Электромагнитное излучение подвижных дислокационных сегментов в ионном кристалле

© О.В. Чаркина, К.А. Чишко

Физико-технический институт низких температур Национальной академии наук Украины, 61164 Харьков, Украина

E-mail:chishko@ilt.kharkov.ua

(Поступила в Редакцию 1 февраля 2001 г.)

Рассмотрена задача об электромагнитной эмиссии сегмента краевой дислокации, движущегося в ионной решетке со структурой типа NaCl. Предложенный механизм излучения связан с возникновением макроскопических переменных поляризационных токов вдоль края экстраплоскости краевой дислокации в процессе ее перемещения между соседними долинами рельефа Пайерлса. Получены выражения, описывающие поля электромагнитного излучения произвольно движущегося сегмента. Подробно рассмотрена задача об излучении сегмента, совершающего гармонические колебания в поле внешней квазистационарной упругой волны с частотой $\Omega \ll c/l (l - длина сегмента, c - скорость звука). Найдена мощность излучаемого электромагнитного сигнала и коэффициент "акустоэлектромагнитного преобразования" — отношение мощности электромагнитного излучения к механической мощности, необходимой для приведения сегмента в движение.$

Электромагнитные эффекты, сопровождающие движение дефектов в кристаллах, являются предметом интенсивного изучения в современной физике твердого тела. Среди достижений последних лет следует прежде всего отметить экспериментальное обнаружение [1-3] и теоретическое объяснение [3,4] магнитопластического эффекта в ионных кристаллах и металлах, а также детальные экспериментальные исследования электромагнитной эмиссии дислокаций и трещин [5,6]. Важно подчеркнуть, что указанные явления имеют принципиально динамический характер и представляют таким образом значительный интерес для понимания природы пластической деформации твердых тел. Электромагнитные явления в деформируемых твердых телах в течение длительного времени изучаются как в фундаментальном плане [7], так и в связи с многообразными прикладными задачами, возникающими, например, в геофизике [8] и механике разрушения конструкционных материалов [9,10].

Одним из интересных динамических эффектов в деформируемых кристаллах является излучение электромагнитных волн, сопровождающее движение дислокаций, а также зарождение и развитие трещин. В принципе ясно, что, например, перемещение дислокаций вызывает возмущение как кристаллической решетки, так и электронной подсистемы кристалла. Первое, как известно, приводит к появлению в образце упругих волн, второе влечет за собой электромагнитную эмиссию, характер которой определяется как индивидуальными свойствами дислокации, так и свойствами среды, в которой распространяется электромагнитная волна. Наиболее удобными объектами для изучения электромагнитного излучения дислокаций представляются ионные кристаллы, поскольку они являются диэлектриками, и в них практически отсутствует поглощение электромагнитного сигнала вплоть до инфракрасного диапазона частот. С другой стороны, большинство типов дислокаций в таких кристаллах имеет заряженное ядро [11,12], так что их перемещение естественным образом сопровождается некоторыми эффективными токами, следовательно, для них сравнительно просто могут быть найдены адекватные физические модели, интерпретирующие дислокацию как источник электромагнитных волн в кристалле.

В работе [13] был исследован механизм излучения электромагнитных волн подвижными дислокациями в ионных кристаллах, основанный на электроупругих эффектах в деформируемых решетках, состоящих из разноименных ионов. В [14] предложен альтернативный механизм электромагнитного излучения краевых дислокаций в ионных кристаллах, обусловленный возникновением макроскопических поляризационных токов вдоль линии движущейся прямолинейной дислокации. Оказалось, что интенсивность излучения в последнем случае на пять порядков выше, чем та, которая имеет место благодаря электроупругости. Таким образом, можно ожидать, что механизм [14] приведет к возникновению эффектов, реально доступных для наблюдения в эксперименте.

В работах [13,14] обсуждаемые эффекты рассмотрены на примере прямолинейных краевых дислокаций. Вместе с тем очевидно, что в реальном кристалле движущаяся через сетку стопоров дислокация представляет собой фактически набор колеблющихся сегментов. В этой связи представляется интересным решить задачу об электромагнитном излучении криволинейной дислокации, конфигурация которой является произвольной функцией времени. Анализ указанной задачи и обсуждение вклада такого механизма излучения в полную электромагнитную эмиссию составляет предмет настоящей работы.

