Магнитоакустическая активность ромбоэдрических антиферромагнетиков

© И.Ф. Мирсаев

Институт физики металлов Уральского отделения Российской академии наук, 620219 Екатеринбург, Россия

E-mail: pilyugin@imp.uran.ru

(Поступила в Редакцию 2 ноября 2000 г.)

Развита количественная теория магнитного акустического двупреломления в ромбоэдрических антиферромагнетиках. Показано, что акустическая активность и связанный с ней эффект Фарадея определяются совместным действием пьезомагнетизма и магнитострикции. Проведена количественная оценка эффекта и указан способ экспериментального определения пьезомагнитной константы. Найдены условия превращения линейной поляризации в круговую, а также поворота линейной поляризации на 90°.

Работа поддержана Российским фондом фундаментальных исследований (грант № 99-02-16268).

Магнитоупругое (МУ) взаимодействие спиновых и упругих колебаний в антиферромагнетиках (АФ) приводит к изменению их модулей упругости [1,2]. Эти изменения описываются динамическим МУ-вкладом $\Delta C_{\alpha\beta}$ в эффективные модули упругости $C_{lphaeta} o C^{
m ef}_{lphaeta} =$ $= C_{\alpha\beta} + \Delta C_{\alpha\beta}$ и проявляются в различных магнитоакустических эффектах. В частности, симметричная часть этого тензора $\Delta C^s_{\alpha\beta}$ ответственна за линейное акустическое двупреломление (ДП) (акустический эффект Фогта или Коттона-Мутона), возникающее в АФ из-за различия фазовых скоростей нормальных поперечных упругих волн [2–4]. Антисимметричная часть $\Delta C^a_{\alpha\beta}$ определяет АФ акустическую активность (или АФ гиротропию среды), с которой связано круговое ДП (акустический эффект Фарадея), обусловленное различием фазовых скоростей циркулярно поляризованных волн [2]. В общем случае, когда отличны от нуля и симметричная $(\Delta C^s_{\alpha\beta})$, и антисимметричная $(\Delta C^a_{\alpha\beta})$ части модулей $\Delta C_{\alpha\beta} = \Delta C^a_{\alpha\beta} + \Delta C^s_{\alpha\beta}$, происходит наложение эффектов линейного и кругового ДП. В результате линейно поляризованные моды превращаются в эллиптически поляризованные моды, а линейное ДП — в эллиптическое.

В [2,3] проводился подробный симметрийный анализ этих эффектов, а в [4] была развита количественная теория АФ эффекта Коттона–Мутона.

В настоящей работе исследуется АФ акустическая активность тригональных АФ (α -Fe₂O₃, FeBO₃, MnCO₃ и др.) и ее влияние на эффекты акустического ДП. Для вычисления модулей упругости $\Delta C^a_{\alpha\beta}$, а также $\Delta C^s_{\alpha\beta}$, обусловливающих эти эффекты, используются в отличие от [2–4] связанные уравнения МУ-динамики (уравнения Ландау–Лифшица и динамической упругости), позволяющие получить более общие формулы, пригодные для широкой области частот. Но главное здесь при определении антисимметричных модулей $\Delta C^a_{\alpha\beta}$ приходится учитывать наряду с магнитострикцией и пьезомагнетизмом. Именно их совместное действие приводит к появлению модулей $\Delta C^a_{\alpha\beta}$, следовательно, и АФ акустической активности.

1. Равновесное состояние

Рассмотрим "легкоплоскостные" АФ с обменной магнитной структурой $\bar{1}(+)3_z(+)2_x(-)$ [2] (FeBO₃, MnCO₃ и α -Fe₂O₃ при $T > T_M$, где $T_M = 260$ К — температура Морина). Представим плотность термодинамического потенциала в виде

$$\Phi = 2M_0 \left\{ H_E m^2 - H_D [\mathbf{ml}]_z + \frac{1}{2} H_A l_z^2 - \mathbf{mH} \right\} + B_{ijkl} l_i l_j e_{kl}$$
$$+ \Pi_{ijkl} m_i l_j e_{kl} + \Delta \Pi_{ijkl} m_i l_j \omega_{kl} + \frac{1}{2} C_{ijkl} e_{ij} e_{kl}.$$
(1)

