## Влияние распределения дислокаций в границах двойника на зарождение микротрещин в его вершине

© В.А. Федоров, В.А. Куранова, Ю.И. Тялин, С.Н. Плужников

Тамбовский государственный университет им. Г.Р. Державина, 392622 Тамбов, Россия

E-mail: feodorov@tsu.tmb.ru

## (Поступила в Редакцию 4 сентября 2001 г.)

Исследовано влияние распределения дислокаций в границах заторможенного двойника на зарождение микротрещин в его вершине. Двойник моделировался двойным ступенчатым скоплением двойникующих дислокаций, расположенных в соседних плоскостях скольжения. Уравнения равновесия дислокаций решались численным методом. Рассмативались скопления с различным суммарным числом дислокаций, а также различным соотношением чисел дислокаций в верхней и нижней границах двойников. Анализировалось образование микротрещин в результате слияния головных дислокаций по силовому и термоактивированному механизмам. Рассчитаны равновесные конфигурации одиночной двойниковой границы и двойника. Установлено, что условие образования микротрещин в вершине двойника существенно зависит от соотношения числа дислокаций в его границах. В пределе оно совпадает с условием зарождения трещины в вершине изолированной двойниковой границы с таким же суммарным числом дислокаций. Показано, что термоактивированному зарождению микротрещины соответствуют меньшие значения критических напряжений.

В [1,2] было показано, что учет реальной структуры дислокационных скоплений может существенно изменить условия зарождения в них микротрещин. С этой точки зрения особый интерес представляют двойники и двойниковые границы, в которых каждая из двойникующих дислокаций движется в своей плоскости скольжения. Дефекты такого рода моделируются обычно ступенчатыми скоплениями дислокаций [3,4], причем в двойнике дислокации располагаются попарно и симметрично относительно плоскости двойникования, проходящей через вершину двойника. Понятно, что в общем случае границы двойника не обязательно должны содержать равное число дислокаций. В настоящей работе на примере кальцита рассмотрены условия зарождения микротрещин в вершине заторможенного двойника с различным соотношением числа двойникующих дислокаций в его границах.

Граница двойника моделирована одиночным ступенчатым скоплением двойникующих дислокаций, каждая из которых смещена относительо соседней на расстояние, равное межплоскостному h (3.82  $\cdot$  10<sup>-10</sup> m). Двойник представлен двойным ступенчатым скоплением двойникующих дислокаций. Головная дислокация считалась неподвижной в точке с координатами x = y = 0 и принадлежала одновременно верхней и нижней границам. Скопление дислокаций поджималось к головной внешним напряжением  $\tau$ .

Рассмотрим границы двойника, содержащие разное число  $n_1$  и  $n_2$  дислокаций. Формально это означает, что каждую из границ следует анализировать отдельно и для каждой из них записывать свои уравнения равновесия дислокаций. Для верхней границы с числом дислокаций  $n_1$  уравнения равновесия будут иметь сле-

дующий вид:

$$\sum_{\substack{j=1,\\j\neq i}}^{n_1} (x_i - x_j) \frac{(x_i - x_j)^2 - (y_i - y_j)^2}{[(x_i - x_j)^2 + (y_i - y_j)^2]^2} + \sum_{j=2}^{n_2} (x_i - x_j) \frac{(x_i - x_j)^2 - (y_i + y_j)^2}{[(x_i - x_j)^2 + (y_i + y_j)^2]^2} - \frac{\tau}{Db} = 0, \quad i = 2, 3, \dots, n,$$
(1)

где  $x_i$  и  $y_i$  — координаты *i*-й дислокации,  $D = G/[2\pi(1-\nu)], G$  — модуль сдвига ( $3.2 \cdot 10^{10} \text{ N/m}^2$ ),  $\nu$  — коэффициен Пуассона ( $\nu = 0.3$ ), b — вектор Бюргерса двойникующих дислокаций ( $1.269 \cdot 10^{-10} \text{ m}$ ). Первое слагаемое описывает взаимодействие *i*-й дислокаций с дислокациями верхней границы, второе — с дислокациями нижней границы.

