Сегнетоэлектрические пленки титаната свинца на монокристаллическом кремнии

© А.С. Сидоркин, А.С. Сигов*, А.М. Ховив, О.Б. Яценко, В.А. Логачева

Воронежский государственный университет, 394693 Воронеж, Россия * Московский институт радиотехники, электроники и автоматики, 117454 Москва, Россия

(Поступила в Редакцию 14 мая 2001 г. В окончательной редакции 30 июля 2001 г.)

> Изучены фазовые превращения, происходящие в тонкопленочных структурах Pb/Ti/Si и Ti/Pb/Si при послойном магнетронном напылении свинца и титана на подложку монокристаллического кремния и последующем отжиге в атмосфере кислорода. Показано, что диэлектрические свойства пленок зависят от последовательности напыления указанных металлических слоев. Сегнетоэлектрическими свойствами обладали пленки толщиной порядка 3000 nm, полученные в процессе двухступенчатого отжига при $T_1 = 473$ K и $T_2 = 973$ K в течение 10 min тонкопленочной гетероструктуры Pb/Ti/Si с внешним слоем свинца. Значения коэрцитивного поля и спонтанной поляризации для такой пленки составляли $E_c = 4.8$ kV/cm, $P_s = 16.8 \,\mu$ C/cm². Пленки, полученные в результате отжига тонкопленочной гетероструктуры Ti/Pb/Si с внешним слоем титана, проявляли свойства типичного диэлектрика и не обладали сегнетоэлектрическими свойствами.

> Работа выполнена при поддержке гранта Нидерландской организации по научным исследованиям (NWO) "Nonlinear dielectric films for nanotechnology" и гранта Российского фонда фундаментальных исследований № 01-02-16828.

В настоящее время закладываются основы принципиально нового направления функциональной электроники. Это направление предполагает, что элементы, созданные в едином технологическом цикле и на базе определенного круга многофункциональных материалов, проявляют важное фундаментальное свойство — нелинейную зависимость параметров от внешнего воздействия. К таким материалам относятся тонкие пленки PbTiO₃. Свойства пленок PbTiO₃, такие как высокая остаточная поляризация, низкое коэрцитивное поле, высокая диэлектрическая проницаемость, низкие диэлектрические потери, высокое пробивное напряжение, хорошие акустические характеристики, находят применение при создании устройств энергонезависимой памяти, динамической памяти с произвольной выборкой, конденсаторов, волноводов, разнообразных акустооптических устройств, изменяющих заданным образом спектральный состав, амплитуду и направление распространения светового сигнала [1-3].

Зависимость свойств тонких пленок титаната свинца от их структуры (размера зерен, степени пористости, состояния границы раздела пленка–подложка), определяемой условиями получения, очень велика. Это приводит к существенному различию в поведении параметров массивных и пленочных образцов, а также к значительному разбросу характеристик самих пленок, полученных разными методами. Так, например, пленки со структурой перовскита, полученные методом MOCVD при температуре синтеза $T = 450^{\circ}$ С, в зависимости от типа подложки имели различные диэлектрические свойства [4]. Диэлектрическая константа для пленки PbTiO₃, выращенной на кремнии, имела низкое значение $\varepsilon = 78$. Напротив, у пленки PbTiO₃, выращенной на кремнии с подслоем TiO₂, диэлектрическая константа имела относительно большое значение $\varepsilon = 120$. По данным Оже-спектроскопии указанная пленка имела стехиометрический состав, а присутствие на границе раздела пленка–подложка подслоя TiO₂ препятствовала взаимной диффузии Si и Pb. Диэлектрическая константа пленки PbTiO₃ в структуре Pt/PbTiO₃/Pt/SiO₂/Si составляла $\varepsilon = 150$, а C-V-кривая не проявляла характерной для сегнетоэлектрической пленки в структуре металл/сегнетоэлектрик/металл формы "баттерфляй" [4].