Здесь $\mathbf{I} = (\mathbf{M}_1 - \mathbf{M}_2)/2M_0$ и $\mathbf{m} = (\mathbf{M}_1 + \mathbf{M}_2)/2M_0$ — относительные векторы антиферромагнетизма и ферромагнетизма, M_0 — намагниченность подрешеток: $|\mathbf{M}_1| = |\mathbf{M}_2| = M_0$, поэтому $m^2 + l^2 = 1$ и $\mathbf{ml} = 1$, H и H_E — внешнее и обменное поля (неоднородный обмен, связанный с производными $\partial \mathbf{I}/\partial x_i$ здесь не учитывается как несущественный для интересующих нас длин волн), H_D и H_A — поля Дзялошинского и магнитной анизотропии, $e_{ij} = (u_{ij} + u_{ji})/2$ — тензор деформации, $u_{ij} = \partial u_j/\partial x_i$, где \mathbf{u} — упругое смещение, B_{ijkl} и Π_{ijkl} [2,5] — МУ и пьезомагнитные константы, C_{ijkl} — модули упругости.

В (1) тензор

$$\Delta \Pi_{ijkl} = 2M_0 H_D \{ \delta_{ik} (\delta_{jx} \delta_{ly} - \delta_{jy} \delta_{lx}) + \delta_{jk} (\delta_{iy} \delta_{lx} - \delta_{ix} \delta_{ly}) \}$$
(2)

описывает перенормировку пьезомагнитных констант, связанную с вращательной инвариантностью энергии взаимодействия Дзялошинского, учитывающей локальные повороты элемента объема $\omega_{ik} = (u_{ki} - u_{ik})/2$ [2]. Незначительные перенормировки упругих модулей ($\Delta \hat{C} \sim \hat{B}$) и МУ констант ($\Delta \hat{B} \sim M_0 H_A$), обусловленные ω_{ik} , здесь опускаются, как малые добавки.

Предположим, что внешнее магнитное поле Н приложено в базисной плоскости. В этом случае равновесные векторы $\mathbf{m}_0 \parallel \mathbf{H}$ и $\mathbf{I}_0 \perp \mathbf{H}$ также лежат в этой плоскости. Анизотропия в плоскости базиса считается достаточно слабой и ею пренебрегают.

В дальнейшем удобно принять направление **H**, составляющее угол φ_H с бинарной осью симметрии **2**(-), за новую ось **X**. При этом **X** \parallel **H** \parallel **m**₀, **Y** \parallel **I**₀, **Z** \parallel **3**, где **3** — тригональная ось.

Из условий минимума энергии основного состояния $\partial \Phi_0 / \partial m_0 = 0$, $\partial \Phi_0 / \partial e^0_{ij} = 0$ следует, что равновесные значения намагниченности m_0 и деформации e^0_{ij} определяются из равенств

$$m_0 = \frac{H + H_D}{2H_E},\tag{3}$$

$$e_{ij}^{0} = -S_{ijkl}(B_{yykl} + \Pi_{xykl}m_{0}),$$
 (4)

где $\hat{S} = \hat{C}^{-1}$ — тензор упругой податливости.

Заметим, что выражения (3), (4) записаны в принятом здесь приближении $m_0^2 \ll l_0^2$, $l_0^2 = 1 - m_0^2 \approx 1$, справедливом при $H, H_D \ll H_E$.

2. Амплитуды связанных колебаний

Установим теперь МУ-связь между амплитудами спиновых и упругих колебаний. Для этого используем уравнения Ландау–Лифшица [6]

$$\dot{\tilde{\mathbf{m}}} = \gamma \left\{ \left[\mathbf{m} \frac{\partial \Phi}{\partial \mathbf{m}} \right] + \left[\mathbf{l} \frac{\partial \Phi}{\partial \mathbf{l}} \right] \right\},\$$
$$\dot{\tilde{l}} = \gamma \left\{ \left[\mathbf{m} \frac{\partial \Phi}{\partial \mathbf{l}} \right] + \left[\mathbf{l} \frac{\partial \Phi}{\partial \mathbf{m}} \right] \right\}.$$
(5)

Здесь $\tilde{\mathbf{l}} = \mathbf{l} - \mathbf{l}_0$, $\tilde{\mathbf{m}} = (\mathbf{m} - \mathbf{m}_0)$ — отклонения этих векторов от их равновесных значений, γ — магнитомеханическое отношение.

