Физические аспекты формы спектров электронной эмиссии из сегнетоэлектриков-электретов

© В.В. Колесников, А.Т. Козаков

Научно-исследовательский институт физики Ростовского государственного университета, 344090 Ростов-на-Дону, Россия E-mail: kozakov@iphis.rnd.runnet.ru

(Поступила в Редакцию 25 января 2001 г. В окончательной редакции 8 мая 2001 г.)

Предложен теоретический подход, устанавливающий связь между особенностями спектра электронной эмиссии из сегнетоэлектриков-электретов и поведением потенциала на поверхности образца. С этих позиций дан анализ физической природы основных особенностей в экспериментальных спектрах, отмечено сильное влияние на их форму процесса релаксации электретного заряда благодаря эффекту бифуркации (ветвления) особенностей в спектре.

Работа выполнена по госбюджетной тематике НИИ физики при РГУ.

Распределение электрического поля в сегнетоэлектрике играет важную роль в процессах электронной эмиссии как из холодных катодов [1,2], так и из электретов на основе сегнетоэлектрических материалов при их возбуждении рентгеновским излучением [3-6]. В последнем случае, согласно [5], проблема имеет два акспекта, связанных с поведением тангенциальной и нормальной к поверхности компонент электрического поля. Нормальная компонента благодаря наличию инжектированного заряда имеет в поверхностном слое максимум [3], близость которого к границе твердого тела определяет интенсивность эмиссии [6]. Поведение же тангенциальной компоненты определяется характером устойчивости однородного вдоль поверхности образца состояния и может носить осциллирующий характер [5], приводя к сложной картине наблюдаемого спектра эмиссии $I(\varepsilon)$. В настоящей работе теоретически показано, что между возникающими особенностями в форме спектра и поведением потенциала вдоль поверхности сегнетоэлектрика существует прямая связь, формальные аспекты которой изложены далее.

Предлагаемый подход является обобщением приближенной методики работы [7] и состоит в следующем. Пусть $j_0(\varepsilon)$ — спектральная плотность тока эмиссии с нейтральной поверхности, тогда вклад в ток dI от участка dS в окрестности точки с координатами (x, y) и потенциалом $\varphi(\rho)$ (ρ — соответствующий радиус-вектор точки) равен

$$dI = j_0(\varepsilon - \varphi)dS. \tag{1}$$

Энергия электрона ε и потенциал φ отсчитываются от стандартного уровня энергии, определяемого измерительной системой спектрометра (под потенциалом далее понимается потенциальная энергия электрона). Интегрирование выражения (1) по поверхности образца выполним в два этапа: вначале проинтегрируем вдоль эквипотенциальных линий *l*, а затем по области физически допустимых с точки зрения регистрации эмиссии значений потенциала φ . Результат для $I(\varepsilon)$ можно представить в виде свертки $j_0(\varepsilon)$ и некоторой функции $n(\phi)$

$$I(\varepsilon) = \int j_0(\varepsilon - \varphi) n(\varphi) d\varphi.$$
 (2)

Функция $n(\varphi)$ определяется электрическим полем $E = -\nabla \varphi(\rho)$ на поверхности образца

$$n(\varphi) = \int_{l} \frac{dl}{|\nabla \varphi(\rho)|}$$
(2a)

и формально совпадает с определением плотности электронных состояний для двумерной решетки [8], которая при определенных условиях содержит особенности, известные как особенности Ван Хова [8]. В нашем случае, как видно из (2а), они обусловлены областями с малым полем Е на поверхности электрета и должны приводить к особенностям в форме спектра $I(\varepsilon)$. Исходя из общего характера поведения функции $n(\phi)$ [8] в указанных областях, наиболее резких особенностей в $I(\varepsilon)$ следует ожидать в одномерном случае. Физически ему отвечает формирование на поверхности анизотропных полосовых структур в распределении электрического поля и поляризации, перепады потенциала вдоль одного из направлений в них малы, и задачу можно считать одномерной. Переход к более симметричным двумермым распределениям должен приводить к сглаживанию особенностей в $I(\varepsilon)$. Подобного типа качественные изменения спектров действительно наблюдаются экспериментально в процессе старения электретов: форма $I(\varepsilon)$ при этом меняется от системы острых δ -образных максимумов до широких, достигающих нескольких сотен электрон-вольт, распределений со слабо выраженной структурой [3,4]. Теоретический анализ причин указанных изменений формы $I(\varepsilon)$ начнем с одномерного случая.

