Глубокие уровни комплексов вакансий азота в графитоподобном нитриде бора

© С.Н. Гриняев, Ф.В. Конусов, В.В. Лопатин

Научно-исследовательский институт высоких напряжений при Томском политехническом университете, 634050 Томск, Россия

E-mail: kabyshev@hvd.tpu.ru

(Поступила в Редакцию 5 апреля 2001 г.)

Представлены результаты теоретических исследований методами модельного псевдопотенциала и расширенной элементарной ячейки глубоких уровней вакансий азота, малых кластеров из ди- и тривакансий азота, включающих ближайшие дефекты в одном слое графитоподобного нитрида бора. На основе рассчитанных спектров и сил осцилляторов интерпретированы локальные полосы оптического поглощения, люминесценции, фотопроводимости в -пиролитическом нитриде бора до облучения и после облучения быстрыми нейтронами, протонами и ионами углерода (50–150 keV). Идентифицированы неглубокие уровни активации термостимулированных люминесценции и проводимости до и после облучения.

Работа выполнена в рамках проекта программы "Университеты России — фундаментальные исследования" (проект № 06.01.05).

Несмотря на постоянный интерес к нитриду бора как многофункциональному материалу, обладающему устойчивым к экстремальным внешним воздействиям свойствами [1,2], природа его собственных и примесных дефектов изучена до сих пор недостаточно. Вместе с тем из-за технологических условий синтеза получаемые образцы нитрида бора содержат различные по своему характеру дефекты, вызывающие важные особенности в их физических свойствах. Например, в пиролитическом нитриде бора h-BN дефекты приводят к красному сдвигу края оптического поглощения, меняют тип проводимости, обусловливают тонкую структуру спектра электронного парамагнитного резонанса (ЭПР) и т.д. Многообразие дефектов и их комплексов затрудняет идентификацию порождаемых ими глубоких уровней и требует проведения экспериментальных и теоретических исследований с применением различных методик.

Среди дефектов особую роль играет вакансия азота V_N , поскольку для стехиометрического состава пиролитического *h*-BN характерен заметный дефицит азота, связанный с экспериментально высокой температурой синтеза (~ 2300 K) и небольшой энергией связи V_N , о чем свидетельствуют результаты исследований родственных кристаллов *w*-GaN и *w*-InN [3–5]. Ранее электронные состояния локализованных центров в нитриде бора изучались методами сильной связи [6,7], Хюккеля [8–9] и присоединенных плоских волн [10]. В кубической модификации *c*-Bn нерелаксированная нейтральная вакансия азота создает полностью заполненное *s*-подобное состояние вблизи потолка валентной зоны (B3) и частично заполненное резонансное состояние *p*-типа на краю зоны проводимости (3П) [10].

Для графитоподобного *h*-BN характера sp^2 -гибридизация связей, приводящая к модификации глубоких уровней, порождаемых V_N . Из трех оборванных связей, вызванных вакансий азота, в запрещенной зоне (33) *h*-BN формируются заполненное синглетное состояние A_1 и двукратно вырожденное состояние *E* с одним неспаренным электроном [6,7].

Сравнение результатов, полученных разными методами, позволяет установить справедливость используемых приближений. В частности, в недавних исследованиях методом псевдопотенциала было показано [3,4] существование резонансных состояний, создаваемых нейтральной вакансией азота в ВЗ (синглет) и ЗП (квазитриплет) w-GaN, что противоречит данным предыдущих расчетов методом сильной связи [11,12], в которых синглетное состояние оказывается расположенным вблизи ЗП. Причина расхождений кроется в малой величине расщепления между глубокими уровнями, которую дает метод сильной связи для анионных вакансий, и обусловлена, как и для других соединений [13,14], ограниченностью используемого базиса и пренебрежением существенными "взаимодействиями". Поскольку дефектные состояния в трехмерном *h*-BN до сих пор изучались только методом сильной связи, возникает необходимость в проведении исследований на основе более точных подходов.

В настоящей работе глубокие уровни вакансий азота в *h*-BN изучены с использованием методов псевдопотенциала и расширенной элементарной ячейки (РЭЯ) аналогично [15]. Этот подход позволяет получить удовлетворительное описание электронного спектра как идеального, так и дефектного кристалла. Наряду с одиночной вакансией азота рассмотрены также малые кластеры из ди- и тривакансий азота, включающих ближайшие дефекты. Образование таких комплексов возможно из-за большой концентрации V_N и значительной энергии связи кластеров [3]. На основе рассчитанных спектров и сил осцилляторов проведена интерпретация особенностей оптических характеристик пиролитического *h*-BN.

1. Метод расчета

Расчет глубоких уровней выполнен с применением достаточно большой РЭЯ $(4 \times 4 \times 2)$, содержащей 128 атомов, что позволило уменьшить дисперсию примесной зоны (для сравнения в работах [3–5] использовались РЭЯ, содержащие 32, 72 и 64 атома соответственно) и изучить состояния сложных дефектов. Расширение ячей-ки вдоль гексагональной оси в меньшее число раз, чем в плоскости слоев, сделано из-за относительно слабого межслоевого взаимодействия в *h*-BN [16].

