Аномалии медленной кинетики поляризации релаксорного сегнетоэлектрика в температурной области размытого фазового перехода

© В.В. Гладкий, В.А. Кириков, Е.В. Пронина, Т.Р. Волк, Р. Панкрат*, М. Вёлеке*

Институт кристаллографии им. А.В. Шубникова Российской академии наук, 117333 Москва, Россия E-mail: glad@ns.crys.ras.ru *Физический факультет Университета Оснабрюка,

D 49076 Оснабрюк, Германия

(Поступила в Редакцию 3 апреля 2001 г.)

На примере кристалла ниобата бария-стронция, легированного Cr, экспериментально показано, что специфические для релаксорного сегнетоэлектрика аномалии инфранизкочастотных диэлектрических свойств существуют во всей температурной области размытого фазового перехода и постепенно уменышаются при повышении температуры. Приводятся данные регистрации аномальных квазистатических петель диэлектрического гистерезиса, медленной кинетики поляризации и аномально широких спектров распределения потенциальных барьеров по энергии. Аномалии являются признаками и количественной мерой характерного для релаксора структурного беспорядка.

Работа выполнена при финансовой поддержке Российского фонда фундаментальных исследований (проекты № 99-02-17303 и 00-02-16624).

К релаксорным сегнетоэлектрикам (релаксорам) принадлежит большая группа твердых оксидных растворов, являющихся существенно неоднородными системами с разупорядоченной структурой [1,2]. Для релаксоров характерны случайные распределения в объеме кристалла концентрации некоторых ионов, деформации и внутреннего электрического поля, которое приводит к нарушению локальной симметрии и искажению зависимости локальной свободной энергии от поляризации: свободная энергия принимает вид асимметричной двухминимумной функции [3]. Фазовый переход в полярное состояние и аномалии физических свойств релаксора в отличие от обычного однородного сегнетоэлектрика размыты в большой области температур (область Кюри). В частности, диэлектрическая проницаемость є имеет широкий, слабо выраженный максимум при некоторой температуре T_m и характерную дисперсию вблизи T_m в низкочастотном диапазоне 1-5000 kHz [1-3]. В инфранизкочастотном диапазоне вплоть до 10^{-5} Hz дисперсия ε остается значительной даже при температурах *T* « *T_m*, петля диэлектрического гистерезиса зависимости поляризации от электрического поля приобретает аномальный вид [4], а спектр распределения потенциальных барьеров по энергии для центров релаксации аномально широкий и включает гигантские барьеры. Аномальные петля и спектр дают представление о долгоживущих метастабильных состояних и являются признаками и мерой структурного беспорядка релаксора [5].

В [4,5] нами были обнаружены и исследованы особенности кинетики поляризации в релаксорном сегнетоэлектрике ниобате бария-стронция $Sr_xBa_{1-x}Nb_2O_6$ (SBN). Однако используемый нами электрометрический метод, регистрирующий медленные процессы поляризации, позволяет проводить измерения лишь в случае электросопротивления образца не менее 10^{12} Ohm·cm. Это ограничивало в исследованных составах доступный диапазон температурами $T < T_m$, и кинетика поляризации во всей области Кюри не исследовалась.

Цель настоящей работы — исследование кинетики поляризации релаксора в температурной области Кюри, включающей точку T_m . Очевидно, что такое исследование с наибольшим успехом можно реализовать на релаксорах с возможно низкой температурой T_m , в области которой ожидается достаточно высокое сопротивление. Известно, что снижение T_m в SBN достигается путем увеличения концентрации стронция [2] или легирования различными примесями [6,7].

1. Кристалл и методика эксперимента

Для исследования были выбраны монокристаллы $Sr_xBa_{1-x}Nb_2O_6$ с x = 0.61, легированные Cr(SBN:Cr), выращенные методом Чохральского на физическом факультете Университета г. Оснабрюк (Германия). Легирование SBN примесью Cr приводит к значительному снижению T_m и размытию максимума ε [7]. В исследуемом кристалле концентрация Cr в расплаве составляла $(2.02 \pm 0.015)10^4$ ppm. Этот состав имеет наименьшую из известных для кристаллов SBN температуру T_m . Образец представлял собой шлифованную пластину полярного *z*-среза кристалла размером 2.5 × 3 × 0.7 mm. Электроды наносились на большие грани пластины электропроводящей серебряной пастой. Температура образца в криостате выдерживалась с точностью не менее 0.03 К.