1. Постановка задачи

Рассмотрим краевую дислокацию в кубической решетке типа NaCl, плоскость скольжения которой совпадает с одной из плоскостей системы {110}. Выберем декартову систему координат таким образом, чтобы дислокация скользила в плоскости y = 0, а ее линия в отсутствие внешних возмущений совпадала бы с осью *z*. Предположим теперь, что в процессе движения дислокационная линия искривляется так, что ее конфигурация в лабораторной системе отсчета может быть описана в любой момент времени функцией $x = x_0(z, t)$, однозначной по отношению к координате *z*. Это означает в частности, что в процессе движения дислокация не может генерировать петли типа источника Франка–Рида. Таким образом, плотность заряда $\rho(\mathbf{r}, t)$ на краю экстраплоскости искривленной дислокации (в ядре) может быть представлена в виде

$$\rho(\mathbf{r},t) = e^* \delta(y) F(x) \delta(x - x_0(z,t))$$
$$\times \sum_{m=-\infty}^{\infty} \{\delta(z - 2ma) - \delta[z - (2m+1)a]\}.$$
(1)

Здесь е* — эффективный заряд узла на краю экстраплоскости, 2а — расстояние между ионами одного знака вдоль оси z (положительные заряды расположены в позициях *z* = 2*ma*, отрицательные — в позициях z = (2m + 1)a), а функция F(x) имеет период 2b в направлении движения дислокации (b — расстояние между соседними минимумами рельефа Пайерлса в направлении оси Ox, $|F(x)| \leq 1$). Сомножитель F(x) учитывает эффективную "перезарядку" узла, расположенного на линии дислокации при перемещении его в соседнюю долину рельефа Пайерлса [14]. Обратим внимание на то, что в отличие от прямолинейной дислокации [14], знак эффективного заряда на узле, через который проходит линия искривленного дислокационного сегмента, как видно из формулы (1), зависит от значений двух координат — x₀ и z.

Очевидно, что эволюция заряда в ядре искривленной дислокации должна удовлетворять уравнению непрерывности $\partial \rho(\mathbf{r}, t)$

$$\frac{\partial \rho(\mathbf{r},t)}{\partial t} + \operatorname{div} \mathbf{j}(\mathbf{r},t) = 0, \qquad (2)$$

где \mathbf{j} — эффективная плотность тока в ядре дислокации. Продифференцировав (1) по времени, преобразуем его к виду

$$\frac{\partial \rho}{\partial t} = -ae^* \delta(y) \left\{ \frac{\partial}{\partial z} \left[F(x) \frac{\partial}{\partial x} \delta(x - x_0(z, t)) V(z, t) \right. \\ \left. \times \sum_{m = -\infty}^{\infty} \delta(z - 2ma) \right] - F(x) \frac{\partial}{\partial z} \right. \\ \left. \times \left[V(z, t) \frac{\partial}{\partial x} \delta(x - x_0(z, t)) \right] \sum_{m = -\infty}^{\infty} \delta(z - 2ma) \right\}.$$
(3)

Здесь использовано приближенное соотношение

$$\sum_{m=-\infty}^{\infty} [\delta(z-2ma) - \delta[z-(2m+1)a]]$$
$$\simeq a \frac{\partial}{\partial z} \sum_{m=-\infty}^{\infty} \delta(z-2ma),$$

которое учитывает то обстоятельство, что в дальнейшем нас будут интересовать лишь микроскопические величины, медленно меняющиеся на расстояниях порядка межатомных. Это соответствует обычной процедуре усреднения микротоков, принятой в электродинамике сплошных сред [15]. Сравнивая (3) с (2), можно видеть, что комбинация, входящая под знак полной производной по z в (3), представляет собой компоненту j_z плотности тока

$$j_{z}(\mathbf{r},t) = \frac{e^{*}}{2}\delta(y)F(x)V(z,t)\frac{\partial}{\partial x}\delta(x-x_{0}(z,t)), \qquad (4)$$

где $V(z,t) = \partial x_0(z,t)/\partial t$ — распределение скоростей смещения точек дислокационного сегмента. Оставшуюся часть выражения (3) естественно ассоциировать с $\partial j_x/\partial x$. Производя в ней интегрирование по *x*, находим

$$j_{x}(\mathbf{r},t) = -\frac{e^{*}}{2}\delta(y)$$

$$\times \int_{-\infty}^{x_{0}(z,t)} dx' F(x') \frac{\partial}{\partial z} \left[V(z,t) \frac{\partial}{\partial x'} \delta(x'-x_{0}(z,t)) \right]$$

$$= -\frac{e^{*}}{2}\delta(y) \frac{\partial}{\partial z} \left[V(z,t) \frac{\partial}{\partial x_{0}} F(x_{0}(z,t)) \Theta(x_{0}(z,t)-x) \right].$$
(5)

При записи (4) и (5) произведено очевидное усреднение соответствующих слагаемых выражения (3) по координате z.