Пленки титаната свинца, полученные осаждением по золь-гель-технологии на проводящие пленки LaNiO₃ [5], проявляли сегнетоэлектрические свойства со следующими значениями остаточной поляризации и коэрцитивного поля: $P_s = 9.0 \,\mu\text{C/cm}^2$, $E_c = 40 \,\text{kV/cm}$. Для объемного монокристаллического образца титаната свинца $P_s = 75 \,\mu\text{C/cm}^2$, $E_c = 6.75 \,\text{kV/cm}$. Пленки PbTiO₃ на проводящем слое оксида индия–олова (ITO), полученные авторами [6] методом MOCVD, по данным I-V и C-V-измерений, проявляли свойства типичного диэлектрика в металл–диэлектрик–металл-конденсаторе Au/PbTiO₃/ITO. Результаты этих электрофизических измерений авторы объясняют стехиометрическим составом пленки (по данным Оже-спектроскопии) и хорошей поверхностной морфологией.

Пленки, полученные нами ранее [7] с помощью отжига структуры Ti/Pb/Si (100), не проявляли ярко выраженных сегнетоэлектрических свойств, хотя и состояли из титанатных фаз. В настоящей работе показано, что микроструктура, фазовый состав и диэлектрические свойства пленок титаната свинца, полученных путем оксидирования указанных тонкопленочных структур, непосредственно зависят от последовательности напыления металлических слоев на поверхность монокристаллического кремния.

1. Методика измерений

Тонкопленочную металлическую композицию получали методом магнетронного напыления слоев металлов Ті и Рb из двух раздельных магнетронов в едином технологическом цикле, предварительно откачивая камеру до давления $P = 0.33 \cdot 10^{-2}$ Ра. В качестве распыляющего газа применяли аргон. Скорость напыления титана при рабочем давлении P = 0.16 Ра, токе анода I = 0.7 А составила 0.55 nm/s, скорость напыления свинца при P = 0.27 Ра, I = 0.2 А была равна 2.5 nm/s. Раздельное напыление металлов позволило формировать структуры заданной толщины с разной последовательностью металлических слоев. В качестве подложек использовался монокристаллический Si (100) марки ЭКЭФ-500. Объектами исследования были тонкопленочные структуры двух типов (Pb/Ti/Si и Ti/Pb/Si) с толщинами слоев металлов $\sim 500\,\text{nm}.$

Термообработка тонкопленочных структур свинецтитан (титан-свинец) осуществлялась в кварцевом реакторе печи резисторного нагрева при $T_1 = 473 \, {\rm K}$ и T₂ = 973 К с продолжительностью каждой стадии отжига, равной 10 min, при расходе кислорода 40 L/h. Фазовый состав пленок определялся методом рентгеновской дифракции на дифрактометре ДРОН-3М (излучение CuK_a) в интервале углов 20-65°. Поверхностная морфология пленок и граница раздела пленка-подложка наблюдались с помощью растровой электронной микроскопии. Для измерения электрофизических свойств пленок методом магнетронного напыления в вакууме через маску с отверстиями 1 mm наносился верхний никелевый электрод, нижний контакт к кремниевой пластине осуществлялся индий-галлиевой эвтектикой. Петли диэлектрического гистерезиса измерялись при напряжении 0.5 V и измерительной частоте 50 Hz.

2. Результаты и их обсуждение

2.1. Зависимость фазового состава И структуры пленок от порядка чередования металлических слоев. На рис. 1, а, в представлены микрофотографии скола исходных (до отжига) тонкопленочных гетероструктур Pb/Ti/Si и Ti/Pb/Si, полученных магнетронным напылением на поверхность монокристаллического кремния. Пленки с нижним слоем титана обладают лучшей адгезией к поверхности кремния по сравнению с пленками с нижним слоем свинца. Пленки с верхним слоем свинца имеют крупнокристаллическую структуру с размером зерен ~ 1000 nm. В структурах Ті/Pb/Si верхний слой титана сглаживает поверхности зерен крупнокристаллического свинца. На дифрактограммах исходных структур Pb/Ti/Si (рис. 2, a, b) присутству-

Рис. 1. Микрофотографии поперечного скола тонкопленочных гетероструктур Pb/Ti/Si (*a*) и Ti/Pb/Si (*b*) после магнетронного напыления.