Согласно [17], вершина ВЗ идеального *h*-ВN находится в симметричной точке зоны Бриллюэна *H*, дно ЗП — в точке *M*, ширина непрямой ЗЗ составляет 4.65 eV. В точке Г последнее заполненное состояние с симметрией Γ'_5 расположено на 0.9 eV ниже потолка ВЗ. Дисперсия зон в направлении гексагональной оси (в частности, вдоль линии *U*, соединяющей симметричные точки *L* и *M*) слабая.

Электронный спектр и волновые функции дефектного кристалла находились в базисе из 30 нижних блоховских состояний идеального кристалла h-BN методом модельного псевдопотенциала [17]. Вакансии азота располагались в анионных узлах идеальной решетки, влиянием дисторсии и релаксацией решетки пренебрегалось. Глубокие уровни отождествлялись с состоянием дефектного кристалла при волновом векторе сверхрешетки, равном нулю. Точке Г сверхрешетки эквиваленты симметричные точки Γ , *L*, *M*, *A* и точки на линиях *R*, *S*, *T*, ∑ зоны Бриллюэна идеального кристалла. Потенциал нейтральной вакансии азота строился аналогично [15] из экранированного диэлектрической проницаемостью псевдопотенциала азота [18], определенного по экспериментальным данным и результатам ab initio расчетов зонной структуры.

Для проверки метода были проведены расчеты глубоких уровней, порождаемых изолированной вакансией азота, в более изученных кристаллах w-GaN и c-BN. Зонная структура и волновые функции идеального w-GaN рассчитывались с применением псевдопотенциалов [18]. Глубокие уровни одиночной вакансии азота определялись с использованием РЭЯ $(4 \times 4 \times 2)$. Локализованные синглетное *s*-подобное состояние A₁ и квазитриплетное *p*-подобное состояние, связанные с V_N в *w*-GaN, в согласии с [4] получались резонансными состояниями, расположенными в ВЗ и ЗП. При переходе к структуре вюртцита сфалеритное состояние Т₂ расщепляется на А1- и Е-уровни, так что нижнее однократно занятое А-состояние находится на 0.2 (0.8) eV выше дна 3Π , а верхнее пустое состояние Е отстоит от него на 0.4 (0.5) eV (в скобках приведены значения из [4]). Зонная структура идеального кристалла *с*-ВN рассчитывалась методом модельного псевдопотенциала [17], глубокие уровни одиночной вакансии V_N находились с применением РЭЯ (4 × 4 × 4). Параметры модельных псевдопотенциалов ($V_0(B) = 0$, $R_m(B) = 2.5$, $\beta(B) = -15$, $V_0(N) = -4.8, R_m(N) = 2.15, \beta(N) = -15$ в атомных единицах $\hbar = m = e = 1$) определялись из условия подобия рассчитанного зонного спектра *c*-BN спектру, полученному методом LMTO–TB–NO–ES [10]. В этом случае энергии глубоких уровней идеальной вакансии азота в *c*-BN ($\varepsilon(A_1) = 0.95 \text{ eV}$, $\varepsilon(T_2) = 5.34 \text{ eV}$ относительно потолка B3 Γ_{15}^v) также соответствуют данным [10]. Поскольку положение глубоких уровней непосредственно зависит от потенциала дефекта, полученное согласие с результатами ab initio расчетов для кристаллов с разной структурой характеризует реалистичность использованной модели потенциала вакансии азота.

2. Результаты расчета

Вычисленные глубокие уровни h-BN с дефектами в окрестности 33 приведены на рис. 1. Изолированная нейтральная вакансия азота создает в 33 два глубоких уровня, отщепленных от ВЗ. Энергия нижнего уровня A_1 равна $\varepsilon = 3.75 \, \text{eV}$ (здесь и далее энергии отсчитаны относительно потолка ВЗ), на нем находится один неспаренный электрон, поэтому вакансия азота является донором. Незанятый уровень Е расположен вблизи дна 3Π ($\varepsilon = 4.41 \, \text{eV}$). Из анализа коэффициентов разложения локализованных состояний по волновым функциям идеального кристалла найдено, что оба уровня в основном построены из нижних состояний ЗП в точкх L и M, причем в уровень А1 вклад вносят антисимметричные относительно плоскости слоев *п*-состояния. Характер локализации функций глубоких уровней виден из карты зарядовой плотности (рис. 2). В сечении, параллельном гексагональной оси, максимумы плотности состояния А1 расположены около ближайших атомов бора, а также около атомов бора из следующей координационной сферы. В плоскости слоев функция состояния А1 равна нулю. Зарядовая плотность уровня Е локализована на оборванных связях. В направлении гексагональной оси функции обоих уровней затухают на половине расстояния между слоями.

Полученные результаты для одиночной вакансии азота отличаются от данных расчета [6], согласно которым

Рис. 1. Схема глубоких уровней *h*-BN с одной V_N , двумя 2- V_N и тремя 3- V_N вакансиями азота. Энергии отсчитываются относительно потолка валентной зоны. Сплошные горизонтальные отрезки отвечают краям запрещенной зоны. Стрелками показано заполнение последнего занятого уровня электронами.

