Фононные спектры и термодинамические свойства гексаборидов РЗЭ

© Н.Н. Сирота, В.В. Новиков*, И.М. Сирота, Т.Д. Соколовский**

Московский государственный университет природообустройства, Москва, Россия * Брянский государственный педагогический университет, 241036 Брянск, Россия

E-mail: tcopr@bgpi.bitmcnit.bryansk.su

** Институт физики твердого тела и полупроводников Национальной Академии наук Белоруссии, 220072 Минск, Белоруссия

(Поступила в Редакцию в окончательном виде 23 августа 2001 г.)

Фононные спектры g(v) гексаборидов РЗЭ МВ₃ рассчитаны в первом приближении МВ^{*}+В (В^{*} = B₆), без учета связи между атомами металла и бора, и в приближении, учитывающем эту связь. По зависимостям g(v) рассчитаны температурные изменения теплоемкости, сопоставленные с экспериментальными величинами в области 5–300 К. Выявлено различное влияние колебаний на связях в подрешетках металла, бора и между подрешетками на величины термодинамических функций гексаборидов при низких и повышенных температуррах.

Элементарная ячейка гексаборидов РЗЭ имеет структуру объемноцентрированного куба типа CsCl, в которой вершины куба занимают атомы РЗЭ, а центрирующим псевдоатомом является группа атомов B₆.

На рис. 1 в качестве примера приведена структура гексаборида лантана. Указаны расстояния между атомами металла (М–М), бора (В–В) внутри центрирующего элементарную ячейку псевдоатома $B_6 = B^*$, а также между атомами бора В–В соседних элементарных ячеек.

Отличительной чертой элементарной ячейки структуры гексаборидов РЗЭ является наличие компактной группы атомов B_6 и тот факт, что расстояния B-Bвнутри этой группы оказываются несколько больше, чем длина связи между атомами бора соседних элементарных ячеек.

При рассмотрении динамики решетки гексаборидов РЗЭ учитываются связи между соседними атомами металла (М-М), металла и псевдоатома (М-В₆) связи внутри псевдоатома В₆ (В–В) и между группами В₆ соседних элементарных ячеек (В-В). Существенным является соотношение между суммарной энергией связей между атомами металла (М-М), бора (В-В) и металла и бора (М-В). Энергию атомизации гексаборидов РЗЭ можно рассматривать как сумму энергий атомизации подрешеток металла, бора и энергии связи М-В. В таблице приведены справочные значения энергий атомизации РЗ металлов, бора, В₆ и энергии образования соединений МВ₆, отнесенные к одному молю гексаборида [1,2]. Как видно из таблицы, грамматомная величина энергии образования соединения МВ₆, отнесенная к стандартным состояниям металла и бора, составляет существенно меньшую величину по сравнению с энергией атомизации РЗЭ и бора. В таблице указаны относительные доли энергий связи М-М от отношению к связям М-В и В-В соединений МВ₆.

Не рассматривая детально отдельные межатомные связи в элементарной ячейке, ограничимся далее двумя макроскопическими подходами к рассмотрению решеточной составляющей теплоемкости и других термо-

Рис. 1. Кристаллическая структура гексаборида лантана. a — элементарная ячейка LaB₆, b — проекция структуры на плоскость XQY.