00000

N 2

<u>1</u> μm

ют лишь линии свинца с преимущественной ориентацией в направлении (111). Отсутствие линий титана свидетельствует о его мелкодисперсной структуре, рентгеноаморфной для метода РФА. На дифрактограммах гетероструктур Ti/Pb/Si (рис. 2, b) с верхним слоем титана наблюдается разрушение текстуры свинца, появляются дополнительные линии в направлениях (200), (220).

Отжиг исходных структур осуществлялся в одинаковых режимах: начальном при $T_1 = 473$ K, стабилизирующем исходные структуры, и окончательном при $T_2 = 973$ K, формирующем оксидные пленки сложного состава. Дифрактограмма пленки, полученной в результате отжига тонкопленочной структуры Pb/Ti/Si, представлена на рис. 3. Основной набор рефлексов соответствует тетрагональной фазе PbTiO₃; (101), (110), (111), (002), (102). Отметим, что при кратковременном отжиге в течение 10 min (T = 973 K) на дифрактограмме остаются рефлексы, отвечающие оксидам свинца Pb₃O₄,

Рис. 2. Дифрактограммы тонкопленочных гетероструктур Pb/Ti/Si (*a*) и Ti/Pb/Si (*b*) до отжига.

Рис. 3. Дифрактограмма тонкопленочной гетероструктуры Pb/Ti/Si после отжига в атмосфере кислорода при $T_1 = 473$ K, $T_2 = 973$ K в течение 10 min.

РbO, и один рефлекс незначительной интенсивности ($\sim 10\%$), соответствующий оксиду титана TiO₂ в структуре рутила. На рис. 4 представлены данные электронной микроскопии поперечного скола пленки PbTiO₃ на подложке монокристаллического кремния, полученной в результате отжига тонкопленочной структуры Pb/Ti/Si. РЭМ-анализ показал, что толщина пленки составляет

3280 nm, а средний размер зерен ~ 580 nm. Микрофотографии свидетельствуют о поликристаллической плотной (без кратеров и трещин) структуре пленки, в которой зерна имеют форму, близкую к прямоугольной, и ориентированы случайным образом. На границе раздела пленка-подложка присутствует переходной слой толщиной ~ 1000 nm, отражающий процесс взаимной диффузии Ti и Si. Отсутствие рефлексов, отвечающих силицидным фазам титана, позволяет предположить, что переходный слой представляет собой твердый раствор Ti–Si.

Отжиг структуры Ti/Pb/Si при тех же условиях приводит к формированию пленки, в которой основной фазой является оксид свинца Pb₂O₃. При температуре $T_2 = 973$ K в пленке детектируются рефлексы, соответствующие титанату свинца тетрагональной структуры: (100), (110), (111), а также пирохлору PbTi₂O₇ (301) и рутилу TiO₂ (рис. 5). Микрофотография скола плен-

Рис. 4. Микрофотографии поперечного скола тонкопленочной гетероструктуры Pb/Ti/Si после отжига в атмосфере кислорода при $T_1 = 473$ K, $T_2 = 973$ K в течение 10 min.

Рис. 5. Дифрактограмма тонкопленочной гетероструктуры Ti/Pb/Si после отжига в атмосфере кислорода при $T_1 = 473$ K, $T_2 = 973$ K в течение 10 min.

Рис. 6. Микрофотография поперечного скола тонкопленочной гетероструктуры Ti/Pb/Si после отжига в атмосфере кислорода при $T_1 = 473$ K, $T_2 = 973$ K в течение 10 min.