Рис. 2. Контуры зарядовой плотности нижнего глубокого уровня A_1 изолированной вакансии азота в плоскости (yz). Квадратами показано положение атомов азота, треугольниками — атомов бора, символом V — вакансии азота. Значения плотности даны в единицах e/Ω_0 , Ω_0 — объем РЭЯ.

нижний уровень A_1 находится выше потолка ВЗ примерно на 1 eV и полностью заполнен, а уровень E отстоит от него на величину ~ 2.5 eV и занят одним электроном. Причина расхождений, вероятно, связана с различием в "мощности" дефектного потенциала. Проведенные расчеты с перенормированным потенциалом V_N показали, что схема уровней типа [6] воспроизводится, если потенциал вакансии азота взять более сильным (примерно в 2 раза). В этом случае, однако, не удается добиться согласия с результатами ab initio расчетов по уровням V_N в соединениях *c*-BN [10] и *w*-GaN [4].

Известно, что антисимметричный характер частично заполненного состояния A_1 изолированной вакансии азота не позволяет объяснить структуру из десяти резонансных пиков, обнаруживаемую в спектре ЭПР пиролитического *h*-BN [19,20]. Данные особенности связывают со сверхтонким взаимодействием спинового момента неспаренного электрона с моментами окружающих вакансию азота трех атомов бора. Необходимое для этого разрушение антисимметрии состояния A_1 возникает за счет влияния других дефектов, например межслоевых атомов углерода, как в модели *F*-центра [20], что приводит к появлению электронной плотности в области ядер бора и конечному спиновому взаимодействию. Далее показано, что подобную роль могут играть и комплексы из вакансий азота.

Дивакансия азота, состоящая из ближайших в плоскости слоев дефектов $(2-V_N)$, имеет пониженную симметрию по сравнению с одиночной вакансией. В результате "взаимодействия" состояний двух вакансий азота она создает в 33 h-BN четыре одномерных уровня. Нижний уровень A_1 ($\varepsilon = 1.41 \text{ eV}$) полностью заполнен и построен из состояний верхней валентной σ^+ -зоны, его зарядовая плотность ориентирована вдоль направления между вакансиями и максимальна на середине расстояния между ними (рис. 3). Следующие по энергии глубокие уровни пустые. Функция третьего уровня ($\varepsilon = 3.71 \, \text{eV}$) состоит почти из тех же σ^+ -состояний, но локализована в основном на оборванных связях. Характер распределения плотностй в вертикальной плоскости для первого и третьего уровней дивакансий можно восстановить, пользуясь аналогией с данными для одиночной вакансии и рис. 3. Второй ($\varepsilon = 3.42 \,\text{eV}$) и четвертый ($\varepsilon = 3.85 \,\text{eV}$) уровни дивакансии построены из π -состояний ВЗ и ЗП, поэтому их зарядовые плотности в плоскости слоев равны нулю. Дефекты, находящиеся в соседних слоях, слабо влияют друг на друга. Уровни дивакансии из таких дефектов почти вырождены (расщепление < 0.1 eV) и близки к уровням одиночной вакансии азота.

Тривакансии азота $(3-V_N)$ из трех ближайших дефектов V_N , лежащих в плоскости одного слоя в вершинах правильного треугольника, создает в 33 *h*-BN четыре уровня. Нижний уровень A_1 заполнен одним электроном и находится около потолка B3 ($\varepsilon = 0.15 \text{ eV}$), поэтому

Рис. 3. Контуры зарядовой плотности в плоскости (xy) глубоких уровней дивакансии азота: $a - A_1$ ($\varepsilon = 1.41 \text{ eV}$), $b - A_1$ ($\varepsilon = 3.71 \text{ eV}$).

Рис. 4. Контуры зарядовой плотности в плоскости (xy) нижнего глубокого уровня тривакансии азота A_1 ($\varepsilon = 0.15$ eV).

тривакансия азота является акцептором. Волновая функция этого уровня построена из σ -состояний ВЗ, максимумы зарядовой плотности локализованы на оборванных связях и в центре 3- $V_{\rm N}$. Из-за симметричного характера данного состояния для неспаренного электрона имеется небольшая, но конечная плотность вероятности нахождения в области ядер бора (рис. 4), поэтому тривакансия азота может выступать как парамагнитный центр. Влияние комплексов дефектов на характер ЭПР-сигнала ранее отмечалось в [21]. Незанятый электронами уровень E ($\varepsilon = 1.88 \, {\rm eV}$) состоит из σ^+ -состояний ВЗ. Уровни A_1 ($\varepsilon = 2.70 \, {\rm eV}$) и E ($\varepsilon = 3.93 \, {\rm eV}$) построены из π -состояний ВЗ и ЗП и имеют нулевые плотности в плоскости слоев.

Таким образом, за счет сильного "взаимодействия" состояний одиночных дефектов комплексы из ближайших вакансий азота создают серию глубоких уровней, перекрывающих 33 *h*-BN. С ростом размеров кластеров энергия последнего заполненного состояния понижается и происходит изменение характера дефектного центра — от донорного типа для изолированной вакансии до акцепторного типа для тривакансии.