Теперь не представляет труда вычислить необходимые в дальнешем компоненты вектора дипольного момента $\mathbf{d}(t)$ дислокационного сегмента, который обычным образом [16] связан с плотностью тока **ј**

$$\frac{\partial \mathbf{d}}{\partial t} = \int \mathbf{j}(\mathbf{r}, t) dV. \tag{6}$$

Для компоненты дипольного момента получаем с учетом (4), (6)

$$\frac{\partial d_z}{\partial t} = \frac{e^*}{2} \int dz' V(z', t) \frac{\partial}{\partial x_0} F(x_0(z', t))$$
$$= \frac{e^*}{2} \frac{\partial}{\partial t} \int F(x_0(z', t)) dz'.$$
(7)

При вычислении dx после очевидного интегрирования (5) по у и z получаем

$$d_{x} = \frac{e^{*}}{2} \int_{-\infty}^{+\infty} dx \left[V(z_{1}, t) \frac{\partial}{\partial x_{0}} F(x_{0}(z_{1}, t)) \Theta(x_{0}(z_{1}, t) - x) - V(z_{2}, t) \frac{\partial}{\partial x_{0}} F(x_{0}(z_{2}, t)) \Theta(x_{0}(z_{2}, t) - x) \right], \qquad (8)$$

здесь $z = z_{1,2}$ — координаты концов дислокаций, формально можно полагать $|z_{1,2}| \rightarrow \infty$. Для вычисления интеграла (8) заметим, что движение искривленной дислокации можно рассматривать как суперпозицию смещений точек дислокации u(z,t) в некоторой "сопутствующей" системе отсчета и перемещение X(t) сопустствующей системы в пространстве, $x_0(z,t) = X(t) + u(z,t)$.

Другими словами, движение дислокации можно рассматривать как перемещение в среднем прямолинейной дислокации, на которое накладываются колебания точек дислокации u(z, t) относительно оси oX(t) сопутствующей системы координат. Выбор положения оси oX сопутствующей системы может быть определен, например, условием

$$\int_{z_1}^{z_2} u(z,t)dz = 0.$$

Не будем обсуждать здесь вопрос о том, является ли такой способ определения сопутствующей системы единственно возможным. Для наших целей достаточно того, что такая система в принципе существует. Ввиду наличия δ -функции в подынтегральном выражении (8) область интегрирования в этом выражении фактически ограничена сверху значением x = X(t) + u(z, t). При этом интеграл по промежутку $-\infty < x < X(t)$ обращается в нуль, если принять, что при $|z_{1,2}| \rightarrow \infty$ имеем $V(z_1, t) = V(z_2, t) = dX/dt$ и концы дислокации одновременно находятся в долинах рельефа Пайерлса, т. е. $F[x_0(z_1, t)] = F[x_0(z_2, t)]$. В этом случае

$$d_{x} = -\frac{e^{*}}{2}u(z,t)\Big[V(z_{1},t) - V(z_{2},t)\Big]\frac{\partial}{\partial x_{0}}F(x_{0}(z_{1},t)).$$
 (9)

Наконец, в случае когда концы сегмента неподвижно закреплены на стопорах, $V(z_1,t) = V(z_2,t) = 0$ и компонента дипольного момента d_x обращается в нуль. Именно такой случай будет рассмотрен далее.

2. Электромагнитная эмиссия дислокационного сегмента

В этом разделе получены формулы, описывающие электромагнитные поля, создаваемые в кристалле отдельным дислокационным сегментом с начальной длиной l, закрепленным в точках $z = \pm l/2$, лежащих на оси Oz. Будем считать по-прежнему, что скольжение дислокации происходит в плоскости y = 0. Для сегмента с закрепленными концами, как видно из (5), компонента плотности тока j_x обращается в нуль, так что эволюция полей излучения обусловлена только *z*-компонентой дипольного момента $d_z(t)$.

Поля излучения сегмента удобно выписать в сферических координатах r, θ , φ , где азимутальный угол θ отсчитывается от оси Oz декартовой системы координат. Интересующие нас формулы для напряженностей $\mathbf{E}(\mathbf{r},t)$ и $\mathbf{H}(\mathbf{r},t)$ электрического и магнитного полей элементарного диполя в волновой зоне приведены в [17]. Спектральные компоненты (Фурье-трансформанты по времени) полей излучения $\mathbf{E}^{\omega}(r,\theta,\varphi) = (0, E_{\theta}^{\omega}(r,\theta,\varphi), 0)$ и $\mathbf{H}^{\omega}(r,\theta,\varphi) = (0, 0, H_{\varphi}^{\omega}(r,\theta,\varphi))$ имеют вид

$$E^{\omega}_{\theta}(r,\theta,\varphi) = H^{\omega}_{\varphi}(r,\theta,\varphi) = \frac{\omega^2}{c^2 r} d^{\omega}_z \sin\theta \exp\left(i\frac{\omega r}{c}\right). \quad (10)$$

