi \int_0^k dk'_z \,\overline{|\langle \mathbf{k}|U(r)|\mathbf{k}'\rangle|^2} (1 - \cos\theta),\tag{5}$$

где N — число дефектов, θ — угол рассеяния (для упругого рассеяния $q = |\mathbf{q}| = |\mathbf{k} - \mathbf{k}'| = 2k \sin(\theta/2)$). Черта сверху над квадратом матричного элемента означает усреднение по углу α . Угол θ может быть выражен через ϕ следующим образом: $1 - \cos \theta = 1 - \sqrt{1 - (k'_z/k)^2} \cos \phi$. Используя уравнения (4) и (5), получаем окончательное выражение для средней длины свободного пробега

$$l^{-1}(k) = n_d R^4 k^2 B \int_0^{2\pi} d\phi \int_0^1 dz \, \frac{1 - \sqrt{1 - z^2} \cos \phi - z^2/2}{1 - \sqrt{1 - z^2} \cos \phi} \\ \times J^2 \left(Rk \sqrt{2 - z^2 - 2\sqrt{1 - z^2} \cos \phi} \right), \qquad (6)$$

где $z = k'_z/k$, $n_d = N/V$ — концентрация дефектов, $B = (\pi \gamma \nu (1 - 2\sigma)/(1 - \sigma))^2$.

Рис. 1. Зависимость средней длины свободного пробега фонона (6) от приведенного волнового вектора $k/k_{\rm D}$ ($k_{\rm D} = \omega_{\rm D}/v_s$) для набора параметров: $R = L = 2 \cdot 10^{-6}$ cm, v = 0.1, $v_s = 4 \cdot 10^5$ cm/s, B = 0.01, $n_d = 10^{15}$ cm⁻³. Зависимость $l(k/k_{\rm D})$ для одноосного КДД показана штриховой линией с тем же набором параметров, за исключением $n_d = 6 \cdot 10^9$ cm⁻³.

На рис. 1 приведены зависимости l(k), полученные в результате численных расчетов, для круговой КДП по формуле (6) и одноосного КДД (из работы [6]) при условии, что R = L (L - плечо диполя) и мощности дефектов, характеризуемые индексом Франка v, одинаковы. Как видно из рисунка, для обоих дефектов существуют два четко выраженных режима рассеяния при $kR \lesssim 1$ и $kR \gtrsim 1$ $(k^* \sim 1/R$ — точка на кривой, соответствующая смене режима рассеяния). В длинноволновом пределе $kR \leq 1$, согласно рис. 1, длина свободного пробега l(k) при рассеянии фононов полем напряжений КДП быстро возрастает с уменьшением к. Это возрастание даже более резкое, чем в случае одноосного КДД, где $l(k) \sim k^{-5}$ [6]. Анализ уравнения (6) при $k \to 0$ приводит к оценке $l(k) \sim k^{-6}$. Такая сильная k-зависимость для l(k) характерна для дефектов конечного размера и объясняется отсутствием интерференции при рассеянии от различных участков дефекта в длинноволновом пределе (длина волны больше размера дефекта) [12]. Таким образом, круговая КДП является еще более самоэкранированной системой, чем одноосный дисклинационный диполь. Следует отметить, что в обоих рассматриваемых случаях в длинноволновом пределе зависимость l(k)сильнее, чем в случае точечной примеси, где $l(k) \sim k^4$ (рэлеевское рассеяние) [2]. В противоположном пределе коротких волн $kR \gtrsim 1$ поведение l(k) для круговой КДП является дислокационным, как и для одноосного КДД, а именно $l(k) \sim 1/k$ (см. [6,7].

Вклад в теплопроводность, обусловленный рассеянием фононов за счет КДП, может быть оценен с помощью следующей известной кинетической формулы,

Рис. 2. Зависимость теплопроводности от температуры, вычисленной по формуле (7), с длиной свободного пробега из (6) (в случае КДД длина свободного пробега взята из работы [6]). Используемые параметры те же, что и для рис. 1 ($\Theta_D = 300$ K). Для сравнения приведены также кривые для дислокации и точечной примеси.

записанной в безразмерном виде:

$$\varkappa = \frac{k_{\rm B}^4 T^3}{2\pi^2 \hbar^3 v_s^2} \int_{0}^{\Theta_{\rm D}/T} \frac{x^4 e^x}{(e^x - 1)^2} l(x) \, dx, \tag{7}$$

где $x = \hbar k v_s / k_B T = \hbar \omega / k_B T$, $\Theta_D = \hbar \omega_D / k_B$, l(x) определяется уравнением (6).