Для него $n(\varphi) = 1/|E(\varphi)|$; мы рассмотрим три типа характерных точек в потенциале $\varphi(x)$, которые могут приводить к особенностям в функции $n(\varphi)$ и в спектре $I(\varepsilon)$: экстремумы (минимум либо максимум) и точка перегиба. В их окрестности запишем соответственно

$$\varphi(x) = ax^2, \quad a \ge 0, \tag{3}$$

$$\varphi = -\lambda x + bx^3. \tag{4}$$

Для $j_0(\varepsilon)$ примем простую аппроксимацию вида

$$j_0(\varepsilon) \sim \exp(-\varepsilon/\gamma)\theta(\varepsilon),$$
 (5)

где $\theta(\varepsilon) = 0$ (при $\varepsilon < 0$) и 1 (при $\varepsilon > 0$).

Выражение (5) отвечает типичной для нейтральной поверхности форме спектра в виде каскадного максимума [9,10], параметр γ характеризует его ширину, обычно он ~ 10 eV.

С помощью выражений (2), (2a) с учетом (5) $I(\varepsilon)$ в окрестности экстремумов потенциала можно выразить через интегралы вероятностей [11]. В частности, для минимума (a > 0) выражение для $I(\varepsilon)$ имеет вид

$$I(\varepsilon) \sim l \exp(-s^2) \int_{0}^{s} \exp(t^2) dt, \quad \varphi_c > \bar{\varepsilon} > 0, \quad (6)$$

 $s = \sqrt{\overline{\epsilon}}, \ \overline{\epsilon} = \epsilon/\gamma$ — безразмерная энергия электрона.

Параметр φ_c характеризует перепад потенциала в окрестности особенности. Для области $\bar{\varepsilon} > \varphi_c$ в (6) следует фиксировать верхний предел интегрирования, положив его равным $s = s_c \equiv \sqrt{\varphi_c}$, при этом $I(\varepsilon)$ экспоненциально спадает; при $\varepsilon < 0$ в принятой аппроксимации (5) для $j_0(\varepsilon)$ интенсивность $I(\varepsilon) = 0$.

Величина $I(\varepsilon)$, согласно (6), пропорциональна характерному параметру длины $l = (\gamma/|a|)^{1/2}$, определяемому кривизной потенциала в (3); с ее уменьшением интенсивность спектра растет.

Форма спектров, отвечающих экстремумам в потенциале при одинаковых значениях параметра l, показана на рис. 1 (величина $I(\varepsilon)$ для максимума в целях удобства графического изображения на рис. 1 уменьшена вдвое). При $\varepsilon \sim 0$ спектры имеют особенность типа

$$I(\varepsilon) \sim C|\varepsilon|^{\alpha} + I_0 \tag{7}$$

 $(\alpha = 0.5, C \ u \ I_0$ — константы) справа от этой точки в случае минимума и слева в случае максимума. В первом случае $I_0 = 0$.

Рассмотрим теперь эволюцию спектра в окрестности точки перегиба в $\varphi(x)$. При $\lambda < 0$ в (4) (для определенности считаем b > 0) функция $n(\varphi)$ в (2) не имеет особенностей, а $I(\varepsilon)$ содержит одиночный бесструктурный максимум, интенсивность которого падает при уменьшении λ . Однако ситуация меняется с ростом λ : так, при $\lambda = 0$ в потенциале возникает горизонтальная ступенька, а в спектре — максимум, форма которого показана на рис. 1 (кривая 2), в окрестности $\varepsilon \leq 0$ он имеет особенность типа (7), но с $\alpha = 1/3$. При дальнейшем росте λ максимум расщепляется на два, их энергетические положения $\varepsilon_{B,A}$ в зависимости от λ , показанные на вставке b к рис. 2, определются нулями

Рис. 1. Теоретическая форма $I(\varepsilon)$ спектра электронной эмиссии в окрестности минимума (1), максимума (2) и горизонтальной ступеньки (3) потенциала. Энергия электрона ε отсчитывается от положения особенности. На вставке — экспериментальный спектр эмиссии для магнониобата свинца [3].

электрического поля как функции φ , что с учетом (4) приводит к выражениям $\varepsilon_{B,A} \sim \pm (\lambda/3b)^{3/2}$. Раздвоение линий обусловлено ветвлением (бифуркацией) особенностей в функции $n(\varphi)$; слева от точки бифуркации $\lambda = 0$ она не имеет особенностей, в то время как справа возникают две корневые особенности в точках $\varepsilon_{B,A}$: $n(\varphi) \sim |\varphi - \varepsilon_{B,A}|^{-1/2}$. При обратном изменении параметра λ будет наблюдаться слияние двух максимумов в спектре.

