Кинетика фазовых превращений при термическом отжиге в тонких золь-гель-пленках РZT

© В.Я. Шур, Е.Б. Бланкова, А.Л. Субботин, Е.А. Борисова, А.В. Баранников

Научно-исследовательский институт физики и прикладной математики при Уральском государственном университете, 620083 Екатеринбург, Россия

E-mail: Vladimir.Shur@usu.ru

(Поступила в Редакцию 24 августа 2000 г.)

Исследованы изменение морфологии поверхности и кинетика фазового превращения в золь-гель тонких пленках цирконата-титаната свинца (PZT) в процессе быстрого термического отжига с помощью in situ измерений интенсивности отраженного рассеянного света и регистрации последовательных мгновенных изображений, полученных с помощью оптического микроскопа. Кроме того, изучалось изменение степени совершенства текстуры, доли растущей фазы и угловой зависимости интенсивности рассеянного света в частично отожженных образцах. Параметры, характеризующие кинетику фазового превращения пирохлор-перовскит, извлекались с помощью математической обработки экспериментальных данных. Показано, что кинетика фазового превращения и кристаллическая текстура пленок существенно зависят от температуры пиролиза. Рассмотрен механизм формирования текстуры.

Работа выполнена при частичной поддержке программы "Университеты России: фундаментальные исследования" (грант № 5563), Министерства образования РФ (грант № 97-0-7.1-236) и Американского фонда гражданских исследований и развития независимых государств бывшего Советского Союза (грант № REC-005).

В последние годы для изготовления сегнетоэлектрических тонких пленок широко используются химические методы. Наибольшее распространение для получения пленок высокого качества получили методы золь-гель и разложения металлоорганических соединений. Во всех этих методах для кристаллизации и получения соответствующей фазы используется термическая обработка аморфных пленок. Отжиг золь-гель-пленок цирконататитаната свинца Pb(Zr,Ti)O₃ (PZT) приводит к формированию фазы перовскита (обладающей сегнетоэлектрическими свойствами) через промежуточную фазу со структурой типа пирохлора.

Известно, что условия термической обработки существенно влияют на микроструктуру [1-3] и сегнетоэлектрические характеристики пленок [4]. Очевидно, что кинетика формирования промежуточной фазы при кристаллизации и в процессе фазового превращения пирохлор-перовскит существенно зависит от скорости нагрева. Было показано, что наилучшие сегнетоэлектрические характеристики пленок получаются при термическом отжиге с высокими скоростями нагрева ("быстром термическом отжиге") [5]. Однако практически отсутствуют результаты in situ исследований кинетики кристаллизации/ фазовых превращений при быстром термическом отжиге из-за недостаточного разрешения по времени традиционных методов. In situ исследования с помощью рентгенографических измерений [6] и спектроскопической эллипсометрии [7] проводились только для медленной кристаллизации/фазового превращения. Нами развит метод, основанный на in situ измерении интенсивности упругого рассеяния света, чувствительный к мгновенным изменениям формологии поверхности и обладающий достаточно высоким разрешением по времени [8–11]. Предложенный метод математической обработки экспериментальных данных позволяет извлечь информацию о кинетике фазового превращения [10].

В настоящей работе метод рассеяния света использован для детального исследования эволюции морфологии поверхности золь-гель-пленок РZT при изотермическом отжиге с быстрым нагревом. Показано, что анализ экспериментальных данных позволяет получить основные параметры, характеризующие кинетику формирования текстурированного перовскита в РZT. Для проверки адекватности интерпретации полученных результатов оптические измерения были сопоставлены с традиционными рентгенографическими исследованиями частично отожженных пленок.

1. Методика эксперимента

Изучалась кинетика фазового превращения при изотермическом отжиге с быстрым нагревом в пленках Pb_{1.1}($Zr_{0.47}Ti_{0.53}$)O₃ (110/47/53) с 10% избытком Pb для компенсации его потерь при отжиге. Рентгеноаморфные пленки толщиной 400–600 nm наносились на подложки Pt/Ti/SiO₂/Si с эпитаксиальным слоем платины (толщиной около 200 nm). Исследовались две партии пленок, изготовленных в идентичных условиях и различающихся температурами пиролиза (T_{pyr}): 380 и 490°С.

В работе использовался изотермический отжиг (в интервале температур от 600 до 750°С) при скорости нагрева около 100°С/s. Непосредственно в процессе отжига измерялась интегральная интенсивность рассеянного света в диапазоне углов 2–30°С и с использованием видеозаписи фиксировалась последовательность мгновенных изображений гетерофазной структуры, пролученных с помощью оптического микроскопа. Для сопоставления результатов оптических измерений с другими экспериментальными методами и измерения угловых зависимостей рассеянного света проводились исследования на частично отожженных образцах, представлявших собой фрагменты одной пластины, которые отжигались при различных условиях.