Будем считать, что динамические величины $\tilde{u}_{ik} = u_{ik} - u_{ik}^0$, \tilde{m}_i , \tilde{l}_i изменяются по закону $\exp[i(\mathbf{kx} - \omega t)]$, где ω и \mathbf{k} — частота и волновой вектор МУ-волн. Используя в уравнениях (5) выражение (1) для Φ , получим

$$\begin{split} \tilde{l}_x &= \frac{\gamma^2 [H_1 A_{ik} + i(\omega/\gamma)\Gamma_{ik}]}{2m_0 M_0 (\omega^2 - \omega_f^2)} \tilde{u}_{ik}, \\ \tilde{m}_z &= \frac{\gamma^2 [H_2 \Gamma_{ik} - i(\omega/\gamma)A_{ik}]}{2M_0 (\omega^2 - \omega_f^2)} \tilde{u}_{ik}, \\ \tilde{m}_y &= -m_0 l_x. \end{split}$$
(6)

Здесь $\omega \equiv \omega_{\rm AFMR}$ — частота "квазиферромагнитной" ветви А Φ -резонанса

$$\omega_f = \gamma H_f,$$

$$H_f = (H_1 H_2)^{1/2} = [H(H + H_D) + 2H_E H_{me}^0]^{1/2},$$

$$H_1 = H + H_D, \quad H_2 = H + H_{me}^0/m_0, \tag{7}$$

где

$$H_{me}^{0} = (e_{ik}^{0}/M_{0}) \left[(B_{xxik} - B_{yyik}) - m_{0} \left(\Pi_{xyik} + \Pi_{yxik} \right) \right] \quad -$$
(8)

эффективное МУ-поле спонтанной стрикции. Остальные обозначения в (6)следующие:

$$A_{ik} = 2B_{xyik} + m_0(\Pi_{xxik} - \Pi_{yyik}),$$

$$\Gamma_{ik} = m_0[\Pi_{zyik} + M_0H_D(\delta_{iz}\delta_{kx} - \delta_{ix}\delta_{kz})].$$
(9)

Высокочастотные спиновые колебания \tilde{m}_x , \tilde{l}_y , \tilde{l}_z , относящиеся к "антиферромагнитной" моде с частотой активации $\omega_a \gg \omega_f$, здесь не рассматриваются из-за их относительно слабой связи с упругими деформациями, не приводящей к существенному вкладу в упругие модули ($\Delta \hat{C}(\omega_a) \ll \Delta \hat{C}(\omega_f)$) [1].

3. Динамические модули упругости

В модели сплошной среды уравнения движения для упругого смещения **u** в АФ имеют вид [1,2]

$$\rho \ddot{u}_i = \frac{\partial \tau_{ik}}{\partial x_k}, \quad \tau_{ik} = \frac{\partial \Phi}{\partial u_{ki}}, \tag{10}$$

где ρ — плотность вещества, τ_{ik} — тензор Пиола-Кирхгофа [7]. Согласно (1), (10) имеем

$$\tau_{ik} = C_{ikpq} u_{pq} + B_{pqik} l_p l_q + \left[\Pi_{pqik} + \frac{1}{2} (\Delta \Pi_{pqik} - \Delta \Pi_{pqki}) \right] m_p l_q.$$
(11)

Используя в (11) соотношения МУ-связи (6) и полагая $\tilde{m}_x = \tilde{l}_y = \tilde{l}_z = 0$, представим динамическую часть тензора $\hat{\tau}$ в виде

$$\tilde{\tau}_{ik} = C_{kimn}^{\text{ef}} \tilde{u}_{mn},$$

$$C_{kimn}^{\text{ef}} = C_{kimn} + \Delta C_{kimn}.$$
(12)

Здесь C_{kinn}^{ef} — тензор эффективных модулей упругости второго порядка, $\Delta \hat{C}$ — динамический вклад в них, обусловленный МУ-взаимодействием упругих волн со спиновыми колебаниями "квазиферромагнитной" моды. Эти модули можно представить в виде суммы симметричной *s* и антисимметричной *a* частей

$$\Delta C_{kimn} = \Delta C^s_{kimn} + \Delta C^a_{kimn}, \qquad (13)$$

$$\Delta C_{kimn}^s = \frac{\gamma^2 (H_1 A_{ki} A_{mn} + H_2 \Gamma_{ki} \Gamma_{mn})}{2m_0 M_0 (\omega^2 - \omega_f^2)}, \qquad (14)$$

$$\Delta C_{kimn}^{a} = \frac{i\omega\gamma(A_{ki}\Gamma_{mn} - \Gamma_{ki}A_{mn})}{2m_{0}M_{0}(\omega^{2} - \omega_{f}^{2})}.$$
(15)

Напомним, что выражения (14), (15) для $\Delta \hat{C}$ записаны в повернутой системе координат, связанной с направлением поля **H**.