Физика твердого тела, 2001, том 43, вып. 10

Введенные в (10) спектральные компоненты E_{θ}^{ω} , H_{φ}^{ω} и d_{z}^{ω} определены обычным образом, например

$$d_z^{\omega} = \int_{-\infty}^{+\infty} dt d_z(t) \exp(-i\omega t)$$

(аналогично определяются спектральные компоненты всех остальных функций времени).

Таким образом, проблема вычисления спектральных компонент дипольного момента сводится к вычислению интеграла (7) при возможно более общих предположениях о виде функции u(z,t) определяющих смещения точек дислокационного сегмента. Ясно, что вдали от точек закрепления смещения u могут достигать заметной величины $\sim L$. Во всяком случае очевидно, что для макроскопических сегментов ($c_l > 10^{-6}$ сm) практически для всех точек сегмента (за исключением малых окрестностей точек закрепления) имеет место неравенство $|u(z,t)| \gg b$. Это позволяет произвести оценку интеграла (7) по большому параметру $|u(z,t)|/b \gg 1$. Для упрощения дальнейших расчетов примем, как это сделано ранее в [13], что $F(x) = -\cos(\pi x/b)$ и запишем d_z в виде

$$d_{z} = \frac{e^{*}}{2} \int_{-l/2}^{l/2} \cos\left(\frac{\pi}{b}u(z,t)dx\right)$$
(11)

Интеграл (11) содержит в аргументе косинуса большой параметр u(z,t)/b и может быть оценен методом стационарной фазы [18]. В результате получаем

$$d_{z}(t) = -e^{*} \left(\frac{b}{2l}\right)^{1/2} \\ \times \sum_{\alpha} \frac{1}{\sqrt{u_{zz}''(z_{\alpha}, t)}} \cos\left(\frac{\pi}{b}u(z_{\alpha}, t) + \frac{\pi}{4}\right), \quad (12)$$

где z_{α} — набор стационарных точек, определяемых условием $u'_z = 0$ (здесь и далее производные функции u(z, t) будем обозначать штрихами, отмечая нижними индексами переменные, по которым производится дифференцирование). Таким образом, основной вклад в излучение вносят горизонтальные (u' = 0) и слабо искривленные ($u'' \rightarrow 0$) участки колеблющегося сегмента.

Для получения более определенного результата расчитаем движение сегмента, воспользовавшись струнной моделью дислокации [19]. В этом приближении уравнение движения сегмента имеет вид

$$\rho_D u_{tt}'' + B u_t'' - G u_{zz}'' = -b\sigma(z, t).$$
(13)

Здесь $\rho_D = (\rho b^2/4\pi) \ln(l/b)$ и $G = (\mu b^2/4\pi) \ln(l/b)$ — соответственно масса единицы длины и линейное натяжение дислокации, ρ — плотность, а μ — модуль сдвига среды, B — коэффициент дислокационного трения, σ — внешнее напряжение. К уравнению (13) должны быть добавлены граничные условия на концах сегмента:

 $u(\pm l/2, t) = 0$, а также начальные условия, в качестве которых удобно будет выбрать u(z, 0) = 0 и $u'_t(z, 0) = 0$.

Решение граничной задачи (13), записанное, как обычно, в виде ряда, мало пригодно для получения интересующих нас результатов в обозримом виде. Интересуясь прежде всего построением определенных качественных зависимостей, рассмотрим ситуацию, когда сегмент либо приводится в движение квазиоднородным (в масшабах порядка размеров сегмента) внешним полем, либо испытывает термофлуктуационные перемещения при низких температурах, когда вклад высших гармоник в конфигурацию дислокационной струны пренебрежимо мал. В этих приближениях закон движения дислокационного сегмента, необходимый для вычисления дипольного момента, может быть построен в рамках следующей схемы.