Диэлектрическая проницаемость измерялась стандартным методом на частоте 1 kHz. Измерение поляризации проводилось компенсационным электрометрическим методом с помощью равноплечевого моста с максимальной чувствительностью по напряжению $20 \,\mu$ V, по заряду — $2 \cdot 10^{-9} \,\mu$ C. Компенсация напряжения в диагонали моста осуществлялась программным способом на персональном компьютере IBM PC и периферийных управляемых блоках. Компенсирующее напряжение регистрировалось в реальном масштабе времени и по этим данным рассчитывалась поляризация кристалла. Подробное описание автоматической установки, ее работы и обработки экспериментальных данных приводится в [8]

Поляризация измерялась в медленно изменяющихся (квазистатических) электрических полях (петли диэлектрического гистерезиса), а также после включения и выключения постоянного поля (релаксационные процессы) при различных постоянных температурах.

На больших временах, после того как релаксация поляризации практически останавливалась, по данным измерения заряда со временем в цепи моста оценивалось электросопротивление образца.

2. Результаты и обсуждение

2.1. Диэлектрическая проницаемость и петли диэлектрического гистерезиса. На рис. 1 представлена температурная зависимость диэлектрической проницаемости ε исследуемого кристалла SBN-061:Сг с характерным для релаксоров широким размытым максимумом; температура максимума $T_m = 244$ К существенно снижена по сравнению с той же величиной $T_m = 354$ К в нелегированном кристалле SBN:0.61 [2]. На рис. 1 приводятся также данные измерения тангенса

Рис. 1. Температурные зависимости диэлектрической проницаемости ε и тангенса угла диэлектрических потерь tg δ релаксорного сегнетоэлектрика SBN:Cr на частоте 1 kHz. Вертикальные стрелки отмечают температуры, при которых регистрировались петли диэлектрического гистерезиса.

угла диэлектрических потерь tg δ , который растет при понижении температуры. Благодаря относительно низкой температуре T_m электросопротивление ρ в области T_m достаточно велико ($\rho \ge 10^{13}$ Ohm·cm), поэтому поправок на сквозную электропроводность, которая может искажать данные регистрации медленной поляризации, практически не требовалось. Вертикальными стрелками на рис. 1 отмечены температуры, при которых регистрировались петли гистерезиса.

Квазистатические петли диэлектрического гистерезиса при нескольких температурах в области Т_т представлены на рис. 2. Цифры у траекторий петель отмечают последовательность изменения поляризации. Черные кружки начало и конец процесса переполяризации. Петли имеют характерные для релаксора SBN особенности [4,5]: первые циклы петель — разомкнутые неповторяющиеся кривые, амплитуда петель постепенно уменьшается, однако через несколько циклов достигает "насыщения", и траектории всех последующих циклов практически совпадают, т. е. становятся воспроизводимыми. Причиной этих особенностей могут быть большие локальные внутренние электрические поля E_i , обусловленные неоднородностью структуры [4,5]. Поля Е_i приводят к резкой асимметрии локальной двухминимумной функции свободной энергии F от поляризации P [3]. Поле E_i и параметры функции F — случайные величины. Если внешнее поле E = 0, то одна часть кристалла находится в стабильных состояниях, а другая — в долгоживущих метастабильных, отвечающих соответственно глубоким и мелким минимумам F. При включении медленно изменяющегося по амлитуде поля Е барьеры, разделяющие минимумы, уменьшаются и термоактивационный переход в стабильные состояния ускоряется. Обратный переход практически не возможен, в результате часть кристалла не принимает в дальнейшем участия в процессе переполяризации внешним полем с той же амплитудой Е, и амплитуда Р уменьшается. Полная воспроизводимая переполяризация возможна только в поле Е, бо́льшем максимального Е_i в образце, значение которого, по-видимому, велико [4,5].