4. Нормальные моды колебаний

Пусть волна упругого смещения $\mathbf{u} = \mathbf{u}_0 \exp[i(\mathbf{k}\mathbf{x} - \omega t)]$ распространяется вдоль тригональной оси кристалла $\mathbf{k} \parallel \mathbf{3} \parallel \mathbf{Z}$ перпендикулярно магнитному полю $\mathbf{H} \parallel \mathbf{m}_0 \parallel \mathbf{X}$ и вектору АФ $\mathbf{I}_0 \parallel \mathbf{Y}$. В этом случае МУ-вклад в эффективные модули упругости описывается тензором ΔC_{zin} . В области низких частот ($\omega^2 \ll \omega_f^2$) компоненты ΔC_{zin} (13)–(15) имеют вид

$$\Delta C_{44} = -\tilde{B}_{14}U\sin^2 3\varphi_H,$$

$$\Delta C_{55} = -\tilde{B}_{14}U\cos^2 3\varphi_H,$$

$$\Delta C_{54}^s = \frac{1}{2}\tilde{B}_{14}U\sin 6\varphi_H,$$

$$\Delta C_{54}^a = -\Delta C_{45}^a = i\frac{\omega}{2\omega_F}\tilde{\Pi}U\sin 3\varphi_H,$$
 (16)

где введены сокращенные обозначения пары индексов: $1 \equiv xx, 4 \equiv zy, 5 \equiv zx.$ В (16) $\tilde{B}_{14} = B_{14}^0 + m_0 \Pi_{15}^0$ — МУ-константа, перенормированная за счет пьезомагнетизма, $U = 4H_E \tilde{B}_{14}/M_0 H_f^2$ — коэффициент обменного усиления [5], $\omega_E = 2\gamma H_E$ — обменная частота, $\tilde{\Pi} = (\Pi_{zxyz}^0 - H_D M_0)$ — перенормированная пьезомагнитная константа, в которой учтена добавка с H_D вращательно-инвариантной теории. Здесь B_{14}^0 и Π_{15}^0 компоненты исходных тензоров магнитоупругих B_{ijkl}^0 и пьезомагнитных Π_{ijkl}^0 констант в начальной (неповернутой) системе координат $X_0 Y_0 Z_0$ с осями $\mathbf{X}_0 \parallel \mathbf{2}, \mathbf{Y}_0 \perp \mathbf{X}_0$, $\mathbf{Z}_0 \parallel \mathbf{C}.$

Анализ уравнений движения (10) совместно с (12), (16) показывает, что при **k** \parallel **3** \parallel **Z** продольная волна u_z не взаимодействует с магнитной подсистемой и отщепляется от поперечных колебаний u_x , u_y . Поэтому предположим, что $u_z = 0$. Распространение же поперечных волн удобно описывать, переходя в базисной плоскости к главным осям координат $\boldsymbol{\xi}$, $\boldsymbol{\eta}$,

$$\xi = x \cos \Psi + y \sin \psi,$$

$$\eta = -x \sin \psi + y \cos \psi,$$
(17)

где угол ψ , определяемый из требования $\Delta C^s_{z\xi z\eta} = 0$, удовлетворяет условию

$$\operatorname{tg} 2\psi = \frac{2\Delta C_{54}^{s}}{\Delta C_{55} - \Delta C_{44}} = -\operatorname{tg} 6\varphi_{H}.$$
 (18)

Преобразование (17) соответствует дополнительному повороту осей координат **X** и **Y** вокруг оси **Z** на угол $\psi = \pi p/2 - 3\varphi_H$, где p — целые числа. Следовательно, ось **\xi** составляет с бинарной осью симметрии **2** угол $\varphi_{\xi} = \pi p/2 - 2\varphi_H$.

В системе координат $\xi \eta Z$ уравнения движения (10), записанные с учетом (12), (16), имеют вид

$$(\rho\omega^{2} - C_{1}k^{2})u_{\xi} - i\Delta C^{a}k^{2}u_{\eta} = 0,$$

$$i\Delta C^{a}k^{2}u_{\xi} + (\rho\omega^{2} - C_{2}k^{2})u_{\eta} = 0,$$
 (19)

в которых

$$C_1 \equiv C_{z\xi z\xi} = C_{44} - \tilde{B}_{14}U,$$

$$C_2 \equiv C_{z\eta z\eta} = C_{44},$$

$$\Delta C^a = |\Delta C^a_{z\xi z\eta}| = |\Delta C^a_{54}|.$$
(20)

