Анализ спектральных особенностей оптических констант фуллереновых и галогенофуллереновых пленок вблизи края поглощения

© Т.Л. Макарова, И.Б. Захарова*

Физико-технический институт им. А.Ф. Иоффе Российской академии наук, 194021 Санкт-Петербург, Россия *Санкт-Петербургский государственный технический университет, 195251 Санкт-Петербург, Россия

E-mail: tatiana.makarova@physics.umu.se

Представлены результаты измерений ИК-спектров и спектральных зависимостей коэффициента экстинкции в диапазоне 1.2–4.2 eV для пленок $C_{60}Br_x$ в сравнении с чистыми пленками C_{60} . Модификация электронного спектра вблизи края поглощения связана с различной структурой пленок и подавлением экситона с переносом заряда. В пленках $C_{60}Br_x$ возникает дополнительное поглощение ниже фундаментального порога поглощения C_{60} .

Работа выполнена при поддержке Российского фонда фундаментальных исследований (грант 99-02-18170).

В настоящее время известно несколько стабильных химических соединений фуллеренов: C₆₀Br₆, C₆₀Br₈, C₆₀Br₂₄, которые представляют собой молекулы с ковалентными связями C–Br, образующимися путем разрыва некоторых двойных связей в молекуле C₆₀ [1,2]. Наиболее изученное из них — C₆₀Br₂₄ — имеет сферически-симметричную структуру, в которой атом галогена присоединен к разорванной двойной связи

кластера C_{60} . Экспериментальные исследования физических свойств и электронной структуры материала осложнены термической нестабильностью $C_{60}Br_{24}$, что затрудняет получение тонких пленок $C_{60}Br_x$ и кристаллов достаточных размеров [3]. Нужны особые условия для предотвращения разложения материала в процессе напыления тонких пленок или выращивания кристаллов.

Сравнительные спектры коэффициента экстинкции k чистых пленок С₆₀ (№ 97-20) и С₆₀Вг_x (№ В-19 и В-26).

_

479

В данной работе пленки были получены квазиравновесными методами вакуумного напыления: методом быстрого испарения в квазизамкнутом объеме [4], а также методом горячей стенки. Исходной шихтой для получения пленок служил микрокристаллический порошок С₆₀Вr₂₄ желто-коричневого цвета с размерами зерен 5-10 µm. Элементный состав шихты определялся методом пирогидролиза. Для изготовления реперных пленок использовался порошок С₆₀ со степенью очистки 99.98%. В качестве подложек применялись KBr (100) и кремний КДБ-10 (111). Пленки С₆₀ конденсировались при температуре подложек 250-300°С (что обеспечивало совершенную кристаллическую структуру), в то время как пленки галогенофуллеренов для предотвращения термического разложения — при температуре подложек не выше 100-120°С с высокой скоростью (100-200 nm/min). При этом процесс испарения материала C₆₀Br₂₄ можно представить как испарение двухкомпонентной смеси, в которой один компонент (Br) является легко испаряемым, а другой (С₆₀) — трудно испаряемым. Известно, что C₆₀Br₂₄ разлагается при температуре около 170°C на С₆₀ и Br₂ [3], в то время как давление насыщенных паров С₆₀ достигает величины, достаточной для эффективного испарения, только при 400-500°С. Ранее [4] нами было показано, что при конденсации в таких условиях получаются пленки переменного состава с большим содержанием брома у поверхности раздела, и при осаждении многокомпонентного пара на подложку может происходить химическое связывание молекул фуллеренов и брома в соответствии с давлением насыщенного пара каждого из компонентов.

Кристаллическая структура и морфология поверхности полученных пленок были определены с помощью сканирующей электронной микроскопии. Пленки С₆₀ на кремнии являются поликристаллическими с размерами зерна, близким к толщине пленок (300-500 nm). Пленки галогенофуллеренов являются аморфными либо мелкокристаллическими, поскольку осаждение материала происходило на более холодные подложки.

Нами был измерен ИК-спектр исходной шихты C₆₀Br₂₄ и пленок C₆₀Br_x. В таблице представлено сравнение литературных данных о линиях поглощения известных стабильных соединений фуллерена с бромом с экспериментальными данными. В спектрах пленок присутствуют линии поглощения, характерные для химических соединений C₆₀Br₂₄, C₆₀Br₈ и C₆₀Br₆, что позволяет предполагать формирование в пленках химической связи C-Br.

