Концентрация и время жизни неравновесных носителей в Csl, NaCl при рентгеновском возбуждении

© В.Д. Куликов

Томский политехнический университет, 634034 Томск, Россия E-mail: kulikov@list2.epd.tpu.edu.ru

(Поступила в Редакцию 16 января 2001 г.)

Исследована температурная зависимость радиационно-индуцированной проводимости в области 80–300 К в щелочно-галоидных кристаллах CsI, NaCl при возбуждении импульсным рентгеновским излучением. Показано, что увеличение проводимости с температурой удовлетворительно описывается термическим разделением электронов и дырок в генетических парах. Сделаны оценки концентрации, времени жизни электронов проводимости, пространственного распределения и вероятности термического разделения неравновесных носителей в генетических парах после термализации. Обсуждено возможное влияние двух дырок в генетической паре, возникающих при Оже-генерации, на увеличение скорости рекомбинации электронов.

Информация о концентрации, времени жизни неравновесных носителей имеет большое значение для понимания закономерностей многих радиационно-стимулированных процессов: проводимости, дефектообразования, люминесценции.

В ионных кристаллах концентрация созданных радиацией носителей ограничена рекомбинацией электронов и дырок в парах за счет кулоновского взаимодействия и захватом на радиационные дефекты. Скорость рекомбинации носителей уменьшается для более разделенных пар с увеличением температуры и при наличии внешнего электрического поля [1,2]. Имеющаяся в настоящее время информация по оценке выхода носителей и времени жизни носителей в щелочно-галоидных кристаллах (ЩГК) недостаточна. По данным компьютерного моделирования стадий генерации носителей при возбуждении кристалла NaCl фотонами с энергиями 20-250 eV, средняя энергия генерируемых электронов составляет ~ 5 eV, разлет в парах — менее 5 nm [2,5]. В работах отмечается, в частности, относительно слабое влияние электрического поля дырки на движение горячего электрона в электронно-дырочных парах в процессе термализации. Среднее расстояние термализации ~ 100 nm. В генетических парах рекомбинируют электроны с энергиями 1-2 eV, что ограничивает выход свободных носителей до ~ 60-70% от общего числа носителей. Экспериментальные оценки выхода свободных носителей при возбуждении КС1 сильноточным электронным пучком, выполненные в [4], дают значение выхода $\sim 6\%$. На наш взгляд, низкое значение проводимости может быть обусловлено достаточно высоким уровнем дефектности в щелочно-галоидных кристаллах, что ведет к захвату и рассеянию носителей.

Прямые измерения времени жизни свободных электронов в зоне проводимости диэлектрика представляют значительные трудности, так как в большинстве случаев возможность оценки времени жизни по спаду проводимости после окончания импульса возбуждения ограничена временным разрешением аппаратуры. В данной работе исследовалась температурная зависимость радиационно-индуцированной проводимости (РИП) в области температур 80–300 К в кристаллах CsI, NaCl при возбуждении испульсным рентгеновским излучением. Выбор этих кристаллов обусловлен низкой эффективностью образования и накопления центров окраски, в первую очередь для CsI, под действием ионизирующего излучения. Можно ожидать минимального влияния дефектности на РИП в данных материалах при рентгеновском возбуждении. По результатам эксперимента предложена модель процесса РИП.

1. Измерения

В эксперименте использовались чистые монокристаллы CsI, NaCl, выращенные из расплава соли марки ОСЧ. Радиационно-индуцируемая проводимость σ и концентрация носитилей *n* оценивались из вольт-амперных характеристик (BAX)

$$i = \sigma E, \tag{1}$$

где $\sigma = en\mu$, e — заряд электрона, μ — подвижность, Е — напряженность электрического поля. Методика измерения ВАХ представлена в работе [5]. Генерация рентгеновского излучения осуществлялась при облучении A1 мишени толщиной ~ 300 μ m сильноточным электронным пучком с параметрами: максимальная энергия электронов ~ 0.3 MeV, длительность импульса ~ 20 ns, плотность тока $\sim 400 \,\text{A/cm}^2$. Низкотемпературные измерения проводились при помещении образца в емкость с жидким азотом. ВАХ строились по амплитудным значениям импульса тока при соответствующих напряжениях. Энергия рентгеновского излучения W_0 , поглощенная в образце, оценивалась по методике [5]. Значения $\sigma(T)$ определялись при низких уровнях напряженности электрического поля $E \sim 10^4 \, \text{V/cm}$ в образце, соответствующих области линейного изменения тока проводимости от Е. Как показывают исследования [5], до значений $E \sim 1.5 \cdot 10^4$ V/ст можно пренебречь ударной ионизацией *F*-, *F*⁻-центров окраски, эффектом Онзагера и влиянием электрического поля на подвижность носителей заряда. В работе использовались данные холловской подвижности в ЩГК из [6,7]. При температурах выше 30 К за счет термоактивации время захвата на мелкие ловушки меньше, чем время жизни носителей в зоне проводимости, и можно считать, что холловская и дрейфовая подвижности имеют близкие значения [4].