Для поперечных упругих волн, согласно (19), имеются две моды колебаний с волновыми числами

$$k_{1,2} = \frac{\omega}{\nu_{1,2}},$$

$$\nu_{1,2} = \left\{ \frac{1}{2\rho} \left[C_1 + C_2 \pm (C_1 - C_2) \left(1 + \text{tg}^2 2\alpha \right) \right]^{1/2} \right\}^{1/2},$$
(21)

где $\nu_{1,2}$ — фазовые скорости акустических волн, а α — угол, определяемый из равенств

$$\operatorname{tg} 2\alpha = 2A,$$

$$A \equiv \frac{\Delta C^a}{C_1 - C_2} = -\frac{\omega}{2\omega} \frac{\tilde{\Pi}}{\tilde{B}_{14}} \sin 2\varphi_H.$$
(22)

Из (19) видно, что при $\Delta C^a = 0$ нормальными модами являются колебания u_{ξ} и u_{η} , линейно поляризованные по осям $\boldsymbol{\xi}$ и $\boldsymbol{\eta}$: $\mathbf{u}_{\xi} \parallel \boldsymbol{\xi}$, $\mathbf{u}_{\eta} \parallel \boldsymbol{\eta}$. Наличие же акустической активности (компонентов $\Delta C_{54}^a = -\Delta C_{45}^a$) приводит к смешиванию этих мод. В этом случае нормальные колебания $w_n = w_{n0} \exp[i(k_n z - \omega t)]$ (n = 1, 2) связаны с u_{ξ} и u_{η} соотношениями

$$w_1 = u_{\xi} \cos \alpha + iu_{\eta} \sin \alpha,$$

$$w_2 = u_{\xi} \sin \alpha - iu_{\eta} \cos \alpha.$$
 (23)

Отсюда следует, что полное смещение описывается выражением

$$\mathbf{u} = \mathbf{u}_{\xi} + \mathbf{u}_{\eta} = \mathbf{u}_{10} \exp(i\varphi_1) + \mathbf{u}_{20} \exp(i\varphi_2),$$

$$\mathbf{u}_{10} = w_{10}(\mathbf{e}_{\xi} \cos \alpha - i\mathbf{e}_{eta} \sin \alpha),$$

$$\mathbf{u}_{20} = w_{20}(\mathbf{e}_{\xi} \sin \alpha + i\mathbf{e}_{\eta} \cos \alpha),$$

$$w_{10} = u_{\xi 0} \cos \alpha + iu_{\eta 0} \sin \alpha,$$

$$w_{20} = u_{\xi 0} \sin \alpha - iu_{\eta 0} \cos \alpha,$$

(24)

где $\varphi_{1,2} = k_{1,2}z - \omega t$, а $u_{\xi 0} = u_{\xi}(0)$ и $u_{\eta 0} = u_{\eta}(0)$ — компоненты смещения на входе образца, \mathbf{e}_{ξ} , \mathbf{e}_{η} — единичные орты системы координат вдоль осей $\boldsymbol{\xi}$ и $\boldsymbol{\eta}$.

Таким образом, волна смещения $\mathbf{u} = \mathbf{u}_{\xi} + \mathbf{u}_{\eta}$ является суперпозицией двух нормальных колебаний $\mathbf{u}_1 = \mathbf{u}_{10} \exp(i\varphi_1)$ и $\mathbf{u}_2 = \mathbf{u}_{20} \exp(i\varphi_2)$, поляризованных по эллипсу. Эллипсы поляризации расположены в плоскости $\xi \eta$, перпендикулярной волновому вектору **k**. Болшая ось эллипса для волны \mathbf{u}_1 параллельной оси ξ , а для волны \mathbf{u}_2 — оси η . Эллиптичность ε и поляризация этих нормальных мод характеризуются величиной tg $\alpha \approx A$ ($|A| \ll 1$) из (22)

$$\left(\frac{u_{\eta}}{u_{\xi}}\right)_{1} = \left(\frac{u_{\xi}}{u_{\eta}}\right)_{2} = -i \operatorname{tg} \alpha \approx -iA,$$
$$\varepsilon = |\operatorname{tg} \alpha| \approx |A|, \tag{25}$$

которая максимальна при ориентации магнитного поля **H** под углом $\varphi_H = \pi p/6$ к оси симметрии **2**.