Найденные глубокие уровни могут проявляться в различных физических свойствах. В частности, оптические переходы с их участием могут приводить к особенностям в спектральных характеристиках. Интенсивность межзонных переходов зависит от величины матричных элементов оператора импульса. Расчет этих элементов показал, что для одиночной вакансии азота и ее кластеров наиболее интенсивные переходы с глубоких уровней имеют место для световых волн, поляризованных перпендикулярно гексагональной оси. Для одиночной вакансии азота такие переходы возможны из верхних состояний ВЗ на состояния глубоких уровней. Энергии переходов равны $\varepsilon(\Gamma'_5 \to A_1) = 4.6 \text{ eV}, \varepsilon(\Gamma'_5 \to E) = 5.3 \text{ eV}.$ Разрешен также переход между глубокими уровнями с энергией $\varepsilon(A_1 \rightarrow E) = 0.7 \,\mathrm{eV}$. Для дивакансии азота интенсивными являются переходы между всеми глубокими уровнями (друг с другом) и состоянием L₁ на дне ЗП. Переходам с нижнего заполненного уровня $A_1(\varepsilon = 1.41 \text{ eV})$ на верхние глубокие уровни отвечают энергии 2.0, 2.3, 2.4 eV, а переходу на дно ЗП $(A_1 \rightarrow L^c)$ — энергия 3.2 eV. Для тривакансии азота возможны переходы из состояний Γ'_5 и A_3 верхней ВЗ только на нижние глубокие уровни $A_1(\varepsilon = 0.15 \text{ eV})$ и $E(\varepsilon = 1.88 \text{ eV})$, энергии таких переходов равны 1.1 и 2.8 eV соответственно. Разрешенному переходу между этими глубокими уровнями отвечают энергия 1.7 eV. Интенсивными являются также переходы между следующими по энергии незаполненными глубокими уровнями и состояниями на дне ЗП в точке L.

Сопоставление результатов расчета с экспериментально обнаруженными уровнями

Параметры локализованных состояний дефектов с энергией $\varepsilon < 1.5 \, \text{eV}$ были определены по температурным зависимостям ($T = 300-650 \, \text{K}$) термостимулированных проводимости (ТСП) и люминесценции Распределение концентрации глубоких (ТСЛ) [22]. состояний оценивалась по спектральным $N(\varepsilon)$ коэффициента поглощения зависимостям $\alpha(hv),$ рассчитанного из спектров диффузного отражения (T = 300 K, hv = 1.5 - 6.2 eV) [23]. С целью установления вида распределения их плотности по энергии и типа оптических переходов коэффициент $\alpha(hv)$ аппроксимировался законом Урбаха $\alpha \sim \exp(h\nu/E_U)$ и степенными законами $\alpha \cdot h\nu \sim (h\nu - E_{\sigma})^m$, которые при определенных упрощающих предположениях описывают межзонные переходы (*m* = 1/2 и 2 соответствуют прямому и непрямому разрешенным переходам) [24].

Анализ спектров пиролитического BN указывает на непрерывное распределение локализованных в 33 энергетических состояний (рис. 5). В области края фундаментального поглощения зависимость $\alpha(h\nu)$ подчиняется, как и в большинстве материалов, закону Урбаха ($hv = 4.0-4.5 \,\mathrm{eV}, E_U = 0.7-0.9 \,\mathrm{eV}$). Бо́лышие по сравнению с другими диэлектриками значения Е_U, характеризующие распределения состояний в хвостах ВЗ и ЗП [24], обусловлены значительным влиянием на край поглощения уровней "биографических" дефектов. Ширина 33, оцененная в рамках моделей разрешенных прямых E_{gd} и непрямых E_{gi} переходов, составила соответственно 4.1-4.2 и 2.9-3.5 eV, что отличается от рассчитанных теоретически $E_{gd} = 5.27 \,\mathrm{eV}$ и $E_{gi} = 4.65 \,\mathrm{eV}$ [17]. Несоответствие вызвано сложным иерархическим строением керамики [25] и влиянием уровней дефектов, распределенных вблизи краев разрешенных зон [22]. Наряду с непрерывным спектром состояний обнаружены "моноэнергетические" неглубокие ($\varepsilon < 1.5 \, \text{eV}$) [22] и глубокие оптические уровни. Последние опредены по спектральной зависимости интенсивности люминесценции I(hv), они также проявляются в виде локальных полос в спектрах поглощения (рис. 5). Концентрация центров поглощения рассчитана по формуле Смакулы.

Рис. 5. Спектральная зависимость коэффициента поглощения при 300 К нитрида бора до (1) и после облучения нейтронами реакторного спектра $\Phi = 4.6 \cdot 10^{17} \text{ cm}^{-2}$ (2) и облученного нейтронами ($\Phi = 1.1 \cdot 10^{19} \text{ cm}^{-2}$) материала после отжига при $T_{\text{an}} = 2000 \text{ K}$ (3)

Рис. 6. Влияние термообработки на концентрацию парамагнитных центров *n* (*1*, *4*) и коэффициент поглощения α (*2*, *3*) облученного реакторными нейтронами BN при $\Phi = 3 \cdot 10^{18}$ (*1*), $5 \cdot 10^{17}$ (*2*), $1 \cdot 10^{19}$ (*3*), $5 \cdot 10^{18}$ cm⁻² (*4*). hv = 1.9 (*2*) и 2.5 eV (*3*).