При нагревании кристалла в области точки T_m квазистатическая петля гистерезиса становится у́же и меньше по амлитуде, несовпадающие траектории первых циклов сближаются и сливаются, уменьшается и нелинейность зависимости P от E для первых четвертей циклов (рис. 2). Иначе говоря, квазистатическая петля имеет признаки деградации при $T > T_m$, похоже на регистрируемые при более высоких частотах измерительного поля [9]. Следует отметить, однако, что квазистатическая петля гистерезиса сохраняет специфическую для релаксора форму даже при температурах, намного превышающих T_m , т. е. по-видимому, во всей области размытия фазового перехода (рис. 2).

2.2. Релаксация поляризации. Исследование кинетики поляризации и деполяризации в постоянных электрических полях позволяет получить дополнительные сведения об особенностях квазистатических пе-

Рис. 2. Квазистатические петли диэлектрического гистерезиса зависимости $P(\mu C/cm^2)$ от E(kV/cm) для SBN: Cr при температурах 206 (*a*), 236 (*b*), 250 (*c*), 268 (*d*), 295 K (*e*). Период изменения E - 1 час. На вставке — нелинейные зависимости P от E для первых четвертей циклов переполяризации.

Рис. 3. Релаксация поляризации P(a, b) и спектры $g(\ln \tau)(c,d)$ для SBN: Cr при различных температурах T, K: 1 - 205, 2 - 236, 3 - 249, 4 - 268, 5 - 221; $t_0 = 1$ min. На вставках — начало процессов поляризации и деполяризации, скачки ΔP при включении и выключении поля E = 0.43 kV/cm отмечены стрелками.

тель гистерезиса и структуры релаксора SBN: Сг. На рис. З в качестве примера приведены зависимости поляризации P от времени t при включении (процесс поляризации) и выключении (процесс деполяризации) слабого поля E = 0.43 kV/cm, меньшего полуширины петли гистерезиса, при тех же температурах в области

точки T_m , для которых показаны петли гистерезиса на рис. 2. Оба процесса начинаются с характерного для SBN "скачка" ΔP , в который вносят вклад лавинные надбарьерные процессы и быстрые процессы сквозь мелкие барьеры. После скачка характер релаксации резко изменяется: начинается медленный термоактивационный процесс, связанный с переходом некоторых областей кристалла из долгоживущих метастабильных в стабильные состояния (рис. 3 и вставки). Скачок ΔP наблюдается при любом поле E в используемом нами интервале его значений, — как меньших, так и больших полуширины петли гистерезиса, — что свидетельствует об отсутствии единого значения коэрцитивного поля E_c . В отличие от обычного однородного сегнетоэлектрика [8] релаксор характеризуется широким распределением значений E_c в объеме кристалла.

Медленная термоактивационная стадия релаксации P(t) для процессов поляризации и деполяризации следует универсальному степенному закону

$$p(t) = (P_e - P(t))/(P_e - P_0) = 1/(1 + t/a)^n, \quad (1)$$

где P_0 — начальная поляризация при t = 0, равновесная поляризация P_e и a, n являются свободными параметрами [5]. Для процесса поляризации $P_0 = \Delta P$, если кристалл не поляризовался предварительно до начала измерений. Аппроксимация данных измерения P(t)функцией (1) проводились методом наименьших квадратов по стандартной программе. На рис. 3 степенные функции P(t) проведены сплошными линиями, экспериментальные данные показаны кружками. Отклонение последних от расчетных линий не превышает 0.5%. Черными точками на кривых 2 отмечены значения P_0 . Ошибки определения параметров P_e , a, n уменьшаются с увеличением времени регистрации P(t) [10].

В приближении независимых центров релаксации безразмерная поляризация p(t) в (1) должна иметь вид

$$p(t) = \int_{0}^{\infty} f(\tau) \exp(-t/\tau) d\tau, \qquad (2)$$

где $f(\tau)$ — функция распределения времени релаксации τ . Целесообразнее пользоваться вместо $f(\tau)$ безразмерной функцией $g(\ln \tau) = \tau f(\tau)$, определяющей распределение в кристалле $\ln \tau$ (или распределение потенциальных барьеров по энергии U, поскольку $U = kT \ln(\tau/\tau_0)$, где τ_0 — кинетический коэффициент). При степенной зависимости (1) для p(t)

$$g = (1/\Gamma(n))(a/\tau)^n \exp(-a/\tau)$$
(3)

с максимумом g_{\max} при $\tau_m = a/n$ [10]. Значения параметров релаксации P(t) и спектров g приведены в таблице.