Рис. 7. Дифрактограмма тонкопленочной гетероструктуры Ti/Pb/Si после отжига в атмосфере кислорода при $T_1 = 473$ K, $T_2 = 973$ K и дополнительного отжига при $T_3 = 1173$ K в течение 10 min.

ки, представленная на рис. 6, показывает значительные отличия в ее структуре и морфологии по сравнению с пленкой, полученной оксидированием тонкопленочной гетероструктуры Pb/Ti/Si. В структуре пленки присутствуют два слоя, между которыми нет хорошего взаимодействия. Межфазная граница пленка-подложка резкая, без взаимной диффузии Pb и Si. В пленке еще не происходит образования зерен определенной формы. Температура 973 К оказалась недостаточной для формирования пленки, содержащей титанат свинца в качестве основной фазы.

На рис. 7 представлена дифрактограмма пленки после дополнительного отжига при T = 1173 К в течение еще 10 min. Основной пик между $2\Theta = 36-39^{\circ}$, соответствующий оксиду свинца Pb_2O_3 , при увеличении температуры распадается на два рефлекса PbTiO₃; (101), (110); остальные рефлексы титаната свинца становятся

ýже. При этом их интенсивность увеличивается, что свидетельствует о возрастании степени кристалличности пленки с повышением температуры отжига до 1173 К. Таким образом, формирование пленки титаната свинца в процессе отжига тонкопленочной гетероструктуры Ti/Pb/Si происходит при температуре на 200° больше, чем при отжиге Pb/Ti/Si. Необходимо отметить, что кроме титаната свинца тетрагональной структуры в пленке присутствует TiO₂.

Как видно из данных, полученных при исследовании фазового состава и структуры пленок, формирующихся при оксидировании тонкопленочных гетероструктур Pb/Ti/Si и Ti/Pb/Si, последовательность чередования металлических слоев Pb и Ti задает реакционную способность всей тонкопленочной гетероструктуры в первую очередь при взаимодействии этих слоев с кислородом и кремнием, а затем и между собой. Структура Pb/Ti/Si химически более активна, чем Ti/Pb/Si. Взаимодействие слоя титана с поверхностью кремния при нагреве начинается с возникновения напряжений на межфазной границе, которые связаны с несовпадением симметрии и параметров кристаллических решеток титана и кремния и с отличием коэффициентов термического расширения контактирующих слоев. Наличие указанных напряжений активизирует структуры взаимодействующих слоев, способствует разрыву связей и диффузии атомов Si в пленку титана. Напряжения кристаллических решеток при взаимодействии титана с кремнием распространяются и на области, прилегающие к их межфазной границе, оказывая активирующее влияние на взаимодействия во всей гетерогенной тонкопленочной структуре [8].

В том случае, если с кремнием контактирует свинец (титан расположен сверху), свинец активно блокирует все каналы взаимодействия титана и кремния и сам не взаимодействует с последним. Кроме того, пластичный свинец не вызывает в системе при нагреве тех напряжений, которые создает титан. Поэтому для формирования фаз, которые образуются при расположении титана на кремнии, в данном случае систему необходимо нагревать до значительно более высоких температур.

2.2. Диэлектрические свойства пленок. Петли диэлектрического гистерезиса, полученные после отжига структур Pb/Ti/Si по схеме Сойера-Тауэра, имели вид, характерный для сегнетоэлектриков (рис. 8). Обработка указанных петель, в частности, для пленок толщиной 3280 nm дает значения коэрцитивного поля $E_c = 4.8 \, \text{kV/cm}$ и спонтанной поляризации $P_s = 16.8 \,\mu \text{C/cm}^2$. Отметим, что величина спонтанной поляризации здесь оказывается выше, чем для пленок титаната свинца толщиной 1000 nm, полученных модифицированным золь-гель-методом на платине $(P_s = 3.5 \,\mu \text{C/cm}^2)$ [9], и для пленок титаната свинца толщиной 380 nm на Pt (111)/Ti/SiO₂/Si (100), полученных осаждением металлоорганических соединений из раствора ($P_s = 13.62 \,\mu\text{C/cm}^2$) [10].