Локальная полоса поглощения с центром при $\varepsilon_i = 3.85 \,\text{eV}$ наиболее четко выделяется в материале, имеющем дефицит атомов азота (1–3 mass.%) (кривая на рис. 5). После облучения быстрыми нейтронами и отжига в вакууме при $T_{an} \ge 1300 \,\text{K}$ полоса $3.85 \,\text{eV}$ дополнительно локализуется (кривая *3* на рис. 5), что совпадает с ростом концентрации идентифицированных с помощью ЭПР-спектроскопии [21] наведенных парамагнитных (V_N –3 × B¹¹)-центров. Дозовые и отжиговые зависимости (кривая *1* на рис. 6) концентрации пара-

магнитных V_N подобны соответвующим зависимостям концентрации центров поглощения с энергией 3.85 eV. Перечисленные факты позволяют предположить, что полоса 3.85 eV сформирована переходами электронов из ВЗ на уровни одиночной вакансии "биографической" и/или радиационной природы. Однако энергия центра полосы 3.85 eV и рассчитанные энергии переходов ($\varepsilon = 4.6$ и 5.3 eV) между потолком ВЗ (Γ'_{5v}) и уровнями A и E вакансии не совпадают. При этом нельзя исключить вклад переходов $\Gamma'_{5v} \to A \ (\varepsilon = 4.6 \,\mathrm{eV})$ в широкий пик поглощения при $\varepsilon_i = 4.8 \,\mathrm{eV}$ (рис. 5). Более вероятной причиной формирования этого пика является снижение коэффициента поглощения при $\varepsilon > 4.8 \,\mathrm{eV}$ вследствие вклада в коэффициент отражения фотолюминесценции (ФЛ), интенсивно возбуждающейся в этом спектральном диапазоне [8].

Полосу поглощения 3.85 eV гипотетически можно отнести к непрямым переходам из верхних состояний ВЗ (H^{v}) на уровень вакансии $A(\varepsilon = 3.75 \text{ eV})$. Интенсивность таких непрямых переходов мала в кристалле, содержащем только вакансии азота, однако может увеличиться в реальном материале вследствие влияния внутри- и межкристаллитных дефектов (средний размер кристаллитов $\sim 50\,{
m nm}\,[25])$ с непрерывно распределенными по энергии $(\varepsilon = 0.3 - 1.5, 3.6 - 4.8 \,\mathrm{eV})$ уровнями (концентрация $N = 10^{18} - 10^{19} \,\mathrm{cm}^{-3}$). Проведенный анализ характеристик поглощения [23] и люминесценции [22] подтверждает сильное влияние междефектного взаимодействия на параметры "моноэнергетических" уровней одиночных дефектов. Реализация непрямых переходов $H^V \rightarrow A$ $(\varepsilon = 3.75 \,\text{eV})$ может способствовать также и электронфононное взаимодействие. По аналогии с рассуждениями для абсорбционных переходов, учитывая предложенную в [22] схему активационно-рекомбинационных переходов, интенсивную полосу рентгенолюминесценции при $\varepsilon = 3.6 \, \text{eV}$ в материале с *n*-типом проводимости можно отнести к рекомбинационным переходам дырок из верхних состояний ВЗ (H^v) на уровень A ($\varepsilon = 3.75 \, \text{eV}$) вакансии. Непрямой характер таких переходов согласуется с незначительным влиянием температурного тушения (T = 300-600 K) на интенсивность люминесценции [22]. Уровень фотопроводимости (*p*-тип) при $\varepsilon_i = 3.9 \, \text{eV}$ (см. таблицу) можно также сопоставить переходам $H^v \to A$.

Донорные "моноэнергетические" уровни ТСЛ и ТСП с энергиями 0.7–1.0, 1.0–1.3 eV [22] (в [8] 0.7 и 1.0 eV), "поставляющие" в ЗП электроны при их термической ионизации (T = 300-600 K), следует отнести к уровню вакансии A (см. таблицу). Несовпадение энергий активации донорных уровней 0.7–1.0 и 1.0–1.3 eV с положением по энергии уровня A относительно дна ЗП ($\varepsilon = 4.65-3.75 = 0.9$ eV) обусловлено как взаимодействие между дефектами и вакансией, так и различиями процессов термической и оптической ионизации, а также изменением зарядового состояния вакансии (оценка сдвига уровня вакансии в соединениях A_3B_5 составляет, например, в [26] 0.1–0.2 eV). Анализ параметров донорных уровней активации ТСЛ с $\varepsilon = 0.9-1.3$ eV (см. табли-