Отметим особенности спектров g при различных температурах на рис. 3. Для процессов поляризации $g(\ln \tau)$ — асимметричные зависимости, включающие гигантские времена релаксации, или гигантские потенциальные барьеры. При $T > T_m$ спектр $g(\ln \tau)$ становится симметричнее, у́же и сдвигается к малым временам τ . Для процессов деполяризации зависимости $g(\ln \tau)$ более симметричные, а при нагревании выше T_m ведут себя так же, как спектры для поляризации. Черные точки на спектрах соответствуют максимальным временам

Параметры релаксации Р и спектров g кристалла SBN: Cr

Процесс	<i>E</i> , kV/cm	<i>Т</i> ,К	<i>a</i> , min	п	$P_e, \mu C/cm^2$	$ au_m, \ \min$
Поляри- зация	5	205.97	0.516± 0.05	0.054± 0.001	18.59± 0.04	9.55± 1.1
		236.16	0.643 ± 0.06	0.050± 0.001	16.72± 0.04	12.86± 1.5
		250.32	0.535 ± 0.06	0.054± 0.001	$\begin{array}{c} 10.78 \pm \\ 0.02 \end{array}$	9.91± 1.1
		281.68	$\begin{array}{c} 0.185 \pm \\ 0.02 \end{array}$	0.036 ± 0.0008	7.25± 0.02	5.15± 0.7
		295.02	$0.29\pm$ 0.03	0.023 ± 0.0005	6.65± 0.01	12.61± 1.6
	0.43	205.00	0.881± 0.05	0.010 ± 0.0002	4.03± 0.1	88.1± 6.8
		236.00	1.658± 0.09	0.009 ± 0.0002	5.34± 0.01	184.2± 14.1
		249.24	$\substack{0.373\pm\\0.04}$	$_{0.0089\pm}^{0.0089\pm}$	4.82± 0.01	41.91± 5.4
		267.7	0.538 ± 0.05	$_{0.001}^{0.1318\pm}$	$\begin{array}{c} 0.63 \pm \\ 0.001 \end{array}$	4.08± 0.4
Деполяри- зация	0	221.3	$\begin{array}{c} 0.807 \pm \\ 0.05 \end{array}$	0.0739 ± 0.002	-0.01	$\substack{10.92\pm\\1.0}$
		236.08	$\begin{array}{c} 0.642 \pm \\ 0.04 \end{array}$	0.123± 0.001	0	5.22± 0.4
		249.2	0.518± 0.05	0.1509± 0.002	0	3.43± 0.4

 $t_m \simeq 170 \,\mathrm{min}$ регистрации поляризации. Поэтому часть спектров, отвечающая $\tau > \tau_m$, является результатом экстраполяции экспериментальных данных на большие времена. Распределения $f(\tau)$ и $g(\ln \tau)$ являются нормированными функциями, т. е.

$$\int_{-\infty}^{\infty} g(\ln \tau) d(\ln \tau) = \int_{0}^{\infty} f(\tau) d\tau = 1$$

Нетрудно проверить, что площади, очерченные кривыми $g(\ln \tau)$ на рис. 3, действительно близки к 1. Ширина спектра $\Delta U = kT \ln(\tau_2/\tau_1)$, если τ_2, τ_1 — максимальное и минимальное значения τ при $g(\ln \tau) = 0$. Оценки ΔU дают значения $\Delta U \simeq 3.3 \text{ eV}$ для процессов поляризации при $T \leq T_m$ (кривые 1-3 на рис. 3, c) и $\Delta U \simeq 0.4 \text{ eV}$ для процесса деполяризации при $T > T_m$ (кривая 4 на рис. 3, c) и процесса деполяризации при $T = T_m$ (кривые 2, 3, 5 на рис. 3, d).

Значения параметров релаксации P и спектра $g(\ln \tau)$ существенно зависят от величины поляризующего поля E, как и в исследованных ранее составах SBN [5]. Например, для процессов деполяризации после поляризации кристалла в слабом поле 0.43 kV/cm равновесное

Рис. 4. Температурные зависимости параметров ΔP , P_e и τ_m релаксации P и спектров g $(\ln \tau)$ для электрического поля E = 0.43 (a) и 5 kV/cm (b) в окрестности точки T_m .