Пленки, полученные отжигом тонкопленочных гетероструктур Ti/Pb/Si, не проявляли сегнетоэлектрического

Рис. 8. Петля диэлектрического гистерезиса тонкопленочной гетероструктуры Pb/Ti/Si после отжига в атмосфере кислорода при $T_1 = 473$ K, $T_2 = 973$ K в течение 10 min.

поведения даже при температуре отжига T = 1173 K, хотя в них методом РФА в качестве основной фазы и детектируется PbTiO₃.

Проведенные исследования позволяют сделать следующие выводы. Состав, кристаллическая структура и электрические свойства пленок после отжига при прочих равных условиях контролируются порядком чередования исходных слоев Pb и Ti на монокристаллическом кремнии при их магнетронном напылении. В случае структуры свинец-титан-кремний оксиды свинца, которые формируются на верхней границе раздела, не только не препятствуют проникновению кислорода к нижним слоям, но и, наоборот, передают кислород титану, например за счет восстановления оксида свинца металлическим титаном. Поскольку оксидирование осуществляется в потоке кислорода, происходит многократное окисление свинца и передача кислорода. Часть титана остается в металлическом состоянии, что обеспечивается, с одной стороны, оксидированием внешнего слоя свинца, а с другой — диффузией кремния в титан, которая блокирует каналы для диффузии кислорода. В результате снижается температура образования титаната и формируются гетероструктуры на основе титаната свинца с оксидами свинца, проявляющие ярко выраженные сегнетоэлектрические свойства. В случае структуры титансвинец-кремний происходит практически независимое формирование оксидов титана и свинца на кремнии с последующим их взаимодействием с образованием титаната свинца. Данное обстоятельство приводит к тому, что в конечном состоянии гетероструктура наряду с титанатом свинца содержит оксид титана и проявляет в целом диэлектрические свойства.

Таким образом, изменяя порядок чередования слоев свинца и титана, можно активизировать или тормозить воздействие кислорода и кремния и управлять составом, структурой и свойствами пленок, образующихся в процессе отжига указанных структур.

Список литературы

- X. Meng, Z. Huang, H. Ye, J. Cheng, P. Yang, J. Chu. Mater. Res. Soc. Symp. 541, 723 (1999).
- [2] A. Okada. J. Appl. Phys., 48, 7, 2905 (1997).
- [3] T.L. Ren, L.T. Zhang, L.T. Liu, Z.J. Li. J. Phys. D: Appl. Phys. 33, 15, L77 (2000).
- [4] C. Byun, J.W. Jang, Y.J. Cho, K.J. Lee, B.W. Lee. Thin Solid Films 324, 94 (1998).
- [5] A. li, D. Wu, C.Z. Ge, H. Wang, Min Wang, Mu Wan, Z. Liu, N. Ming. Thin Solid Films **375**, 220 (2000).
- [6] Y.S. Yoon, S.S. Yom, T.W. Kim, D.U. Lee, C.D. Kim. Appl. Surf. Sci. 93, 285 (1996).
- [7] А.С. Сидоркин, А.С. Сигов, А.М. Ховив, С.О. Яценко, О.Б. Яценко. ФТТ 42, 4, 727 (2000).
- [8] Ш. Мьюрарка. Силициды для СБИС. Мир, М.: (1986). 176 с.
- [9] П.А. Щеглов, С.А. Меньших, Л.Ф. Рыбакова, Ю.Я. Тамашпольский. Неорган. материалы 36, 4, 470 (2000).
- [10] F.M. Pontes, J.H.G. Rangel, E.R. Leite, E. Longo, J.A. Varela, E.B. Araujo, J.A. Eiras. Thin solid Films 366, 232 (2000).