5. Эффект Фарадея для эллиптических мод колебаний

Определим теперь эллиптичность и поворот вектора поляризации результирующей волны $\mathbf{u} = \mathbf{u}_{\xi} + \mathbf{u}_{\eta}$, обусловленные АФ-добавками $\Delta \hat{C} = \Delta \hat{C}^s + \Delta \hat{C}^a$ в эффективные модули упругости. Пусть на входе (z = 0) поперечная волна имеет поляризацию \mathbf{u}_0 , составляющую угол φ_0 с осью ξ . Тогда с учетом (23) упругие колебания u_{ξ} и u_{η} могут быть представлены в виде

$$u_{\xi} = R_{\xi} \cos(\omega t - \theta_1),$$

$$u_{\eta} = R_{\eta} \cos(\omega t - \theta_2).$$
 (26)

Здесь R_{ξ} и R_{η} — амплитуды акустических колебаний, равные

$$R_{\xi} = u_0 \cos \varphi_0 \cos 2\alpha \sin(\Delta kz/2) \operatorname{cosec} \Phi_1,$$
$$R_{\eta} = u_0 \sin \varphi_0 \cos 2\alpha \sin(\Delta kz/2) \operatorname{cosec} \Phi_2,$$

где $\Delta k = k_1 - k_2$, а углы Φ_1 и Φ_2 определяются из соотношений

$$tg \Phi_1 = \cos 2\alpha [ctg(\Delta kz/2) - tg \varphi_0 \sin 2\alpha]^{-1},$$

$$tg \Phi_2 = \cos 2\alpha [ctg(\Delta kz/2) + ctg\varphi_0 \sin 2\alpha]^{-1}.$$
 (28)

Влияние антисимметричных модулей $\Delta \hat{C}^a$ на скорости волн $\nu_{1,2}$ (21) проявляется лишь в квадратичном приближении по параметру $|A| \ll 1$ (22) и в первом приближении им можно пренебречь. Тогда разность волновых чисел определяется выражением

$$\Delta k = k_0 \frac{\tilde{B}_{14}}{2C_{44}} U, \quad k_0 = \omega (\rho/C_{44})^{1/2}.$$
(29)

Фазы колебаний (26) вычисляются по формулам

$$\theta_1 = \Phi_1 + (k_1 + k_2)z/2,$$

 $\theta_2 = -\Phi_2 + (k_1 + k_2)z/2.$ (30)

Наличие сдвига $\Delta \theta = \theta_1 - \theta_2$ между колебаниями u_{ξ} и u_{η} приводит к тому, что конец результирующего вектора смещения $\mathbf{u}(z,t) = \mathbf{u}_{\xi} + \mathbf{u}_{\eta}$ на выходе (z = d) будет описывать эллипс [8]. Большая ось этого эллипса наклонена к оси $\boldsymbol{\xi}$ под углом φ , где φ определяется из формулы

$$\operatorname{tg} 2\varphi = \frac{2R_{\xi}R_{\eta}\cos(\theta_1 - \theta_2)}{R_{\xi}^2 - R_{\eta}^2},$$
(31)

а большая и малая полуоси эллипса имеют длину

$$r_{1,2} = \frac{\sqrt{2}}{2} \left\{ R_{\xi}^{2} + R_{\eta}^{2} \right. \\ \left. \pm \left[\left(R_{\xi}^{2} + R_{\eta}^{2} \right)^{2} - 4 R_{\xi}^{2} R_{\eta}^{2} \sin^{2} \left(\theta_{1} - \theta_{2} \right) \right]^{1/2} \right\}^{1/2}.$$
 (32)

При этом интенсивности упругих волн, поляризованных на выходе (z = d) параллельно (I_{\parallel}) или перпендикулярно (I_{\perp}) первоначальной поляризации **u**₀, определяются формулами

$$I_{\parallel} = u_{\bar{0}} - I_{\perp},$$

$$I_{\perp} = u_{\perp}^{2} = u_{0}^{2} (\sin^{2} 2\varphi_{0} + \sin^{2} 2\alpha \cos^{2} 2\varphi_{0}) \sin^{2}(\Delta k d/2),$$

(33)

где u_{\perp} — амплитуда волны с поляризацией, ортогональной **u**₀.

Обратимся теперь к случаю, когда упругая волна \mathbf{u}_0 поляризована на входе (z = 0) вдоль оси ξ ($\varphi_0 = 0$) или $\boldsymbol{\eta}$ ($\varphi_0 = \pi/2$). Учитывая в (31), (32) соотношение $|\alpha| \approx |A| \ll 1$, находим, что в этом случае угол наклона эллипса определяется выражением

$$\varphi = A \sin \Delta k d, \qquad (34)$$

а эллиптичность —

$$\varepsilon = r_2/r_1 = 2|A|\sin^2(\Delta kd/2). \tag{35}$$

Амплитуда волны в перпендикулярном u_0 направлении, согласно (33), определяется соотношением

$$u_{\perp} = 2u_0 |A\sin(\Delta kd/2)|. \tag{36}$$

Формулы (34) и (35) совершенно аналогичны таковым в оптике [9]. Из них следует, что эффект фарадеевского вращения вектора поляризации (большой оси эллипса) и эллиптичности связаны в этом случае в наложением акустической активности ($\Delta \hat{C}^a \neq 0$) на линейное ДП ($\Delta \hat{C}^s \neq 0$).