Для исследований рентгеноструктурных характеристик частично отожженных пленок в режиме съемки $\theta - 2\theta$ (Со K_{α}) снималась дифракционная картина в интервале углов от 20 до 65° при комнатной температуре. Измерялись зависимости интенсивности текстурного максимума перовскита (111), интегральной интенсивности максимума пирохлора (222) и интегральной интенсивности максимумов нетекстурированного перовскита (011), (001) и (002) от времени отжига.

Различие коэффициентов преломления фаз перовскита и пирохлора позволяло визуализировать пространственное распределение фаз с помощью оптического микроскопа [12]. Сравнение результатов измерений интенсивности рассеянного света с изображениями поверхности пленок, полученными с помощью оптической и электронной микроскопии, показало, что 1) рассеяние света на границе нижний электрод-пленка и в объеме пленки пренебрежимо мало, 2) измеряемые угловые зависимости чувствительны только к изменениям морфологии поверхности [13,14].

2. Экспериментальные результаты

Для подробного исследования кинетики фазового превращения проводились частичные отжиги длительностью от 15 s до 16 min. Низкая температура отжига $T_{\rm an} = 600^{\circ}$ С позволяла обеспечить воспроизводимость условий даже на быстрой начальной стадии процесса.

Сравнение результатов оптических и рентгеноструктурных исследований показало, что зависимости от времени отжига интенсивности текстурного максимума и интегральной интенсивности рассеянного света подобны (рис. 1). Эти зависимости могут быть разделены на две стадии экспоненциального роста с существенно различными постоянными времени (рис. 1). Для образцов с $T_{\rm pyr} = 380^{\circ}$ С стадия "быстрого роста" продолжается в течение 60 s с постоянной времени $\tau_f \sim 12$ s. На стадии "медленного роста" постоянная времени τ_s составляет 880 s.

Прямые наблюдения за изменением морфологии пленок при отжиге показали, что различным стадиям роста соответствует различная геометрия растущих областей, занятых зернами перовскита. На стадии быстрого отжига наблюдались рост и слияние изолированных областей, а при переходе к стадии медленного роста формировалась лабиринтная структура.

Рис. 1. Зависимости от времени отжига интенсивности рентгенографического текстурного максимума фазы перовскита (111) (*a*) и интегральной интенсивности рассеянного света (*b*). Экспериментальные точки аппроксимированы экспоненциальными зависимостями. $T_{an} = 600^{\circ}$ С, $T_{pyr} = 380^{\circ}$ С.

Полученные зависимости от времени отжига интегральной интенсивности рассеянного света $I_{\rm sc}$ и интенсивности текстурного максимума фазы перовскита $I_{(111)}$ аппроксимировались модифицированной формулой Колмогорова–Аврами [15–17] для кинетики двумерного роста по α -модели (при постоянных интенсивности зародышеобразования и скорости роста) с учетом геометрической катастрофы (уменьшения размерности роста)

$$I(t) = \begin{cases} I_0 + \Delta I_f \{ 1 - \exp[-(t - t_d)^3 / \tau_{f\alpha}^3] \}, \ t < t_{\text{cat}}, \\ I_0 + \Delta I_s \{ 1 - \exp[-(t - t_d)^2 / \tau_{s\alpha}^2] \}, \ t > t_{\text{cat}}, \end{cases}$$
(1)

где t_d — время задержки, t_{cat} — время катастрофы, $\tau_{f\alpha}$ и $\tau_{s\alpha}$ — постоянные времени для стадий быстрого и медленного роста соответственно.

2.1. Исследования образцов с низкой температурой пиролиза. Рентгенографические исследования показали, что в исходном состоянии (*T*_{pyr} = 380°C) пленка РZT представляла собой смесь аморфной и пирохлорной фаз (рис. 2, *d*).

Весь процесс фазового превращения при термическом отжиге разделяется на три стадии: задержки, быстрого роста и медленного роста.

На стадии задержки не образуется фаза текстурированного перовскита (рис. 2, b) и практически не меняется интенсивность рассеянного света, связанная с изменением морфологии поверхности пленки I_{sc} (рис. 2, c). Рентгенографически обнаружен значительный рост количества пирохлора (рис. 2, a). Появление и медленный рост небольшого числа кристаллитов нетекстурированного перовскита наблюдались с помощью оптического микроскопа и рентгенографически. Этот рост, по-видимому, связан с кристаллизацией на дефектах.

Рис. 2. Зависимости от времени отжига интенсивности рентгенографического максимума фазы пирохлора $I_{(222)}(a)$, интенсивности рентгенографического текстурного максимума фазы перовскита $I_{(111)}(b)$ и интегральной интенсивности рассеянного света $I_{sc}(c)$. Схема основных стадий эволюции морфологии пленки в процессе отжига: d — исходное состояние пленки после пиролиза (I), e — стадия задержки роста (D), f — быстрого роста (F), g — медленного роста (S). $T_{an} = 600^{\circ}$ С, $T_{pyr} = 380^{\circ}$ С. 1 — дефекты, 2 — пирохлор, 3 — текстурированный перовскит, 4 — нетекстурированный перовскит.