2. Экспериментальные результаты

Изменение РИП в образце CsI от плотности падающей энергии W при комнатной температуре приведено на вставке к рис. 1, а. Поскольку длительность импульса возбуждения ($\sim 10^{-8} \, {
m s}$) больше времени жизни носителей, которая в зависимости от плотности возбуждения не превышает $(10^{-11}-10^{-9})$ [4], можно считать процесс генерации и проводимость квазистационарными. Зависимость амплитуды проводимости от плотности энергии возбуждения аппроксимируется степенным законом $\sigma \sim W^{1/2}$, что соответствует квадратичному характеру рекомбинации носителей. Квадратичный характер рекомбинации при рентгеновском возбуждении наблюдается в образцах CsI, KBr, KCl, NaCl как при комнатной, так и при азотной температурах. Этот экспериментальный факт дает основание считать, что рентгеновская проводимость в данных материалах связана с термализованными электронами зоны проводимости, время жизни которых определяется рекомбинацией с релаксированными дырками (V_k -центрами).

Температурные зависимости РИП $\sigma(T)$ кристаллов CsI, NaCl представлены на рис. 1, *a*, *b*. Значения проводи-

Рис. 1. Температурная зависимость удельной проводимости в кристаллах CsI (a), NaCl (b) при рентгеновском возбуждении. На вставке показана зависимость σ от W в CsI, $W_{\rm m}$ — максимальная плотность энергии рентгеновского излучения.

Рис. 2. Температурная зависимость удельной концентрации электронов в кристаллах CsI (*a*), NaCl (*b*). Экспоненциальные компоненты: *1* — низкотемпературные, *2* — высокотемпературные.

мости в CsI более чем на порядок превышают проводимость в NaCl. В области низких температур (77–130 K) для CsI и (77–160 K) для NaCl наблюдается незначительный рост проводимости с температурой, резкий рост проводимости наступает при температуре 130 K для CsI и при более высокой (~ 160 K) для NaCl. Провалы на кривых $\sigma(T)$ при высоких температурах $T \sim 270-280$ K, возможно, связаны с захватом и рассеянием зонных электронов центрами окраски в данных материалах.

Зависимость концентрации носителей n(T) приведена в координатах $\ln(n)$, 1/T на рис. 2. Для обоих материалов значения n(T) увеличиваются более чем на порядок при переходе от температуры кипения жидкого азота к комнатной. Экспериментальные зависимости n(T)кристаллов CsI, NaCl удовлетворительно описываются суммой двух экспоненциальных компонент: низкотемпературной (прямая 1) и высокотемпературной (прямая 2на рис. 2). Такой закон изменения n(T) соответствует термически активационному характеру разделения электронов и дырок в генетических парах. Наличие двух компонент в n(T), видимо, связано с существованием двух типов электронно-дырочных пар, различающихся средней энергией генерируемых электронов.

3. Модель

Полученные экспериментальные закономерности могут быть положены в основу модели процесса, описывающей механизм РИП при рентгеновском возбуждении

В.Д. Куликов

в области $T \sim 80-300$ К. В отсутствие электрического поля вероятность термического разделения носителей в парах f(T) или выход свободных носетелей можно представить зависимостью

$$f(T) = \exp(-\Delta W/kT), \qquad (2)$$

где ΔW — энергия активации процесса термического разделения носителей, k — постоянная Больцмана [4]. Уменьшение концентрации носителей учитывается введением эффективной скорости генерации носителей G_e . В условиях квазистационарной генерации

$$G_e = np\gamma v, \tag{3}$$

где $G_e = G_0 f(T)$, $G_0 = W_0/A$ — скорость электроннодырочных пар в единице объема (W_0 — энергия излучения, поглощенная в единице объема образца в единицу времени, A — средняя энергия, расходуемая на создание в веществе одной электронно-дырочной пары), p — концентрация дырок, γ — сечение захвата центра рекомбинации, v — тепловая скорость.