Проиллюстрируем высказанное на примере фрагмента спектра электрета на основе магнониобата свинца, показанного на вставке к рис. 1. Основные его особенности можно объяснить наличием в образце квазиодномерного (полосового) распределения поля и поляризации с рельефом потенциала вблизи бокового электрода, показанным на вставке а к рис. 2 (он согласуется с выводами работы [5] о возможности осциллирующего поведения потенциала на поверхности сегнетоэлектрика-электрета). Представив спектр в виде суперпозиции вкладов от отдельных особенностей А, В и С в потенциале и используя для них результаты рис. 1 при подходящем выборе энергетического положения линий, можно получить приведенный на рис. 2 спектр $I(\varepsilon)$, качественно согласующийся с экспериментальным спектром. Максимумам А, В и С в спектре отвечают вклады от окрестностей соответству-

Рис. 2. Форма теоретического спектра эмиссии $I(\varepsilon)$ для показанного на вставке *a* рельефа потенциала $\varphi(x)$: максимумам *A*, *B*, *C* в спектре отвечают соответствующие точки в $\varphi(x)$ вблизи бокового электрода электрета. На вставке *b* — энергетическое положение линий *A*, *B* в спектре в зависимости от параметра λ в процессе бифуркации (ветвления) особенностей в спектре.

ющих точек в $\varphi(x)$. Структуре из двух экстремумов (A, B) в $\varphi(x)$ соответствует потенциал вида (4) с $\lambda > 0$, b > 0. При уменьшении λ , как отмечалось в связи с эффектом бифуркации, будет происходить сближение экстремумов (A, B) в потенциале и линий A, B в спектре (показано на вставке b на рис. 2) и их слияние при $\lambda = 0$. Далее при $\lambda < 0$ в $I(\varepsilon)$ остается лишь одна линия при энергии $\varepsilon = \varepsilon_0$. Аналогичным образом может происходить расщепление максимума C на рис. 2 с ростом λ .

Изменение спектра при переходе к двумерным распределениям электрического поля рассмотрим на примере экстремумов в потенциале φ . Теперь он определяется двумя значениями кривизны в (3) *а*_± и параметра длины $l_{\pm} = (\gamma/|a_{\pm}|)^{1/2}$ (см. (6)). Интенсивность $I(\varepsilon)$ будет характеризоваться их средним значением $\bar{l} = (l_+ l_-)^{1/2}$. Если один из параметров l_{\pm} , скажем l_{+} , превышает размер образца L, то мы имеем квазиодномерную ситуацию, рассмотренную выше. При уменьшении l_+ , когда $l_+ \lesssim L$, в непосредственной близости от экстремума форма потенциала становится существенно двумерной, а функция $n(\varphi) = \text{const}$ в этой области, как можно показать с помощью (2a). Это приведет к "срезанию" вершин максимумов А и В на рис. 2 и образованию горизонтальных полочек в спектре. При дальнейшем уменьшении l_+ их ширина будет расти, а форма $I(\varepsilon)$ в этой области энергий приобретет вид широкого максимума со слабо выраженной структурой, как отмечалось в начале работы.

Таким образом, сложная форма энергетического спектра $I(\varepsilon)$ эмиссии электронов из сегнетоэлектриковэлектретов обусловлена особенностями распределения электрического поля и поляризации по их поверхности. Характер $I(\varepsilon)$ качественно различен для квазиодномерных (полосовых) и более симметричных двумерных распределений поля, что может быть использовано для анализа динамики доменной структуры и физических механизмов электронной эмиссии из сегнетоэлектриков.

Авторы благодарны В.П. Сахненко за поддержку выполненных в работе исследований.

Список литературы

- [1] V.F. Puchkarev, G.A. Mesyats. J. Appl. Phys. **78**, *9*, 5633 (1995).
- [2] L. Schachter, J.D. Ivers, J.A. Nation, G.S. Kerslich. J. Appl. Phys. 73, 12, 8097 (1993).
- [3] А.Т. Козаков, В.В. Колесников, В.П. Сахненко, А.В. Никольский, И.В. Новиков, Е.М. Панченко, С.М. Емельянов. ФТТ 38, 8, 2524 (1996).
- [4] А.Т. Козаков, В.В. Колесников, А.В. Никольский, В.П. Сахненко. ФТТ 39, 4, 679 (1997).
- [5] В.В. Колесников, А.Т. Козаков, А.В. Никольский. ФТТ 42, *1*, 141 (2000).
- [6] В.В. Колесников, А.Т. Козаков. ФТТ 42, 11, 2085 (2000).
- [7] А.Т. Козаков, В.В. Колесников, А.В. Никольский, В.П. Сахненко. Физические аспекты аномалий в рентгеноэлектронных спектрах и электрофизические свойства каменных углей. Препринт. Изд-во Сев.-Кав. науч. центра высш. шк., Ростов н/Д (1993). 46 с.
- [8] И.М. Лифшиц, М.Я. Азбель, М.И. Каганов. Электронная теория металлов. Наука, М. (1971). 415 с.
- [9] А.Т. Козаков, В.В. Колесников, А.В. Никольский, В.П. Сахненко. ФТТ 36, 2, 317 (1994).
- [10] В.В. Колесников, А.Т. Козаков, А.В. Никольский, В.П. Сахненко. Поверхность 3, 915 (2000).
- [11] Справочник по специальным функциям / Под ред. М. Абрамовича и И. Стиган. Наука, М. (1979). 830 с.