Аналогично записываются уравнения для дислокаций в нижней границе

$$\sum_{\substack{j=1,\\j\neq i}}^{n_2} (x_i - x_j) \frac{(x_i - x_j)^2 - (y_i - y_j)^2}{[(x_i - x_j)^2 + (y_i - y_j)^2]^2} + \sum_{\substack{j=2\\j=2}}^{n_1} (x_i - x_j) \frac{(x_i - x_j)^2 - (y_i + y_j)^2}{[(x_i - x_j)^2 + (y_i + y_j)^2]^2} - \frac{\tau}{Db} = 0, \quad i = 2, 3, \dots, n.$$
(2)

Таким образом, мы получили систему нелинейных уравнений (1) и (2) с числом неизвестных  $n_1 + n_2 - 1$ . Численное решение систем уравнений (1) и (2) методом последовательных приближения [5] дает равновесные координаты  $x_i$  дислокаций, зависящие от упругих констант G и b, числа дислокаций  $n_1$  и  $n_2$  и величины внешнего напряжения  $\tau$ . С точки зрения зарождения микротрещины интерес представляет расстояние d между



**Рис. 1.** Расположение дислокаций в вершине дефектов: АД (1), ГД (2), СД (3).

головными дислокациями, при слиянии которых и образуется зародыш трещины. Механизмы слияния головных дислокаций разделяются на силовые и активационные.

В плоском скоплении слияние головных дислокаций происходит при их сближении до расстояния d = b [6]. В ступенчатом скоплении для слияния головных дислокаций достаточно сблизить их до критического расстояния  $d_{c1} = 2.41h$ . При этом сила отталкивания второй дислокации со стороны первой достигает максимума. Дальнейшее их сближение до слияния будет происходить без увеличения внешней нагрузки. Поэтому в качестве критических напряжений  $\tau_{cr}$  зарождения трещин можно принять напряжения, необходимые для сближения головных дислокаций до расстояния  $d_{cr}$ . Будем называть этот критерий силовым.

При термоактивированном зарождении микротрещины предполагается не одновременное слияние головных дислокаций по всей длине, а первоначально лишь на коротком отрезке в результате выбрасывания второй дислокацией скопления парного перегиба за счет термических флуктуаций. При этом образуется зародыш микротрещины длиной *l* при слиянии этого перегиба и первой дислокации. который затем расширяется по всей ее длине. В [7] было показано, что энергетический барьер зарождения трещины полностью определяется первой стадией процесса — образованием парного перегиба. Выражение для энергии *W* образования парного перегиба приведено в [3].

Для определения критических значений внешних напряжений  $\tau_{\rm cr}$  рассчитывалась зависимость W от  $\tau$  и находилось такое значение  $\tau$ , при котором W совпадала с заданной величиной. В нашем случае эта энергия выбиралась равной 1 eV, что сопоставимо с минимальной высотой потенциального барьера образования парного перегиба и составляет величину порядка  $Gb^3$  [8].

В расчетах анализировались: "симметричный" двойник (СД) с равным числом дислокаций в границах, двойник с различным числом дислокаций в границах — "асимметричный" двойник (АД) и одиночная граница двойника (ГД). Рассматривали скопления с различным суммарным числом *n* дислокаций, а также различным соотношением чисел дислокаций  $n_1$  и  $n_2$  в верхней и нижней границах АД. Отмечается, что дислокации в границах СД выстраивались попарно (рис. 1), т.е. значения координат x<sub>i</sub> для i-х дислокаций верхней и нижней границ двойника совпадали, а кординаты у<sub>i</sub> были равными по абсолютной величине, но противоположными по знаку. Этот результат понятен и является следствием взаимодействия дислокаций, движущихся в параллельных плоскостях скольжения. Если считать одну из дислокаций неподвижной, то равновесному состоянию другой дислокации будут отвечать два положения — x = hи x = 0, в которых сила взаимодействия равна нулю, но устойчивым будет только одно из них — x = 0. При отклонении от него на движущуюся дислокацию будет действовать сила, возвращающая ее к положению равновесия.



**Рис. 2.** Зависимость расстояния между головными дислокациями от приложенного напряжения для различных дислокационных скоплений: ГД, n = 50 (1); СД,  $n_1 = n_2 = 25$  (2); АД,  $n_1 = 20, n_2 = 30$  (3).



**Рис. 3.** Зависимость расстояния между головными дислокациями от приложенного напряжения для АД:  $n_1 = 10$ ,  $n_2 = 12$  (1);  $n_1 = 20$ ,  $n_2 = 30$  (2).



**Рис. 4.** Зависимость энергии парного перегиба W от внешнего напряжения: ГД, n = 50 (1); СД,  $n_1 = n_2 = 25$  (2); АД,  $n_1 = 20, n_2 = 30$  (3).

При нарушении равенства числа дислокаций в границах СД, т. е. при трансформации его в АД, расположение дислокаций существенно изменяется (рис. 1). Впрочем, и с этом случае встречается попарное выстраивание дислокаций в границах АД, но число таких пар не превышает единиц процентов. Обозначим через *d* расстояние между головной и второй дислокациями границы двойника. Для верхней и нижней границ АД d тем меньше, чем больше число дислокаций в границе, причем различие в величине *d* обеих границ АД может отличаться в несколько раз при небольшой разнице n<sub>1</sub> и  $n_2$ . Например, для  $n_1 = 10$  и  $n_2 = 12$  отношение  $d_1/d_2 \approx$  4. Помимо этого наименьшее из  $d_1$  и  $d_2$ оказывается гораздо меньше, чем величина *d* для СД. Это хорошо видно из рис. 1, на котором приведено расположение дислокаций непосредственно в вершинах скоплений. Если учесть, что именно величина d определяет напряжения зарождения трещин, следует ожидать изменения условий зарождения трещины в вершине АД.