При квадратичном характере рекомбинации носителей ($n \approx p$) выражение (3) имеет вид $G_e = n^2 \gamma v$. Экспоненциальным зависимостям — низкотемпературной (прямая *I*) и высокотемпературной (прямая *2* на рис. 2) для CsI и NaCl — можно сопоставить два типа неравновесных электронов с различной скоростью генерации и вероятностью теплового разделения. Для этих компонент закон изменения концентрации носителей n_1 , n_2 с температурой запишется

$$n_1 = \sqrt{G_{01}} \left(\exp(-\Delta W_1/2kT) \right) / \sqrt{\gamma \nu}, \tag{4}$$

$$n_1 = \sqrt{G_{02}} \left(\exp(-\Delta W_2/2kT) \right) / \sqrt{\gamma \nu}, \qquad (5)$$

где $G_0 = G_{01} + G_{02}$.

Сравнивая (4), (5) с данными рис. 2 (прямые 1, 2) для CsI, находим: $\Delta W_1 = 0.025 \pm 0.003$ eV, $\Delta W_2 = 0.1 \pm 0.01 \,\mathrm{eV}, \ G_{02}/G_{01} \approx 85,$ выход свободных носителей при $T = 300 \, {\rm K} f_1 \approx 0.37$, $f_2 \approx 0.02$. Эффективный выход носителей f_e находится из условия $\sqrt{G_{01}f_1} + \sqrt{G_{02}f_2} = \sqrt{G_0f_e}$, откуда $f_e \approx 0.04$. Пространственное распределение носителей можно получить, если представить зависимость (2) в виде $f = \exp(-r_c/r_0)$, где $r_c = e^2/4\pi\varepsilon\varepsilon_0 kT$ радиус Онзагера, r₀ — расстояние, на котором термализуются генетически связанные электрон и дырка. В нашем случае при рентгеновском возбуждении CsI имеем два пространственных пика низкоэнергетических электронов: низкоинтенсивный пик с $r_{01} \approx 10\,\mathrm{nm}$ и высокотемпературный пик с $r_{02} \approx 2.5 \, \mathrm{nm}$. Полученное значение $r_{02} \sim 2.5\,\mathrm{nm}$ для CsI коррелирует с данными для стекла 3–МР при γ — облучении, где пик функции простанственного распределения носителей в парах приходится на 4-5 nm [8].

Для NaCl получаем $\Delta W_1 = 0.03 \pm 0.004 \text{ eV}$, что сравнимо с данными для CsI, однако ΔW_2 значительно выше: ~ 0.14 ± 0.015 eV, $G_{02}/G_{01} \approx 200$, при T = 300 K $f_1 \approx 0.3$, $f_2 \approx 0.004$, $f_e \approx 0.01$.

Полученные значения выхода свободных носителей при комнатной температуре в CsI составляет $\sim 4\%$, что не превышает аналогичных оценок в KCl [4], однако для NaCl этот показатель значительно меньше $\sim 1\%$.

При рентгеновском возбуждении энергетический спектр электронов проводимости формируется как за счет ионизации валентных оболочек кристалла, так и за счет каналов генерации Оже-электронов. В кристалле NaCl, по данным работ [2,3], возможны одноатомные Оже-переходы с рождением двух дырок в 2*p*- или 3*s*-оболочках Cl⁻ и электрона проводимости с энергией $\sim 1 \text{ eV}$. При ионизации 2*p*-оболочки Na⁺ возможны межатомные Оже-переходы с 3*s*-, 3*p*-уровней Cl⁻, которые заселяют в зоне проводимости состояние на 3–4 и 12.5 eV [3].

Причина столь низкого выхода носителей может быть связана с особенностями процесса Оже-генерации. При Оже-генерации возможно образование пары из двух дырок и электрона. Хотя атомное время локализации дырок достаточно мало (~ 10^{-13} s), можно ожидать, что за время термализации электрона (~ 10^{-12} s) [2] делокализация дырок не превысит 1–2 параметров решетки. В легких элементах (Z < 30) при заполнении дырки на внутренних оболочках атома выше вероятность Оже-переходов по сравнению с рентгеновскими [2,9]. Поэтому следует ожидать более сильного Оже-эффекта в NaCl по сравнению с CsI и соответственно более высокой скорости рекомбинации носителей.