D	Обозначение уровня (энергия <i>ε</i> , eV)	Энергия (обозначение) перехода <i>ε</i> , eV	ε,eV	Поглощение		Фототтора	Люминесценция	
Вид дефекта				ε_i, eV	N, cm ⁻³	Ψ отопрово- димость ε_i , eV	ε_i, eV	I, arb.units
V _N	$E(4.41) \\ A(3.75)$	$0.7(A \rightarrow E)$	0.7–1.2 1.0–1.2** 0.9–1.1*					
		$\begin{aligned} 3.75(H^v \to A) \\ 4.6(\Gamma'_{5v} \to A) \\ 5.3(\Gamma'_{5v} \to E) \end{aligned}$		3.85 3.85* 4.80	$5 \cdot 10^{18} \\ 1 \cdot 10^{19} \\ 3 \cdot 10^{19}$	3.9	3.6	0.05
2-V _N	A(3.85) A(3.71) A(3.42) A(1.41)	$\begin{array}{c} 2.0(A \leftrightarrow A) \\ 2.3(A \leftrightarrow A) \\ 2.4(A \leftrightarrow A) \\ 3.2(3\Pi \rightarrow A) \\ 0.8(A \rightarrow 3\Pi) \end{array}$	(0.8-1.0)***	1.9^{***} 2.5 ^{***} $(2.2-2.4)^{***}$	$\begin{array}{c} (0.9{-}3) \cdot 10^{20} \\ (3{-}5) \cdot 10^{20} \\ (2{-}5) \cdot 10^{20} \end{array}$	$(1.8-2.0)^{***}$ $(2.2-2.4)^{***}$	$2.1-2.2^{**}$ 2.5^{*} $(1.5-2.3)^{***}$ 3.2^{*}	$1.0 \\ 1-0.3 \\ 1.0$
3-V _N	A(0.15) A(0.15) E(1.88) A(2.70)	$0.15(H^{v} \rightarrow A)$ $1.1(\Gamma'_{5v} \rightarrow A)$ $2.8(\Gamma'_{5v} \rightarrow E)$ $2.77(3\Pi \rightarrow E)$ $1.73(A \rightarrow E)$ $1.95(A \rightarrow E)$	0.1-0.2* 0.9-1.1*	2.85* 2.9*** 1.9***	$\begin{array}{c} (3\!-\!5)\cdot 10^{19} \\ 1.5\cdot 10^{20} \\ (0.9\!-\!3)\cdot 10^{20} \end{array}$	2.9***	3.0*	0.5
	E(3.93)	$0.72(E \rightarrow 3\Pi)$	(0.2–0.4)*					

Уровни комплексов вакансии азота, энергии переходов и энергии активации люминесценции (ε), энергии центров оптических полос (ε_i) в пиролитическом BN до и после облучения нейтронами (*), протонами (**) и ионами углерода (***)

цу), выявленных в облученном тяжелыми высокоэнергетическими частицами материале, позволяет отнести их к уровням вакансий азота радиационной природы, но расположенным в отличие от "биографических" $V_{\rm N}$ скорее внутри кристаллитов, чем вблизи межкристаллитных границ.

Обнаруженные после облучения нейтронами $(\Phi = 10^{15} - 3 \cdot 10^{18} \,\mathrm{cm}^2)$ полосы поглощения при $\varepsilon_i = 1.9$ и 2.5 eV (кривая 2 на рис. 5) на основании корреляции между дозовыми и отжиговыми зависимостями оптической плотности (кривые 2,3 на рис. 6) и концентрации сложных парамагнитных центров (кривая 4 на рис. 6) [21] предварительно отнесены к сложным многовакансионным комплексам (МВК). Изменение параметров полосы ФЛ 2.5 eV после отжига $(T_{an} \ge 1500 \, \text{K})$ с ростом флюенса нейтронов по сравнению с параметрами близкой по энергии полосы ТСЛ исходного BN (кривые 1-3 на рис. 7) и поведение наведенных нейтронами полос ФЛ 2.1-2.2, 2.25-2.42 eV [27] с отжигом позволяют предположить, что перечисленные полосы связаны с переходами электронов между уровнями МВК. Анализ изменений после облучения ионами и термообработки электрофизических [28,29], а также оптических свойств [30,31] показал, что доминирующими дефектами по степени влияния на свойства являются комплексы анионных вакансий. Пики наведенного ионами поглощения при 2.2-2.4 eV и пики в спектре возбуждения фотопроводимости п-типа при 1.8–2.0, 2.2–2.4 eV предположительно отнесены [31] к переходам в ЗП электронов из основных состояний кластеров анионных вакансий. Перечисленные полосы поглощения, возбуждения фотопроводимости и излучения в облученном материале с учетом близости их центров и энергий рассчитанных переходов (2.0, 2.3 и 2.4 eV) следует отнести к переходам между верхними

Рис. 7. Спектральная зависимость интенсивности термо- (1) и фотолюминесценции hv = 3.7 eV (2, 3) нитрида бора, облученного рентгеновскими лучами (50 keV, 0.2 Mrad) (1) и отожженного ($T_{an} = 2000 \text{ K}$) после облучения нейтронами реакторного спектра $\Phi = 10^{18} - 10^{19}$ (2) и $\Phi > 10^{19} \text{ cm}^{-2}$ (3).