Построим приближенное решение уравнения (13), воспользовавшись прямой вариационной процедурой. Действие для дислокационной струны может быть записано в виде

$$S = \int dt \int_{-l/2}^{l/2} dz \mathcal{L}(u, u'_t, u'_z, t),$$
 (14)

где \mathcal{L} — плотность лагранжиана, равная

$$\mathcal{L}(u, u'_t, u'_z, t) = \frac{\rho_D}{2} (u'_t)^2 - \frac{G}{2} (u'_z)^2 - bu\sigma(z, t).$$
(15)

Уравнение Эйлера, соответствующее данной вариационной задаче при наличии сил трения, есть

$$\frac{d}{dt} \left[\frac{\partial \mathcal{L}}{\partial u'_t} \right] + \frac{d}{dz} \left[\frac{\partial \mathcal{L}}{\partial u'_z} \right] - \frac{\partial \mathcal{L}}{\partial u} = -\frac{\partial \mathcal{F}}{\partial u'_t}.$$
 (16)

Член в правой части (16) описывает силы трения, выраженные через диссипативную функцию

$$F = \int dt \int_{-l/2}^{l/2} dz \mathcal{F}(u'_t, z, t)$$
 (17)

с плотностью

$$\mathcal{F} = \frac{B}{2} (u_t')^2. \tag{18}$$

Легко убедиться, что сформулированная вариационная задача эквивалентна уравнению (13).

Примем во внимание, что в большинстве практически важных случаев внешнее поле напряжений, возбуждающее колебания сегмента, можно считать однородным в областях с размерами $\sim l$. В этом случае форма сегмента в каждый момент времени близка к параболической. В самом деле, в однородном статическом поле $\sigma = \text{const}$ форма сегмента определяется из уравнения

$$Gu_{zz}''=-b\sigma,$$

решением которого при нулевых граничных условиях на концах (при $z = \pm l/2$) будет функция

$$u(z) = \frac{\sigma b l^2}{2G} \gamma(z), \quad \gamma(z) = \left(\frac{1}{4} - \frac{z^2}{l^2}\right). \tag{19}$$

Очевидно, что в квазистационарном внешнем упругом поле колеблющийся сегмент имеет форму, близкую к (19), но величина прогиба будет изменяться со временем в силу временной зависимости напряжения σ .

Таким образом, для приближенного описания конфигурации сегмента, движущегося под действием переменной внешней нагрузки $\sigma(z, t)$, в любой момент времени мы будем решать прямую вариационную задачу на семействе пробных функций вида

$$u(z,t) = U(t)\gamma(z).$$
(20)

Подставляя (20) в (14) и производя интегрирование по координате *z*, найдем "усредненную" функцию Лагранжа

$$\ell(U'_t, U, t) = \int_{-l/2}^{l/2} dz \mathcal{L}(u, u'_t, u'_z, t)$$
$$= \frac{l}{6} \left\{ \frac{\rho_D}{10} (U'_t)^2 - \frac{G}{l^2} U^2(t) - b\bar{\sigma}(t) U(t) \right\}.$$
(21)

Здесь введено обозначение

$$\bar{\sigma}(t) = \frac{1}{l} \int_{-l/2}^{l/2} dz \sigma(z, t)$$

После варьирования действия $S = \int dt \ell(U'_t, U, t)$ по U приходим к уравнению

$$\frac{d^2U}{dt^2} + 2\beta \frac{dU}{dt} + \omega_0^2 U = f(t), \qquad (22)$$

где

$$eta = (B/2
ho_D), \quad \omega_0^2 = (10G/
ho_D l^2), \ f(t) = (5bar\sigma(t)/
ho_D).$$

Таким образом, задача о движении сегмента сведена к уравнению движения эффективного гармонического осциллятора под действием переменной внешней силы.

Решение уравнения (22) может быть выписано для произвольной правой части f(t), после чего, подставляя (20) в (11) и производя интегрирование по координате *z*, получаем дипольный момент в виде

$$d_z(t) = -e^* l \left(\frac{\pi}{8s(t)}\right)^{1/2} \\ \times \left[\cos(s(t))C(s(t)) + \sin(s(t))S(s(t))\right], \quad (23)$$

где $s(t) = \pi U(t)/4b$, а C(s) и S(s) — интегралы Френеля [20]. С использованием (23) обычным образом [16] выписываются поля излучения в дипольном приближении.

Здесь более подробно рассмотрим тот важный частный случай движения сегмента, когда он совершает гармонические колебания под действием синусоидального внешнего напряжения частоты Ω ,

$$\bar{\sigma}(t) = \sigma_0 \cos(\Omega t + \delta).$$

Решение уравнения (22) в этом случае удобно представить в виде

$$U(t) = A\cos(\Omega t + \Delta).$$
(24)

Здесь

$$A = \frac{5b\sigma_0}{\rho_D} \frac{1}{\sqrt{(\omega_0^2 - \Omega^2)^2 + 4\beta^2 \Omega^2}},$$
$$\Delta = \delta + \delta', \quad \text{tg}\,\delta' = -\frac{2\beta\Omega}{\omega_0^2 - \Omega^2}.$$