Подтверждением полученным оценкам может служить зависимость эффективности образования автолокализованных экситонов η от атомного номера элементов в щелочно-галоидных соединениях. Экситоны образуются при рекомбинации электрона зоны проводимости с релаксированной дыркой. В кристаллах CsBr, KI, KCI при комнатной температуре η составляет соответственно ~ 18, 15 и 12% [10]. Полное количество электронно-дырочных пар оценивалось по поглощению энергии электронного пучка в кристалле, концентрация экситонов определялась по формуле Смакулы, исходя из данных поглощения V_k -центров.

Время жизни носителей в зоне проводимости диэлектрика τ можно найти, как это сделано в [5], используя условие $n = G_e \tau$, где $\tau = 1/p\gamma v$. Для CsI $W_0 = 4.2 \cdot 10^{-3}$ J/cm⁻³, при T = 300 K, $\mu = 46$ cm²/Vs [6], $E = 10^4$ V/cm находим из BAX $n = 1.1 \cdot 10^{13}$ cm⁻³, $G_0 = 2.9 \cdot 10^{23}$ cm⁻³s⁻¹, $f_e \approx 0.04$, $G_e \approx 1.16 \cdot 10^{22}$ cm⁻³s⁻¹, $\tau \approx 1.1 \cdot 10^{-9}$ s. Полученное значение τ удовлетворительно согласуется с экспериментальной оценкой времени жизни в CsI, которое, по данным работы [11], при комнатной температуре составляет ~ 1 пs. Для NaCl при T = 300 K $\mu = 20$ cm²/Vs [6], $n = 1.15 \cdot 10^{12}$ cm⁻³, $G_0 = 2.9 \cdot 10^{23}$ cm⁻³s⁻¹, $f_e \approx 0.01$, $G_e \approx 2.9 \cdot 10^{21}$ cm⁻³s⁻¹, $\tau \approx 4 \cdot 10^{-10}$ s. Таким образом, наблюдаемое увеличение РИП в кристаллах CsI, NaCl с ростом температуры в области $\sim 77-300$ K при рентгеновском возбуждении удовлетворительно описывается механизмом термического разделения электронов и дырок в генетических парах. Времена жизни электронов в CsI и NaCl при комнатной температуре имеют достаточно близкие значения $\sim 1.1\cdot 10^{-9}$ и $4\cdot 10^{-10}$ s, однако концентрация носителей отличается на порядок $\sim 1.1\cdot 10^{13}$ и $1.15\cdot 10^{12}$ сm⁻³ соответственно. Такая ситуация, по-видимому, связана с наличием Ожегенерации низкоэнергетических электронов в NaCl, при которой две дырки в генетической паре увеличивают степень рекомбинации носителей.

Автор выражает признательность В.Ю. Яковлеву за полезное обсуждение разультатов работы.

Список литературы

- Э.Д. Алукер, Д.Ю. Лусис, С.А. Чернов. Электронные возбуждения и радиолюминесценция щелочно-галоидных кристаллов. Зинатне, Рига (1979).
- [2] М.А. Эланго. Элементарные неупругие радиационные процессы. Наука, М. (1988).
- [3] A. Ausmess, M. Elango, A. Kikas, J. Pruulman. Phys. Stat. Sol. (b) 137, 2, 495 (1986).
- [4] Б.П. Адуев, В.М. Фомченко, В.Н. Швайко. ФТТ 41, 3, 429 (1999).
- [5] В.Д. Куликов, Ю.В. Лисюк. ЖТФ 70, 9, 51 (2000).
- [6] C.H. Seager, D. Emin. Phys. Rev. B2, 8, 3421 (1970).
- [7] F.C. Brown. Point defects in solids. Plenum Press, N.Y. London (1972). P. 491.
- [8] Д.Л. Иванов, Б.С. Яковлев. Химия высоких энергий 29, 6, 410 (1995).
- [9] W. Bambynek, B. Crasemann, R.W. Fink et. al. Rev. Mod. Phys. 44, 4, 716 (1972).
- [10] В.Ю. Яковлев. Автореф. докт. дисс. Екатеринбург (1996).
- [11] Б.П. Адуев, Г.М. Белокуров, В.Н. Швайко. ФТТ 37, 8, 2537 (1995).