A(3.85, 3.71и3.42 eV) и нижним A(1.41 eV) состояниями дивакансии 2-V_N (см. таблицу). Переход с уровня A(1.41 eV) в 3П с энергией 3.2 eV не проявляется в оптических спектрах в виде локальной полосы, вероятно, вследствие конкуренции с ним электронных переходов, формирующих сильный пик поглощения $3.3 \pm 0.15 \, \text{eV}$ в исходном материале (кривая 1 на рис. 5). Однако не исключено, что интенсивный пик $\Phi\Pi$ 3.2 \pm 0.2 eV (кривая 3 на рис. 7), проявляющийся после облучения нейтронами и отжига, можно отнести к переходу электронов из 3Π на уровень A (1.41 eV) дивакансии. Перераспределение интенсивности в спектрах ФЛ (кривые 2, 3 на рис. 7) можно объяснить изменением заселенности уровней дивакансий вследствие их взаимодействия при накоплении с флюенсом. Верхние уровни дивакансии A (3.85, 3.71 и 3.42 eV) являются ловушками электронов, попадающих в ЗП при ионизации (Т = 300-500 К) донорных уровней ТСЛ с $\varepsilon = 0.1 - 0.5 \, \text{eV}$ [32]. При этом глубина уровней А (3.85 и 3.71 eV) относительно дна ЗП составляет 0.8 и 0.94 eV, что близко к энергии активации донорных уровней 0.8-1.0 eV, значительно заселенных [32] и отнесенных в [31] к кластерам анионных вакансий.

В облученном BN методами термоактивационной спектроскопии обнаружены и акцепторные уровни активации, "поставляющие" при их ионизации дырки в B3 [30,32]. Существование корреляции энергетических и кинетических параметров ТСП (р-типа) и ТСЛ позволяет с учетом [22] определить, что уровни люминесценции расположены выше потолка ВЗ на $0.1-0.2 \,\text{eV}$ ($T = 300-500 \,\text{K}$) и на $0.9-1.1 \,\text{eV}$ (T = 500-600 K). Акцепторные уровни люминесценции с учетом их положения в 33 и данных расчетов можно отнести к нижнему уровню A (0.15 eV) тривакансии, выступающей в роли акцептора. Разрешенному электронному переходу ($\varepsilon = 1.1 \,\mathrm{eV}$) из точки Γ'_{5v} на уровень А может отвечать термически активированный переход с энергией $\varepsilon > 0.9 \, \text{eV}$ на уровни сильно заселенных ловушек, а предполагаемому переходу $H^v \rightarrow A \ (0.15 \,\mathrm{eV})$ соответствует активация мелких $(\varepsilon < 0.2 \, \text{eV})$ слабо заселенных уровней.

Локальная полоса поглощения $2.85 \pm 0.15 \text{ eV}$ (кривая *3* на рис. 5), четко локализующаяся в спектре $\alpha(hv)$ после отжига при $T_{an} \geq 1500 \text{ K}$, может быть сформирована переходами с энергией $\varepsilon = 2.8 \text{ eV}$ из ВЗ (точка Γ'_{5v}) на уровень E(1.88 eV), что подтверждается корреляцией дозовых зависимостей концентрации парамагнитных центров [21] и оптической плотности. Выявленные после облучения ионами локальные полосы дополнительного поглощения $2.9 \pm 0.2 \text{ eV}$ и наведенной фоточувствительности $2.9 \pm 0.1 \text{ eV}$ [30], интенсивности которых увеличиваются с ростом флюенса ионов, вероятно, также связаны с переходами $\Gamma'_{5v} \rightarrow E$ (1.88 eV); однако проявляющийся при $\Phi \geq 10^{17} \text{ cm}^{-2}$ и после термобработки сдвиг максимума полосы поглощения от 2.9 до 2.6 eV и ее неэлементарность, по-видимому,

обусловлены влиянием на заселенность уровней тривакансии имплантированных атомов примеси. Полоса ФЛ с центром $\varepsilon_i = 3.0 \pm 0.15 \text{ eV}$ (кривая 2 на рис. 7) (в [27] 2.73–3.1 eV) частично может быть сформирована переходами электронов из ЗП на уровень E ($\varepsilon = 1.88 \text{ eV}$) тривакансии (см. таблицу).

Вклад в полосу поглощения 1.9 ± 0.25 eV облученного материала могут вносить разрешенные переходы электронов с энергией $\varepsilon = 1.73$ eV между уровнями тривакансии A (0.15 eV) и E (1.88 eV) и/или интенсивные переходы ($\varepsilon = 1.95$ eV) с уровня A (2.70 eV) в состоянии ЗП в точке L. Подобие зависимостей от температуры отжига оптической плотности полосы 1.9 eV (кривая 2 на рис. 6) и концентрации нестабильных сложных парамагнитных центров (кривая 4 на рис. 6) подтверждает такую идентификацию полосы. Уровни тривакансии E (3.93 eV), A (2.70 eV) должны играть роль ловушек электронов, возбуждаемых в ЗП с мелких донорных уровней $\varepsilon = 0.2-0.4$ eV термолюминесценции (T = 300-500 K).