Соеди- нение	U _{0М} , kJ/mol	U _{MB6} , kJ/mol	U ₀ , kJ/mol	Доли энергий связи			Θм, К	Θ _B , K	Параметр решетки <i>а</i> , Å	Молярный объем MB [*] , V ₀ , cm ³	$\begin{array}{c} \beta \cdot 10^6, \\ \mathrm{K}^{-1} \end{array}$	т	n
				η_1	η_2	η_3							
LaB_6	431	470.4	535	1	1.23	1.31	205	1230	4.1563	43.2	15	4	12
CeB ₆	423	340.2	517	1	1.22	1.33	203	1293	4.1396	42.7	16.5	4	12
PrB_6	455.6	418.3	489	1	1.38	1.58	210	1218	4.1327	42.5	16.8	4	12
NdB ₆	427.6	431.8	475.9	1	1.45	1.72	200	1170	4.1266	42.3	15	4	12
SmB_6	208.7	456.1	417.2	1	2.0	2.70	210	1200	4.1334	42.5	13.5	4	12
EuB ₆	175.3	471.2	402.5	1	2.30	3.21	198	1383	4.1844	43.9	12	4	6
GdB ₆	397.5	481.7	514.4	1	1.29	1.42	212	1254	4.1066	41.92	17.4	4	12
TbB_6	388.7	494.8	510.9	1	1.31	1.45	207	1025	4.1052	41.55	18	5	12
DyB ₆	290.4	504	462.4	1	1.59	1.94	208	1074	4.1008	41.4	18.6	5	14
В	562.7												

Характеристики гексаборидов РЗЭ, необходимые для расчета фононных спектров

динамических свойств гексаборидов. Рассмотрим две подрешетки — металла и бора — в приближении двух дебаевских тел с параболическим фононным спектром, не учитывая при этом связи между ними. В качестве следующего приближения рассмотрим фононный спектр соединения металл-псевдоатом В* (B₆) со структурой типа CsCl и дополним его функцией плотности колебательных состояний внутри псевдоатома B₆.

Фононный спектр гексаборидов как суперпозиция дебаевских спектров подрешеток металла и бора

Дебаевский спектр колебательных состояний g(v) = dn/dv однозначно определяется дебаевской характеристической температурой Θ

$$g(v) = (9N/\Theta^3)(h/k)^3 v^2,$$
 (1)

N — число частиц в системе, h, k — постоянные Планка и Больцмана.

Результирующий спектр соединения MB₆ получен при наложении независимых дебаевских спектров металла и бора

$$g_{\rm MB_6}(\nu) = g_{\rm M}(\nu) + g_{\rm B}(\nu).$$
 (2)

В таблице указаны характеристические температуры подрешеток редкоземельных элементов $\Theta_{\rm M}$ и бора $\Theta_{\rm B}$, определенные ранее в работе [3] в результате анализа температурных зависимостей теплоемкости гексаборидов РЗЭ. На рис. 2 приведен результирующий фононный спектр гексаборида лантана, как суперпозиция спектров, рассчитанных по величинам характеристических температур подрешеток $\Theta_{\rm La} = 205$ и $\Theta_{\rm B} - 1230$ K, и для сравнения функция $g_{\rm LaB_6}(v)$, рассчитанная в [4] по спектроскопическим данным. Как видно из рисунка, несмотря на известное различие деталей, имеется сходство этих спектров.

Аналогичный вид имеют спектры всех исследуемых изоструктурных гексаборидов РЗЭ, полученные наложением дебаевских спектров металла и бора. Величины теплоемкостей $C_p(T)$ гексаборидов, рассчитанные по этим спектрам для температур 300–1000 К, отличаются от экспериментальных значений не более, чем на 3–7% [3].

Фононные спектры гексаборидов как суперпозиция борн-кармановских спектров структур типа МВ* и спектра бора

В качестве следующего приближения рассмотрим фононные спектры гексаборидов РЗЭ как спектры соединений со структурой типа CsCl, в которой положение атома хлора занимает псевдоатом $B^* = B_6$, дополненные фононным спектром колебаний атомов бора (приближение MB^{*} + B₆). Молярная масса псевдоатома B^{*}

Рис. 2. Фононный спектр LaB₆. 1 — дебаевский фононный спектр подрешетки лантана $g_{\text{La}}(v)$, 2 — дебаевский фононный спектр подрешетки бора $g_{\text{B}}(v)$, 3 — фононный спектр LaB₆ из работы [4].

Рис. 3. Фононные спектры структур MB^{*}. *1* — LaB^{*}, *2* — CeB^{*}, *3* — PrB^{*}, *4* — NdB^{*}, *5* — SmB^{*}, *6* — EuB^{*}, *7* — GdB^{*}, *8* — TbB^{*}, *9* — DyB^{*}.