Дипольный момент сегмента, совершающего гармонические колебания, может быть получен из (23) с учетом (24). Для этого случая представляет интерес также получение формул, описывающих спектральный состав излучения. Именно, представим дипольный момент в виде ряда Фурье

$$d_z = \sum_{n=-\infty}^{\infty} d_n \exp(in\Omega t).$$
 (25)

Фурье-амплитуды d_n гармоник дипольного момента с частотами $\omega_n = n\Omega$ равны

$$d_n = \frac{e^*}{2\pi} \int_0^{2\pi} d\tau \int_0^{l/2} dz \exp(-in\tau) \cos\left[\frac{\pi A}{b}\gamma(z)\cos(\tau+\Delta)\right]$$
$$= \frac{e^*}{2} \exp\left[-in\left(\Delta - \frac{\pi}{2}\right)\right] \int_0^{l/2} dz [J_n(p(z)) + J_n(-p(z))],$$
(26)

где

$$p(z) = \frac{\pi A}{b} \gamma(z),$$

а $J_n(x)$ — функция Бесселя первого рода *n*-го порядка [20]. В результате находим, что отличными от нуля в рассматриваемом случае оказываются только амплитуды четных гармоник

$$d_{2n} = -e^* \exp\left[-2in\left(\Delta - \frac{\pi}{2}\right)\right] \int_0^{l/2} J_{2n}(p(z))dz$$
$$= \frac{\pi e^* l}{2\sqrt{2}} \exp\left[-2in\left(\Delta - \frac{\pi}{2}\right)\right] J_{n+\frac{1}{4}}\left(\frac{\alpha}{2}\right) J_{n-\frac{1}{4}}\left(\frac{\alpha}{2}\right),$$
$$\alpha = \frac{\pi A}{4b},$$
(27)

а $d_{2n-1} = 0$ (интеграл, входящий в (27), преобразуется с использованием известных представлений [21]).

Типичная ситуация с колебаниями дислокационных сегментов, очевидно, такова, что амплитуда этих колебаний велика по сравнению с вектором Бюргерса, т.е. $\alpha \gg 1$. Учет этого обстоятельства позволил бы несколько упростить выражения для полей электромагнитного излучения путем вычисления соответствующих асимптотик при $\alpha \rightarrow \infty$. Такую процедуру однако

нельзя выполнить непосредственно в (27), поскольку Фурье-амплитуды d_{2n} входят в бесконечные суммы, а вид асимптотик содержащихся в них функций Бесселя произвольного индекса [20] существенно зависит от соотношений между величинами индекса и аргумента. Таким образом, для получения формул, описывающих пространственно-временну́ю форму полей излучения, необходимо подставить (27) в (10) и выполнить точное суммирование по гармоникам $\omega_n = n\Omega$. В результате находим

$$E_{\theta}(r,\theta,\varphi) = -\frac{\pi e^*}{\sqrt{2}c^2r} \sin\theta \frac{\partial^2}{\partial t^2} \sum_{n=1}^{\infty} (-1)^n J_{n+\frac{1}{4}}\left(\frac{\alpha}{2}\right)$$
$$\times J_{n-\frac{1}{4}}\left(\frac{\alpha}{2}\right) \cos 2n\tau = -\frac{\sqrt{\pi}e^*l}{\sqrt{2\alpha}c^2r} \sin\theta \frac{\partial^2}{\partial t^2}$$
$$\times \frac{\cos(\alpha\cos\tau)C(\alpha\cos\tau) + \sin(\alpha\cos\tau)S(\alpha\cos\tau)}{\sqrt{\cos\tau}}, \quad (28)$$

гле

$$\tau = \Omega\left(t - \frac{r}{c}\right) - \Delta.$$

Выражение (29) для полей электромагнитного излучения остается конечным, в частности, при $\cos \tau \rightarrow 0$, поскольку в этом случае стремятся к нулю также и значения интегралов Френеля [20].

В асимптотическом пределе $\alpha \to \infty$ выражение (28) может быть упрощено только за счет удержания старших по параметру α слагаемых после дифференцирования по времени; интегралы Френеля $C(\alpha \cos \tau)$ и $S(\alpha \cos \tau)$ не могут быть заменены соответствующими асимптотиками, поскольку их аргументы не обязательно велики (вследствие произвольности значения $\cos \tau$). Таким образом, при $\alpha \gg 1$

$$E_{\theta}(r,\theta,\varphi) \simeq \frac{\sqrt{\pi}e^{*}l\alpha^{3/2}\Omega^{2}\sin\theta}{\sqrt{2}c^{2}r} \frac{\sin^{2}r}{\sqrt{\cos\tau}} \times \left[\cos(\alpha\cos\tau)C(\alpha\cos\tau) + \sin(\alpha\cos\tau)S(\alpha\cos\tau)\right]. (30)$$

Отметим также, что полученные в результате достаточно сложных вычислений формулы (29), (30) по своей структуре весьма близки к представленному выше результату (23).