Таким образом, сопоставление результатов расчета уровней вакансии азота и ее малых кластеров с характеристиками обнаруженных методами термоактивационной и оптической спектроскопии локализованных в 33 состояний в исходном и в облученном пиролитическом ВN позволило в основном полтверлить важную роль вакансии азота и комплексов на ее основе в формировании уровней активации, рекомбинации, поглощения и фоточувствительности. Донорные уровни активации с энергией относительно дна 3П 0.7-1.2 eV можно отнести к одиночным вакансиям радиационного или "биографического" типа. Полоса поглощения 3.85 eV и полоса люминесцении 3.6 eV с учетом междефектного или электронфононного взаимодействия формируются при непрямых переходах электронов между ВЗ и уровнем А вакансии. Электронные переходы с участием уровней дивакансий и тривакансий наиболее четко проявляются на стадии неполного отжига многовакансионных парамагнитных комплексов в облученном нейтронами ВN. Эти уровни играют роль глубоких ловушек неравновесных электронов и дырок, определяющих термолюминесценцию.

Список литературы

- [1] Г.В. Самсонов. Нитриды. Наук. думка, Киев (1969). 380 с.
- [2] Properties of Group III Nitrides/Ed. J.H. Edgar. Emis DATAREVIEWS SERIES N 11. Kansas State University (1994). 302 p.
- [3] J. Neugebauer, C.G. Van de Walle. Phys. Rev. **B50**, *11*, 8067 (1994).
- [4] P. Boguslawski, E.L. Briggs, J. Bernholc. Phys. Rev. B51, 23, 17 255 (1995).
- [5] C. Stampfl, C.G. Van de Walle, D. Vogel, P. Kruger, J. Pollmann. Phys. Rev. B61, 12, 7846 (2000).
- [6] A.M. Dobrotvorskij, R.A. Evarestov. Phys. Stat. Sol. (b)66, 1, 83 (1974).
- [7] Р.А. Эварестов, Е.А. Котомин, А.Н. Ермошкин. Модели точечных дефектов в твердых телах. Зинатне, Рига (1983).

- [8] A. Katzir, J.T. Suss, A. Zunger, A. Halperin. Phys. Rev. B11, 6, 2370 (1975).
- [9] A. Zunger, A. Katzir. Phys. Rev. B11, 6, 2378 (1975).
- [10] V.A. Gubanov, Z.V. Lu, B.M. Klein, C.Y. Fong. Phys. Rev. B53, 8, 4377 (1996).
- [11] D.W. Jenkins, J.D. Dow. Phys. Rev. B39, 3317 (1989).
- [12] D.W. Jenkins, J.D. Dow, M.H. Tsai. J. Appl. Phys. 72, 4130 (1992).
- [13] W. Potz, D.K. Ferry. Phys. Rev. B31, 968 (1985).
- [14] E.S. Ho, J.D. Dow. Phys. Rev. **B27**, 1115 (1983).
- [15] С.Н. Гриняев, Г.Ф. Караваев. ФТП 31, 5, 545 (1997).
- [16] С.Н. Гриняев, В.В. Лопатин. ФТТ 38, 12, 3576 (1996).
- [17] С.Н. Гриняев. В.В. Лопатин. Изв. вузов. Физика 35, 2, 27 (1992).
- [18] L. Bellaiche, S.-H. Wei, A. Zunger. Phys. Rev. 54, 24, 17 568 (1996).
- [19] М.Б. Хусидман, В.С. Нешпор. ЖЭТХ 3, 2, 270 (1967).
- [20] A.W. Moore, L.S. Singer. J. Phys. Chem. Sol. 33, 343 (1972).
- [21] A.V. Kabyshev, V.M. Kezkalo, V.V. Lopatin, L.V. Serikov, Yu.P. Surov, L.N. Shiyan. Phys. Stat. Sol. (a) **126**, K19 (1991).
- [22] V.V. Lopatin, F.V. Konusov, J. Phys. Chem. Sol. 53, 6, 847 (1992).
- [23] А.В. Кабышев, Ф.В. Конусов, В.В. Лопатин. ФТТ 37, 7, 1981 (1995).
- [24] М. Бродски. Аморфные полупроводники. Мир, М. (1982). 414 с.
- [25] В.С. Дедков, Ю.Ф. Иванов, В.В. Лопатин, Б.Н. Шарупин. Кристаллография 38, 2, 217 (1993).
- [26] M.J. Puska. J. Phys.: Cond. Matter. 1, 7347 (1989).
- [27] O.A. Plaksin, V.A. Stepanov, P.A. Stepanov, V.M. Chernov, V.A. Skuratov. J. Nucl. Mater. B233-237, 1355 (1996).
- [28] А.В. Кабышев, В.В. Лопатин. Поверхность 7, 86 (1994).
- [29] А.В. Кабышев, Ф.В. Конусов, В.В. Лопатин. Поверхность 8, 34 (1996).
- [30] А.В. Кабышев, Ф.В. Конусов, В.В. Лопатин. Физика и химия обраб. материалов 6, 21 (1997).
- [31] А.В. Кабышев, Ф.В. Конусов, В.В. Лопатин. Изв. вузов. Физика 43, 3, 85 (2000).
- [32] А.В. Кабышев, Ф.В. Конусов, В.В. Лопатин. Поверхность 5, 9 (2000).