в этой структуре $m_{B^*} = 64.86 \text{ g/mol}$, что составляет приблизительно около половины массы атома РЗЭ.

Фононные спектры соединении MB* рассчитаны по методу Борна-Кармана-де Лоне путем решения секулярного уравнения

$$|D(q) - \mathbf{M}\omega^2 L| = 0.$$
(3)

Здесь М — масса атома, L — единичная матрица, D(q) — динамическая матрица, определяемая вектором q [5–7].

В решетке MB* типа CsCl при расчете фононного спектра учитываются три связи: j_1 — между атомами металла (M–M), j_2 — между атомами металла и псевдоатомом B* = B₆ (M–B*) и j_3 — между псевдоатомами B*–B*. Для каждого соединения MB* существует определенное соотношение, связывающее коэффициенты пропорциональности указанных энергий связей и полную энергию атомизации грамм-атома соединения MB*.

Для соединения LaB₆ коэффициенты выражаются по отношению к связи j_1 (M–M): $\eta_j = U_{0M}/U_{0j}$. Для связи j_1 $\eta_1 = 1$, для связи j_2 (M–B^{*}) $\eta_2 = 1.23$, для связи j_3 (B^{*}–B^{*}) $\eta_3 = 1.31$. Были введены следующие обозначения. U_{0M} — грамм-атомная энергия атомизации металла, U_{0B} — энергия атомизации бора, U_{MB_6} — энергия образования соединения MB₆, отнесенная к стандартному состоянию компонентов.

Эти коэффициенты введены в программу расчета фононных спектров кристаллов MB* со структурой CsCl. Значение энергии атомизации грамм-атома соединения MB* определяется из соотношения

$$U_0 = \frac{1}{2}(U_{0M} + U_{0B} + U_{MB_6}).$$
(4)

Силовые постоянные де Лоне учитывались при расчетах для четырех координационных сфер: *i* = 1...4. Их величины пропорциональны вторым и первым производным энергии атомизации в функции расстояний между

Рис. 4. Фононный спектр бора.

ближайшими атомами, взятыми в точках, соответствующих различным координационным сферам *i* для каждого из видов связи *j* [5]

$$\alpha_{ij} = (\partial^2 U_j) / \partial r^2)_{r_{ij}},\tag{5}$$

$$\beta_{ij} = (-1/r)(\partial U_j)/\partial r)_{r_{ij}}.$$
(6)

Величину энергии связи в зависимости от расстояния между ближайшими атомами удобно выражать в аналитической форме, используя аппрокосимацию $U_j(r)$ в форме потенциала Ми–Грюнайзена [8]

$$U_i = -(\alpha/r^m) + (\beta/r^n). \tag{7}$$

Из условия $(\partial U_i/\partial r)_{r_0} = 0$ получим

$$U_j = (U_0 m n / (n - m)) [(1/m)(r_0/r)^m - (1/n)(r_0/r)^n].$$
(8)

Соответственно силовые постоянные де Лоне

$$\alpha_{ij} = \frac{mn(m+1)U_{0j}k_i^{m+2}}{(n-m)^2} \left[1 - \frac{n+1}{m+1}k_i^{n-m}\right],\qquad(9)$$

$$\beta_{ij} = -\frac{mnU_{0j}}{(n-m)r_0^2} k_i^{m+2} [1-k_i^{n-m}], \qquad (10)$$

где $k_i = r_0/r_i$ — отношение радиуса первой координационной сферы к радиусу *i*-й сферы.

Показатели степени n и m в соотношениях (7)–(10) рассчитаны по методике, изложенной в работе [8]. При этом изменение приведенных межатомных расстояний r определяет изменение объема моля и зависит от наличия атомов разных сортов.