В расположении дислокаций у вершины двойника обращает на себя внимание тот факт, что значения координат дислокаций в границах АД близки к значениям координат дислокаций в одиночной границе с суммарным числом дислокаций  $n = n_1 + n_2$ . Этот результат становится понятным, если вернуться к выражению для напряжений, действующих со стороны *j*-й дислокации на *i*-ю,

$$\tau_{ij} = \frac{Gb}{2\pi(1-\nu)} \frac{(x_i - x_j)[(x_i^2 - x_j^2) - (y_i^2 - y_j^2)]}{[(x_i - x_j)^2 + (y_i - y_j)^2]^2}.$$
 (3)

Для соседних дислокаций  $y_i - y_j = h$ , а  $x_i - x_j$  сравним с h только для дислокаций, примыкающих к голове скопления (при слиянии  $x_2 - x_1 = 2.41h$ ). Для остальных дислокаций с большими номерами  $x_i - x_j \gg h$ . Например, для n > 10  $(x_i - x_j)/h > 10$ , т.е. в этом случае соседние дислокации и тем более дислокации с большей

разницей индексов взаимодействуют так, как будто они расположены в одной плоскости. Действительно, в (3) в этом случае можно с хорошей точностью пренебречь слагаемыми  $(y_i - y_j)^2$ , т. е. хвостовую часть ступенчатых скоплений можно заменить плоской конфигурацией дислокаций, а форма вершины дефекта и условия слияния головных дислокаций будут определяться особенностью взаимодействия небольшого числа головных дислокаций, для которых  $\Delta y = |y_i - y_j|$  сравнимо с  $\Delta x = |x_i - x_j|$ .

На рис. 2 приведены результаты, показывающие зависимость d от внешнего напряжения  $\tau$  для трех типов скоплений — ГД, СД и АД. Видно, что зависимости для ГД и АД расположены достаточно близко. Это является следствием отмеченного выше хорошего совпадения равновесных положений дислокаций в границах ГД и АД, т. е. ГД можно рассматривать как предельный случай АД, у которого  $n_1 \gg n_2$  (или  $n_2 \gg n_1$ ).

Сравнивая значения  $\tau$  для АД и СД (с равным суммарным числом дислокаций в их границах), при d = 2.41hполучаем, что зарождение микротрещин по силовому механизму в АД будет иметь место при значительно меньших напряжениях (примерно в 1.7 раза).

Выяснялось, зависят ли полученные результаты от числа дислокаций в рассматриваемых скоплениях. Если перестроить зависимость  $d = f(\tau)$  (или W от  $\tau$ ) в относительно единицах  $d = f(\tau n/D)$ , то полученные точки, соответствующие различным n для одного и того же скопления, с хорошей точностью ложатся на одну кривую. В качестве примера на рис. 3 приведен график такой зависимости для АД. Таким образом, результаты, приведенные на рис. 2, могут быть обощены на случай других n простой перенормировкой критических напряжений.

Результаты расчета энергии активации зарождения трещины приведены на рис. 4. Сравнивая данные с результатами на рис. 2, отмечаем, что термоактивированному зарождению соответствуют меньшие значения критических напряжений, но это различие невелико (~ 25%). Сами значения энергии парного перегиба при выполнении силового критерия d = 2.41h составляют ~ 0.5 eV.

## Список литературы

- [1] В.Н. Рыбин, Ш.К. Ханнанов. ФТТ 11, 4, 1048 (1969).
- [2] В.И. Владимиров, Ш.Х. Ханнанов. ФММ **31**, 4, 838 (1971).
- [3] В.А. Федоров, Ю.И. Тялин. Кристаллография 26, 4, 775 (1981).
- [4] В.А. Федоров, В.М. Финкель, В.П. Плотников, Ю.И. Тялин, В.А. Куранова. Кристаллография 33, 5, 1244 (1988).
- [5] Дж. Ортега, В. Рейнболдт. Итерационные методы решения нелинейных систем уравнений со многими неизвестными. Мир, М. (1975).
- [6] A.N. Stroh. Adv. Phys. 6, 24, 418 (1957).
- [7] В.И. Владимиров. Физическая природа разрушения металлов. Металлургия, М. (1984). 280 с.
- [8] А.Н. Орлов. Введение в теорию дефектов в кристаллах. Высш. шк., М. (1983). 144 с.