6. АФ эффект Коттона–Мутона

Линейное ДП в чистом виде можно наблюдать при ориентации внешнего поля **H** под углом $\varphi_H = \pi p/3$ (p - целые числа) к бинарной оси симметрии **2**. В этом случае $\Delta C^a = |\Delta C_{54}^a| = 0$ (16), и, согласно (19), нормальными являются колебания $\mathbf{u}_{\xi} \parallel \boldsymbol{\xi}$ и $\mathbf{u}_{\eta} \parallel \boldsymbol{\eta}$, линейно поляризованные на входе по главным осям $\boldsymbol{\xi}$ и $\boldsymbol{\eta}$, совпадающими теперь с осями **X** \parallel **H** и **Y** \parallel **I**₀ соответственно ($\boldsymbol{\xi} \parallel \mathbf{X}, \boldsymbol{\eta} \parallel \mathbf{Y}$). На выходе (z = d) волна полного смещения $\mathbf{u} = \mathbf{u}_{\xi} + \mathbf{u}_{\eta}$ поляризована снова по эллипсу. Учитывая в (31), (32), что теперь $R_{\xi} = \cos \varphi_0$, $R_{\eta} = \sin \varphi_0$, $\theta_1 - \theta_2 = \Delta kz$, находим угол наклона φ и длину полуосей $r_{1,2}$ этого эллипса

$$\operatorname{tg} 2\varphi = \operatorname{tg} 2\varphi_0 \cos \Delta kd, \qquad (37)$$

$$r_{1,2} = \frac{u_0\sqrt{2}}{2} \left\{ 1 \pm \left(1 - \sin^2 2\varphi_0 \sin^2 \Delta k d\right)^{1/2} \right\}^{1/2}.$$
 (38)

Применим формулы (37), (38) к конкретным случаям. 1) Если на входе волна поляризована вдоль осей $\boldsymbol{\xi}$ или $\boldsymbol{\eta}$ ($\varphi_0 = 0$ или $\varphi_0 = \pi/2$), то на выходе она становится линейно поляризованной, сохраняя прежнее направление поляризации. 2) Линейно поляризованная волна, входящая в кристалл под произвольным углом φ_0 , остается на выходе также линейно поляризованной, если выполняется условие

$$|\Delta kd| = (2p+1)\pi$$
 (p — целые числа). (39)

При этом поворот вектора $\mathbf{u}(d)$ относительно начального направления \mathbf{u}_0 составляет (с точностью до $+\pi$) угол $\Delta \varphi = \varphi - \varphi_0 = -2\varphi_0$. В частности, при $\varphi_0 = \pi/4$ поворот линейной поляризации составляет 90°.

3) Пусть теперь **u**₀ направлено по биссектрисе угла между $\boldsymbol{\xi}$ и $\boldsymbol{\eta}$ ($\varphi_0 = \pi/4$). Тогда, согласно (37), (38), поляризация становится эллиптической

$$r_{1} = u_{0} |\cos(\Delta kd/2)|,$$

$$r_{2} = u_{0} |\sin(\Delta kd/2)|,$$
(40)

так что эллиптичность определяется выражением

$$\varepsilon = (r_2/r_1) = |\operatorname{tg}(\Delta kd/2)|. \tag{41}$$

Здесь может иметь место интересный частный случай, когда поляризация становится круговой. Действительно, при

$$|\Delta kd| = (2p+1)\pi/2$$
 (42)

получаем из (40), (41) $r_1 = r_2 = u_0 \sqrt{2}/2$, $\varepsilon = 1$.