Значение m + n определено по величинам модуля объемной упругости В [9], по объемному коэффициенту термического расширения β [10] и номограмме работы [8]

$$g = V_0 \beta B / R, \tag{11}$$

где V_0 — грамм-атомный объем, β — объемный коэффициент термического расширения, R — универсальная газовая постоянная. Произведение *mn* рассчитано по значениям энергии атомизации гексаборида U_0 , грамматомного объема V_0 и объемного модуля B,

$$mn = 9V_0 B/U_0.$$
 (12)

В таблице приведены характеристики гексаборидов РЗЭ, необходимые для определения показателей степени *m* и *n*.

На рис. 3 приведены рассчитанные фононные спектры редкоземельных структур MB^{*} (M = La, Ce, Nd, Pr, Sm, Eu, Gd, Tb, Dy) для m = 4, n = 12.

Второй составляющей суммарного фононного спектра гексаборидов MB_6 является фононный спектр колебаний атомов бора в объеме псевдоатома $B^* = B_6$. Эта составляющая для всех гексаборидов аппроксимирована функцией Гаусса вида

$$g_{\rm B}(\nu) = Ae^{-((\nu-\nu_0)/\nu)^2},$$
 (13)

обрезанной на максимальной частоте v_0 . Величина v_0 определена по значению характеристической температуры элементарного аморфного бора $\Theta_B = 1217 \text{ K} [11]$. Рассчитанный фононный спектр атомов бора приведен на рис. 4.

Результирующий фононный спектр гексаборидов МВ₆

$$g_{\rm MB_6}(\nu) = g_{\rm MB^*}(\nu) + g_{\rm B}(\nu) \tag{14}$$

нормирован на 3N_A (N_A — число Авогадро).

3. Решеточная теплоемкость гексаборидов РЗЭ

Грамм-атомные теплоемкости структур $MB^*C_{MB^*}(T)$ и бора $C_B(T)$ рассчитаны по полученным фононным спектрам $g(\nu)$ численным интегрированием

$$C_{\nu} = \int_{0}^{\nu_{m}} g(\nu) (d\varepsilon/dT) d\nu, \qquad (15)$$

v_m — предельная частота фонона.

Величины молярных решеточных теплоемкостей гексаборидов РЗЭ подсчитаны по соотношению

$$C_{\rm MB_6}(T) = 2C_{\rm MB^*}(T) + 5C_{\rm B}(T).$$
 (16)

Коэффициент 2 при первом слагаемом учитывает вклад двухатомной псевдомолекулы MB*, коэффициент 5 при втором слагаемом — вклад бора в октаэдре B₆, за вычетом одного атома бора, учтенного первым слагаемым.

На рис. 5 приведены расчетные зависимости полной теплоемкости гексаборидов лантана и неодима в области 20–300 К. Для NdB₆, кроме решеточного учтен вклад теплоемкости Шоттки. В большей части температурного диапазона наблюдается удовлетворительное соответствие расчетных и экспериментальных величин. Электронные составляющие теплоемкости и вклады, обусловленные ангармонизмом, в рассматриваемом диапазоне температур малы и не учитывались.

Рис. 5. Теплоемкость гексаборидов лантана (*a*) и неодима (*b*), рассчитанная по фононным спектрам и данным о расщеплении энергетических уровней. Штриховые линии — экспериментальные зависимости. $I - 2C_{\text{MB}^*}$, $2 - 5C_{\text{B}}$, $3 - C = 2C_{\text{MB}^*} + 5C_{\text{B}}$, $4 - C_{\text{Shottky}}$.

Проведенный расчет фононных спектров и решеточных составляющих теплоемкости гексаборидов РЗЭ свидетельствует о том, что модель $MB^* + B$ учитывает связь металл—бор и характеризуется более реалистичным фононным спектром по срвнению с моделью независимых подрешеток. Вместе с тем отметим, что модель независимых подрешеток M + B удовлетворительно соответствует данным эксперимента в области 5–300 К. Значения изобарной теплоемкости $C_p(T)$, рассчитанные по этой модели, близки к данным расчета по модели $MB^* + B$ и соответствуют экспериментальным данным [3].