Результаты численных расчетов теплопроводности х от температуры, обусловленной рассеянием фононов статическими полями напряжений круговой КДП, представлены на рис. 2. На этом же рисунке приведены зависимости $\varkappa(T)$ для одноосного КДД, дислокации и точечной примеси. Поведение $\varkappa(T)$ для круговой КДП объясняется зависимостью l(k) (см. обсуждение выше). Именно из рис. 2 видно, что для выбранных модельных параметров в (6), (7), при $T^* \approx 2 \,\mathrm{K}$, существует минимум в $\kappa(T)$ как для КДП, так и для одноосного КДД. В области температур ниже T^* \varkappa резко возрастает. Этот рост соответствует росту длины свободного пробега l(x)в (7) при T
ightarrow 0 в соответствии с законом $l(k) \sim k^{-6}$ для КДП и $l(k) \sim k^{-5}$ для КДД в длинноволновом пределе. В результате при $T < T^*$ вклад в теплопроводность, обусловленный рассеянием фононов на статических полях напряжений круговой КДП, пропорционален T^{-3} $(T^{-2}$ в случае КДД). Отметим, что \varkappa ниже T^* в рассматриваемом случае растет существенно быстрее, чем для точечной примеси, где $\varkappa \sim T^{-1}$ (штриховая линия на рис. 2). Вблизи Т* возбуждаются главным образом фононы с длиной волны, сравнимой с характерным размером дефекта ($kR \sim 1$) в отличие от рассмотренного выше случая $kR \leq 1$, где дефект является слабым рассеивателем тепловых фононов. При $kR \sim 1$ возникает сильное рассеяние на границе дефекта, что приводит в свою очередь к подавлению теплового транспорта. Выше T^* для обоих дефектов КДП и КДД теплопроводность имеет дислокационное поведение $\varkappa \sim T^2$ (рис. 2) $(l(k) \sim 1/k)$. Рост \varkappa выше точки минимума может быть объяснен увеличением числа коротковолновых возбуждений, для которых локальная передача тепла от одного фонона к другим осуществляется быстрее, чем рассеяние на КДП (КДД), имеющее дислокационный характер и приводящее к подавлению теплопроводности.

3. В данной работе исследовался вклад в теплопроводность, обусловленный рассеянием фононов статическими полями напряжений круговой КДП в низкотемпературной области $(T < \Theta_{\rm D})$. Было показано, что дефекты типа КДП как источники рассеяния фононов близки по своим свойствам к дисклинационным диполям, имеющим общую ось ротации (одноосный КДД). Рассеяние фононов на этих дефектах при различных температурах приводит к нетривиальной зависимости $\varkappa(T)$. Существует определенный диапазон температур вблизи T^* , где \varkappa оказывается сильно подавленной и растет выше и ниже T^* (рис. 2), как T^{-3} (T^{-2} для КДД), с уменьшением температуры при $T < T^*$, и как T^2 , если $T > T^*$. Таким образом, круговая КДП и одноосный КДД являются специфическими дефектами с точки зрения рассеяния фононов, демонстрирующими совершенно различное поведение в зависимости от длины волны фонона. В области длинных волн свойства этих дефектов ближе к точечной примеси (сильная экранировка полей напряжений), тогда как в коротковолновом пределе рассеяние имеет дислокационный характер.

Очевидно, что для реальных материалов, содержащих подобные дефекты, картина может быть несколько иной ввиду наличия других источников рассеяния. Так, например, в области низких Т должно существовать рассеяние на границах кристаллитов внутри образца (предельный случай — границы образца), ограничивающее бесконечный рост *и* ниже области минимальной проводимости. Расчеты показывают, что включение этого канала рассеяния приводит к наличию дополнительного максимума в области очень низких Т. Также в исследуемых материалах могут существовать дефекты другого типа, которые вносят свой вклад в суммарную х. В то же время необходимо подчеркнуть, что минимум х, полученный в результате численных расчетов, находится в таком температурном интервале $(0.1 < T^* < 10 \text{ K})$, где другие основные механизмы рассеяния (например, процессы переброса) не вносят заметного вклада в рассеяние. По этой причине эффект, связанный с подавлением теплопроводности в низкотемпературной области, может быть обнаружен экспериментально. Кроме того, такое поведение х является весьма уникальным и служило бы косвенным подтверждением в случае обнаружения наличия КДП и КДД в исследуемом материале.

Расчет температурной зависимости \varkappa , где учитываются другие источники рассеяния, наряду с рассеянием на клиновых дисклинационных петлях и одноосных диполях предполагается сделать в следующей работе.

Список литературы

- [1] Дж. Займан. Электроны и фононы. ИЛ, М. (1962).
- [2] P. Carruthers. Rev. Mod. Phys. 33, 1, 92 (1961).
- [3] С.Г. Зайченко, А.М. Глезер. ФТТ 39, 11, 2023 (1997).
- [4] И.А. Овидько. ФТТ **41**, *9*, 1637 (1999).
- [5] A. Richter, A.E. Romanov, W. Pompe, V.I. Vladimirov. Phys. Stat. Sol. (b) **122**, *1*, 35 (1984).
- [6] V.A. Osipov, S.E. Krasavin. J. Phys.: Condens. Matter 10, L639 (1998).
- [7] S.E. Krasavin, V.A. Osipov. J. Phys.: Condens. Matter C13, 1023 (2001).
- [8] H.H. Kuo, T. Mura. J. Appl. Phys. 43, 4, 1454 (1972).
- [9] В.А. Лихачев, Р.Ю. Хайров. Введение в теорию дисклинаций. ЛГУ, Л. (1975).
- [10] В.Ф. Гантмахер, И.Б. Левинсон. Рассеяние носителей тока в металлах и полупроводниках. Наука, М. (1984).
- [11] В.И. Владимиров, А.Е. Романов. Дисклинации в кристаллах. Наука, Л. (1986).
- [12] П. Клеменс. Физика низких температур. ИЛ, М. (1959). С. 236.