Амплитудное значение напряженности электрической компоненты поля излучения получается из (30) при $\cos \tau = 0$

$$E_{\theta} \sim \frac{e^* l \Omega^2}{\sqrt{2}c^2 r} \left(\frac{\pi A}{4b}\right)^2 \sin \theta.$$
 (31)

Приведем оценки напряженности полей излучения системы дислокационных сегментов в некотором типичном случае. Для отдельного сегмента длиной $l \sim 10^4 b \sim 10^{-4}$ сm, колеблющегося с амплитудой $A \sim 10^2 b$ и частотой $\Omega \sim 10^4$ s⁻¹ (накачка в килогерцевом диапазоне частот, $\Omega \ll \Omega_0$), находим $E \sim 10^{-17}$ V/m на расстояниях $r \sim 1$ сm. При умеренной плотности дислокаций в кристалле ($\sim 10^8$ cm⁻²) в образце

с объемом 1 сm³ содержится ~ 10^{12} дислокационных сегментов, и полная напряженность поля излучения сегментов равна $E \sim 10 \,\mu$ V/m, что вполне доступно для регистрации с помощью аппаратуры стандартного среднего класса (с чувствительностью ~ $1 \,\mu$ V/m). Кроме того, очевидно, что амплитуда электромагнитной эмиссии резко (~ Ω^2) возрастает с увеличением частоты накачки. Таким образом, очевидно, что рассматриваемые эффекты представляют собой явление, непосредственно доступное для экспериментального наблюдения.

Спектральная интенсивность излучения (интенсивность излучения на 2*n*-й гармонике) равна

$$dI_{2n} = \frac{4n^4 \Omega^4 |d_{2n}|^2}{\pi c^3} \sin^3 \theta d\theta d\varphi.$$
(32)

Полная интенсивность (мощность) излучения сегмента получается из (28) интегрированием по углам и суммированием по частотам

$$I = \frac{4\pi^2 e^{*2} l^2 \Omega^4}{3c^3} \sum_{n=1}^{\infty} n^4 J_{n+\frac{1}{4}}^2 \left(\frac{\alpha}{2}\right) J_{n-\frac{1}{4}} \left(\frac{\alpha}{2}\right).$$
(33)

В случае $\alpha \gg 1$ справедлива оценка

$$I \sim \frac{2e^{*2}l^2}{3c^3} \Omega^4 \left(\frac{\pi A}{4b}\right)^4. \tag{34}$$

Подставляя в формулу (34) значения входящих в нее величин, использованные выше при оценке амплитуды излучения, находим $I \sim 10^{-25}$ erg/s.

Наконец, найдем коэффициент "акустоэлектромагнитного преобразования" как отношение мощности электромагнитного излучения дислокаций к механической мощности, необходимой для приведения сегментов в движение ($\sigma_0/\mu \sim 10^{-5}$)

$$\eta \simeq \frac{2\pi}{15} \frac{e^{*2} \Omega^3}{c^3 \sigma_0 l} \left(\frac{l}{b}\right)^2 \sim 10^{-31}.$$
 (35)

Как видно, лишь ничтожная доля механической мощности, затрачиваемой на деформацию кристалла, преобразуется в энергию электромагнитного излучения дислокаций, однако, как видно из приведенных выше результатов, напряженности электромагнитных полей, генерируемых дислокациями, оказываются все же вполне достаточными для экспериментальной регистрации обсуждаемых эффектов.

3. Обсуждение результатов

Результаты, полученные в настоящей работе, показывают, что любые перемещения дислокаций в ионных кристаллах должны сопровождаться электромагнитной эмиссией, интенсивность которой может быть достаточно велика даже при умеренной ($\sim 10^8 \text{ cm}^{-2}$) плотности дислокаций в образце. Обсуждаемый в работе механизм излучения связан с наличием переменных макротоков

поляризации в ядре движущейся дислокации и не предполагает наличия на ее линии каких-либо статических зарядов типа заряженных ступеней [11,12]. Таким образом предложенный механизм может быть реализован в любом непьезоэлектрическом ионном кристалле, дислокации в котором имеют краевые компоненты. В принципе электромагнитной эмиссией сопровождается любое движение дислокационных сегментов, в частности, термические флуктуации дислокационных линий, и, как показывают сделанные в работе оценки, такая эмиссия может быть зарегистрирована в должным образом поставленном эксперименте. Коэффициент преобразования механической энергии дислокаций в электромагнитное излучение ничтожно мал, однако интенсивность электромагнитной эмиссии быстро растет с увеличением частоты и амплитуды колебаний дислокационных сегментов.