7. Обсуждение результатов

Акустическая активность ромбоэдрических АФ при $k \parallel 3 \parallel Z$ связана с антисимметричными модулями упругости $\Delta C_{54}^a = -\Delta C_{45}^a$, обусловленными МУ-взаимодействием. Эти компоненты приводят к смешиванию различных упругих мод колебаний, в результате чего линейно поляризованные акустические моды превращаются в эллиптически поляризованные, а линейное ДП становится эллиптическим. Оси эллипсы поворачиваются в процессе распространения волны, что и проявляется как фарадеевское вращение ее вектора поляризации. В отличие от кругового ДП, где фарадеевский угол $\varphi = \Delta k d/2$ неограниченно линейно растет с пройденным волной расстоянием d, здесь же, согласно (34), он является осциллирующей функцией d и по величине не превосходит |A| (22). Как уже отмечалось, в данном случае имеет место наложение эффектов линейного и кругового ДП: в (34)-(36) первые множители (А) связаны с акустической активностью (антисимметричными компонентами $\Delta \hat{C}^a$), а вторые — с линейным ДП (симметричными компонентами $\Delta \hat{C}^s$).

Поскольку фарадеевский угол φ , эллиптичность ε и амплитуда u_{\perp} ограничены по величине параметром $A \propto \omega/\omega_E = \omega/2\gamma H_E$, для экспериментального исследования эллиптического ДП, связанного с акустической активностью, предпочтительны АФ с более слабым обменным полем H_E . В этом отношении наиболее благоприятным является карбонат марганца MnCO₃ с $H_E = 3.2 \cdot 10^5$ Ое [5]. Для него значение величины A находится в пределах $10^{-5} - 10^{-3}$, если частота звука равна $\omega/2\pi = 10^8 - 10^{10}$ Hz, а $\varphi_H = \pi/6$ и $\Pi/\tilde{B}_{14} \approx 1$. Для AФ с более сильным обменным полем, например для FeBo₃ ($H_E = 2.86 \cdot 10^6$ Oe [10]) и α -Fe₂O₃ ($H_E = 9.2 \cdot 10^6$ Oe [1]), значение параметра A на порядок меньше.

Заметим, что равенство $\Pi/\tilde{B}_{14} \approx 1$ является приближенным, принятым из-за отсутствия экспериментальных данных по величине пьезомагнитной константы Π . Ее можно было бы определить из (22), установив экспериментальное значение параметра *A* из измерения угла Фарадея (34) или амплитуды u_{\perp} (36) при ориентации внешнего поля **H** под углом $\varphi_H = \pi/6$.

И наконец, важные случаи — превращение линейной поляризации в круговую и поворот линейной поляризации на 90° — требуют выполнения соответственно равенств (42) и (39), что может быть достигнуто за счет изменения *d* или *H*. Например, для FeBO₃, у которого $M_0 = 506$ G, $H_E = 2.86 \cdot 10^6$ Oe, $H_D = 9.93 \cdot 10^4$ Oe, $2H_E H_{me}^0 = 4.25 \cdot 10^6$ Oe, $B_{14}^0 = 1.41 \cdot 10^7$ erg/cm³, $C_{44} = 9.2 \cdot 10^{11}$ erg/cm³, $\rho = 4.28$ g/cm³ [10], находим, что условие для круговой поляризации (42) выполняется при $d \approx 1$ mm, если частота звука $\omega/2\pi = 200$ MHz, а поле H = 4 kOe. При более слабых полях H значение d уменьшается, в частности $d \approx 0.1$ mm при H = 400 kOe.

Автор выражает благодарность Е.А. Турову, В.В. Николаеву за интерес к работе.

Список литературы

- В.И. Ожогин, В.Л. Преображенский. ЖЭТФ 73, 3 (9), 988 (1977); УФН 155, 4, 593 (1988).
- [2] Е.А. Туров. Кинетические, оптические и акустические свойства антиферромагнетиков. Изд-во УрО АН СССР, Свердловск (1990). 136 с.
- [3] Е.А. Туров. ЖЭТФ **92**, *5*, 1886 (1987).
- [4] Е.А. Туров. ЖЭТФ **95**, 6 (12), 2140 (1989).
- [5] Е.А. Туров, А.В. Колчанов, В.В. Меньшенин, И.Ф. Мирсаев, В.В. Николаев. Симметрия и физические свойства антиферромагнетиков. Физматлит, М., в печати.
- [6] Е.А. Туров, А.В. Колчанов, В.В. Меньшенин, И.Ф. Мирсаев, В.В. Николаев. УФН 168, 12, 1303 (1998).
- [7] Физическая акустика / Под ред. У. Мэзона. Мир, М. (1966).
 Т. 1. Ч. А. 592 с.
- [8] Дж. Такер, В. Рэмптон. Гиперзвук в физике твердого тела. Мир, М. (1975). С. 181.
- [9] P. Coeuer, D. Challeton. Sol. Stat. Commun. 8, 17, 1345 (1970).
- [10] В.В. Тараканов, В.И. хижный. ФНТ 22, 7, 752 (1996).