В области низких температур (до 60–80 K) эффективны наиболее низкочастотные из возможных колебаний и частично заморожены высокочастотные. Этим объясняется хорошее соответствие экспериментальных величин $C_{\text{lat}}(T)$ расчетным данным в модели независимых подрешеток, в том числе в области некоторой аномалии решеточной теплоемкости при T = 40-80 K.

При более высоких температурах возрастает влияние высокочастотных колебаний, обусловленных связями М-В* и В-В. Поэтому при температурах 60–300 К модель МВ* позволяет получить результаты, близкие к экспериментальным. В области температур выше 100–200 К определяющую роль играют колебания атомов бора.

Удовлетворительное количественное описание температурной зависимости решеточной теплоемкости $C_{\text{lat}}(T)$ при температурах 50-300 К и более высоких, как в модели МВ* + В, так и в приближении независимых подрешеток, объясняется тем, что: 1) величина Θ_M в модели независимых подрешеток приблизительно в три раза ниже Θ_{MB^*} , масса псевдоатома $B^* = B_6$ значительно превосходит массу атома бора и приблизительно в 2.5 раза меньше атома металла; это обстоятельство сближает величины энергий на связах М-М и М-В*, 2) при температурах ниже $T = 100 \, \text{K}$ определяющими ход теплоемкости являются низкие частоты колебаний атомов металла, имеющие близке величины как в одной, так и в другой моделях; 3) характеристические температуры бора в обеих моделях близки; 4) ход кривой $C_{\text{lat}}(T)$ слабо зависит от особенностей фононного спектра.

Отметим, что, несмотря на близкие результаты применения моделей независимых подрешеток М + В и модели МВ* + В, более общей является вторая из них. Помимо связей М-М в ней учтена и связь М-В, которая в гексаборидах, естественно, имеет место. Она не учитывается в первой модели вследствие относительной малости. В ряде термодинамических работ [12–15] принимается, что в высших боридах связь металлметалл не играет существенной роли. Результаты настоящего исследования показывают, что связь металлметалл в гексаборидах РЗЭ не играет основной роли при повышенных температурах. Однако в области низких температур (ниже 100 K) влияние этой связи является преобладающим.

Список литературы

- [1] Дж. Эмсли. Элементы. Мир, М. (1993). 257 с.
- [2] Г.В. Самсонов, Т.И. Серебрякова, В.А. Неронов. Бориды. Атомиздат, М. (1975).
- [3] В.В. Новиков. ФТТ 43, 2, 289 (2001).
- [4] S. Kunii. J. Phys. Soc. Jap. 57, 361 (1998).
- [5] De Launey. Sol. Stat. Phys. 2, 219 (1956).
- [6] S.L. Upadhyaya, J.L. Upadhyaya, R. Shyam, Phys. Rev. B44, 1, 122 (1991).
- [7] Н.Н. Сирота, И.М. Сирота, Т.М. Сошнина, Т.Д. Соколовский. Докл. АН **373**, *6*, 750 (2000).
- [8] R. Furth. Proc of Roy. Soc. A193, 87 (1994).
- [9] S. Nakamura, T. Goto, S. Kunii, K. Iwashita, A. Tamaki. J. Phys. Soc. Jap. 67, 2, 623 (1994).
- [10] Н.Н. Сирота, В.В. Новиков, А.В. Новиков. ФТТ **42**, *11*, 2033 (2000).
- [11] Физико-химические свойства элементов. Справочник / Под ред. Г.В. Самсонова. Наук. думка, Киев (1965). 807 с.
- [12] Л.А. Резницкий. ЖФХ **LX1**, 7, 1800 (1987).
- [13] S.V.M. Meshel, O.J. Klepa. J. Alloys Comp. 221, 37 (1995).
- [14] Л.А. Резницкий. ЖФХ 68, 5, 945 (1994).
- [15] Л.А. Резницкий. ЖФХ 71, 4, 765 (1987).