Наиболее рациональный способ обнаружения электромагнитной эмиссии дислокаций в ионных кристаллах должен включать в себя одновременное и согласованное возбуждение большого числа дислокационных сегментов для получения электромагнитного сигнала достаточной амплитуды. Такое возбуждение может быть достигнуто при приложении к кристаллу знакопеременного внешнего напряжения с известной частотой (как это делается, например, в опытах по внутреннему трению). При этом появляется также возможность исследования амплитуды, интенсивности и спектрального состава электромагнитного излучения в зависимости от частоты и амплитуды механической накачки. Экспериментальная проверка предсказываемых зависимостей интенсивности излучения (33) от частоты и амплитуды внешней накачки представляет существенный интерес в плане проверки адекватности предлагаемых дислокационных моделей электромагнитной эмиссии деформируемых кристаллов. Здесь следует еще раз подчеркнуть, что проблема электромагнитной эмиссии твердых тел достаточно широко обсуждается в связи с разнообразными приложениями в материаловедении и геофизике, но реальная разработка физических аспектов связанных с ней явлений находится в настоящее время по существу в зачаточном состоянии (как в плане экспериментальных исследований, так и в плане адекватного теоретического описания механизмов электромагнитной эмиссии деформируемых твердых тел). Настоящей работой продолжен цикл исследований, направленных на решение указанных выше интересных и важных физических проблем.

Список литературы

- [1] В.И. Альшиц, Е.В. Даринская, О.Л. Казакова. ФТТ **40**, *1*, 81 (1998).
- 2] Ю.И. Головин, Р.Б. Миронов. ФТТ 37, 7, 2118 (1995).
- [3] В.И. Альшиц, Е.В. Даринская, И.В. Гектина, Ф.Ф. Лаврентьев. Кристаллография 35, 4, 1014 (1990).
- [4] М.И. Молоцкий. ФТТ 33, 10, 3112 (1991).
- [5] Ю.И. Головин, А.А. Шибков. ФТТ 28, 11, 3492 (1986).
- [6] Ю.И. Головин, А.В. Горбунов, А.А. Шибков. ФТТ 30, 7, 1931 (1988).

- [7] В. Новацкий. Электромагнитные эффекты в твердых телах. Мир, М.(1986). 157 с.
- [8] М.Б. Гохберг, В.А. Моргунов, О.А. Похотелов. Сейсмоэлектромагнитные явления. Наука, М. (1988). 174 с.
- [9] А.И. Гончаров, В.П. Корявов, В.М. Кузнецов, В.Я. Либин, Л.Д. Лившиц, А.А. Семерчан, А.Г. Фомичев. ДАН СССР 225, 4, 821 (1980).
- [10] Ю.П. Малышков, В.Ф. Гордеев, В.П. Дмитриев, В.А. Смирнов, Т.В. Фурса, В.И. Ульченко. ЖТФ 54, 2, 336 (1980).
- [11] R.W. Whitworth. Adv. Phys. 24, 203 (1975).
- [12] R.W. Whitworth. Phil. Mag. 11, 109, 83 (1965).
- [13] А.М. Косевич, И.Г. Маргвелашвили. Украинский физ. журн. **12**, *12*, 2007 (1967).
- [14] К.А. Чишко, О.В. Чаркина. ФТТ 38, 9, 2775 (1996).
- [15] Л.Д. Ландау, Е.М. Лившиц. Электродинамика сплошных сред. ГИФМЛ, М. (1959). 532 с.
- [16] Л.Д. Ландау, Е.М. Лифшиц. Теория поля. Наука, М. (1965). 504 с.
- [17] И.Е. Тамм. Основы теории электричества. ГИТТЛ, М. (1954). 620 с.
- [18] А. Эрдейи. Асимптотические разложения. ГИФМЛ, М. (1962). 127 с.
- [19] A. Granato, K. Lücke. J. Appl. Phys. 27, 2, 583 (1956).
- [20] Е. Янке, Ф. Эмде, Ф.Леш. Специальные функции. Наука, М. (1968). 344 с.
- [21] А.П. Прудников, Ю.А. Брычков, О.И. Маричев. Интегралы и ряды. Специальные функции. Наука, М. (1983). 750 с.

7*