значение $P_e \simeq 0$ (рис. 3), а в более сильных полях $P_e \neq 0$ и растет с ростом *E*.

На рис. 4 представлены температурные зависимости некоторых параметров релаксации Р и спектра g в окрестности точки T_m релаксора SBN: Cr для процессов поляризации в постоянных полях $E_1 = 0.43$ и $E_2 = 5 \,\text{kV/cm}$, первое из которых не превышает, а второе заметно превышает полуширину петель гистеризиса во всем исследованном температурном интревале (рис. 2). Приводятся температурные зависимости скачка $\Delta P = P_0$, равновесной P_e и характерного времени τ_m . Отметим, что значения au_m существенно меньше, а ΔP и Ре больше в поле Е2 по сравнению с теми же значениями в поле Е1. Видно, что Ре и тт имеют слабо выраженные аномалии в области $T_m = 244 \,\mathrm{K}$, а их значения медленно уменьшаются при нагревании выше T_m , так же как локальная P^2 для релаксора по данным измерения теплового расширения [3]. В большом поле Е2 эти аномалии выглядят более размытыми. Скачок ΔP постепенно увеличивается для Е1 и уменьшается для Е2 при нагревании кристалла. Характер температурной зависимости $\Delta P(T)$ определяется конкуренцией двух процессов: уменьшения потенциальных барьеров с соответствующим возрастанием поляризуемой части объема кристалла и уменьшения значения поляризации при нагревании. Для малого поля E_1 доминирующим является первый, а для поля E_2 , поляризующего большую часть объема кристалла, — второй процесс. Именно этими причинами качественно объясняется различие поведения кривых $\Delta P(T)$ на рис. 4.

Таким образом, процессы поляризации низкотемпературного релаксорного сегнетоэлектрика ниобата бариястронция, легированного Cr (SBN:Cr), в области размытого фазового перехода имеют характерные для таких материалов диэлектрические аномалии: разомкнутые и несовпадающие траектории нескольких первых циклов петель гистерезиса, отсутствие однозначных коэрцитивного поля и равновесной поляризации, широкое распределение в объеме кристалла времени релаксации, или энергии потенциального барьера. Аномалии регистрируются только в инфранизкочастотном диапазоне и существуют в широкой области температур, включающей характерную точку Т_т максимума низкочастотной диэлектрической проницаемости. Аномалии являются признаком и мерой структурного беспорядка релаксоров и позволяют получить определенную количественную информацию о развитии размытого фазового перехода из неполярного в полярное состояние при изменении температуры.

Авторы признательны С.В. Нехлюдову за подготовку аппаратуры для исследования.

Список литературы

- Г.А. Смоленский, В.А. Исупов, А.И. Аграновская. ФТТ 1, 1, 167 (1959).
- [2] М. Лайнс, А. Гласс. Сегнетоэлектрики и родственные им материалы. Мир, М. (1981). С. 736.
- [3] L.E. Cross. Ferroelectrics 76, 241 (1987).
- [4] В.В. Гладкий, В.А. Кириков, С.В. Нехлюдов, Т.Р. Волк, Л.И. Ивлева. Письма в ЖЭТФ 71, 1, 38 (2000).
- [5] В.В. Гладкий, В.А. Кириков, С.В. Нехлюдов, Т.Р. Волк, Л.И. Ивлева. ФТТ 42, 7, 1296 (2000).
- [6] Т.Р. Волк, В.Ю. Салабутин, Л.И. Ивлева, Н.М. Полозков, Р. Панкрат. ФТТ 42, 11, 2006 (2000).
- [7] J. Seglins, S. Mendrics, R. Pankrath, V. Vikhnin, S. Kapphan. Verhand. PPG 1, 33, 601 (1998). NDF 6.11.
- [8] В.В. Гладкий, В.А. Кириков, С.В. Нехлюдов, Е.С. Иванова. ФТТ, **39**, *11*, 2046 (1997).
- [9] W.J. Huang, D. Viehland, R.R. Neurgaonkar. J. Appl. Phys. 76, 1, 490 (1994).
- [10] В.В. Гладкий, В.А. Кириков, Е.С. Иванова, С.В. Нехлюдов. ФТТ 41, 3, 499 (1999).