Методом спектральной эллипсометрии в диапазоне энергий фотонов 1.2-4.2 eV были определены энергии основных оптических переходов в C₆₀ и C₆₀Br_x в твердом состоянии. Рассмотрение края оптического поглощения в С₆₀ требует учета как внутримолекулярных, так и межмолекулярных электронных процессов. Первые приводят к возникновению экситонов Френкеля, вторые — экситонов с переносом заряда, когда два заряда расположены на соседних молекулях.

]	Положен	ие ИК-мо	ды, cm^{-1}	
Литературные данные [1–3]			Результаты наших измерений		Основные
C ₆₀ Br ₂₄	C ₆₀ Br ₈	C ₆₀ Br ₆	С ₆₀ Вr ₂₄ , шихта	Пленка С ₆₀ Br _x	ИК-моды С ₆₀
	526	529		526	526
		538			
546	546	551		546	
	563	562			
		575		576	576
606	610	606	*	604	
		661			
		679			
	706	708			
720	718		720		
		742			
751	750	751	750	752	
	766				
776			776	776	
		801			
		812			
	820	829			
849	845	850	850		
912	0.47		914	914	
946	947	945			
	963		970	970	
1050	1047				
	1000	1065			
	1086	1085			
1117	1140	1150	1146		
	1142	1152	1146		1100
	1182	1198			1183
1244	1250	1265	1070		
1 400	1 400	1291	1270	1.400	1.420
1400	1422	1421	1.4.40	1420	1429
			1440	1435	
		1 470		1455	
*	24-	1473	1.000	1(04	
*	*	*	1600	1604	
			1650		

 $C_{60}Br_8$, $C_{60}Br_6$ и пленок $C_{60}Br_x$

Сравнение наблюдаемых линий поглощения молекул C₆₀Br₂₄,

Спектр коэффициента экстинкции реперного образца С₆₀ представлен на рисунке, в сравнении со спектрами $C_{60}Br_x$. Разложение на лоренцевы составляющие позволяет выделить для C₆₀ три оптических перехода: 3.52 eV (соответствующий переходу $h_g \rightarrow t_{1u}$), 2.64 eV ($h_u \rightarrow t_{1g}$) и, наконец, 2.94 eV. Зона 2.94 eV не соответствует ни одному переходу в молекуле С₆₀, и, по-видимому, ее можно связать с проявлением экситона с переносом заряда, поскольку ее энергия выше энергии низшего экситона Френкеля. Общей чертой является наличие зоны поглощения 3.52 eV, совпадающей даже по интенсивности во всех трех спектрах, и зоны 2.64 eV. Однако сила осциллятора соответствующего перехода $h_{\mu} \rightarrow t_{1\sigma}$ в спектре бромсодержащих пленок значительно ниже, чем у исходного фуллерена. Важным различием спектров можно считать то, что в пленках $C_{60}Br_x$ практически подавляется переход с энергией 2.94 eV, т.е. экситон с переносом заряда. Однако дополнительные исследования показали, что величина этого пика и в случае чистых пленок C_{60} связана со структурой пленок и сильно зависит от температуры конденсации образцов, поэтому исчезновение этого пика в галогеносодержащих пленках, скорее всего, связано с их аморфностью. Особенностью пленок, связанной с наличием брома в $C_{60}Br_x$, является дополнительная область поглощения ниже 2 eV, отсутствующая в спектре C_{60} . Поглощение оказывается ненулевым вплоть до энергии ~ 1.3 eV, что совпадает с теоретическими оценками энергетического зазора HOMO-LUMO (1.5 eV).

Таким образом, показано, что при ухудшении структуры тонких пленок фуллерена происходит существенная модификация электронного спектра энергий, связанная с подавлением экситона с переносом заряда. В пленках состава $C_{60}Br_x$ обнаружено возникновение дополнительных электронных переходов в области энергий ниже фундаментального порога поглощения C_{60} .

Список литературы

- P.L. Birkett, P.B. Hitchcock, H.W. Kroto, R. Taylor, D.R.M. Walton. Nature **357**, 479 (1992).
- [2] F.N. Tebbe, R.L. Harlow, D.B. Chase, D.L. Thorn, G.C. Campbell, J.C. Calabrese, N. Herron, R.J. Young, E. Wasserman. Science 256, 822 (1922).
- [3] A. Djordjevic, M. Vojinovic-Miloradov, N. Petranovic, A. Devecerski, D. Lazar, B. Ribar. Fullerene Sci. Technol. 6, 6899 (1998).
- [4] T.L. Makarova, L.B. Zakharova, I.T. Serenkov, V.I. Sakharov. Mol. Mater. 13, 105 (2000).