Быстрая стадия процесса соответствует быстрому росту количества текстурированного перовскита и уменьшению количества пирохлора. Идет эпитаксиальный рост фазы перовскита на текстурированной платине. Кристаллиты перовскита образуются на границе пленкаподложка и быстро прорастают через объем пленки за счет анизотропии роста (рис. 2, f) [1,3]. Одновременно происходит медленный рост количества нетекстурированного перовскита. Быстрый рост $I_{(111)}$ сопровождается ярко выраженными оптическими эффектами. Увеличение I_{sc} (рис. 2, c) указывает на изменение морфологии поверхности. Оно наблюдалось с помощью оптического микроскопа и приводило к изменениям угловой зависимости рассеянного света I_{sc} . Возрастание угла, соответствующего максимуму рассеянного света ϕ_{max} , можно связать с уменьшением среднего расстояния между отдельными рассеивающими центрами r_0 из-за увеличения количества кристаллитов. По положению максимума определялось среднее расстояние между рассеивающими центрами $r_0(t)$

$$r_0(\phi_{\max}) = \lambda / (4\pi \sin \phi_{\max}), \qquad (2)$$

где λ — длина волны падающего света.

Зависимость $r_0(t)$ (рис. 3, *a*) аппроксимирована экспоненциальной зависимостью ($\tau_f = 22$ s). Было определено изменение концентрации кристаллитов фазы перовскита на стадии быстрого роста (см. вставку на рис. 3, *a*)

$$n(t) \approx 0.25 r_0^{-2}$$
. (3)

Стадия медленного роста сопровождается качественным изменением морфологии поверхности, наблюдаемым при помощи оптического микроскопа. Замедление скорости бокового роста приводит к формированию лабиринтной структуры, что соответствует геометрическому переходу перколяционного типа и понижению размерности роста $2D \rightarrow 1D$. Рост $I_{(111)}$ замедляется ($\tau_s = 850$ s).

Рис. 3. Зависимости от времени отжига среднего расстояния между рассеивающими центрами r_0 на стадии быстрого роста (a) и средней ширины полосок фазы перовскита в лабиринтной структуре *w* на стадии медленного роста (b). Экспериментальные точки аппроксимированы экспоненциальными зависимостями. На вставке — увеличение концентрации кристаллитов перовскита на стадии быстрого роста. $T_{an} = 600^{\circ}$ С, $T_{pyr} = 380^{\circ}$ С.

Изменение морфологии поверхности пленок приводит к увеличению I_{sc} и уменьшению ϕ_{max} за счет роста среднего периода лабиринта гетерофазной структуры w,

$$w(\phi_{\max}) = \lambda / (4\pi \sin \phi_{\max}). \tag{4}$$

Экспериментальные данные w(t) (рис. 3, b) аппроксимировались экспоненциальной зависимостью ($\tau_s = 870$ s). Полученные особенности были отнесены на счет медленной рекристаллизации перовскита, сопровождающейся медленным уменьшением доли пирохлора.

2.2. Исследования образцов с высокой температурой пиролиза. Отжиги при $T_{\rm an} = 600^{\circ}$ С были проведены и для образцов с $T_{\rm pyr} = 490^{\circ}$ С (рис. 4). Наблюдаемое изменение основных характеристик аналогично результатам для образцов с низкотемпературным

Рис. 4. Зависимости от времени отжига интенсивности рентгенографического максимума фазы пирохлора $I_{(222)}(a)$, интенсивности рентгенографического текстурного максимума фазы перовскита $I_{(111)}(b)$ и интегральной интенсивности рассеянного света $I_{sc}(c)$. Схема основных стадий эволюции морфологии пленки в процессе отжига: d — задержки (D), e — быстрого роста (F), f — медленного роста (S). I — дефекты, 2 — пирохлор, 3 — текстурированный перовскит, 4 — нетекстурированный перовскит. $T_{an} = 600^{\circ}$ С, $T_{pyr} = 490^{\circ}$ С.

Таблица 1.	Параметр	ы, п	олученные	при	обработ	ке	экс-
периментальны	іх данных	для	частично	отож	женных	пл	енок
$(T_{\rm an} = 600^{\circ} {\rm C})$							

	$ au_f$, s	$ au_s$, s	t_{d1} , s	$ au_{flpha},{f s}$	$ au_{slpha}$, s	$t_{\rm cat}$, s		
	$T_{\rm pyr}=380^{\circ}{ m C}$							
<i>I</i> ₍₂₂₂₎	-17	-125	32	14	178	65		
$I_{(111)}$	13	850	36	18	162	115		
Isc	12	890	18	33	119	140		
r_0	22	870						
	$T_{ m pyr}=490^{\circ}{ m C}$							
<i>I</i> ₍₂₂₂₎	-180	-1550	132	83	225	220		
<i>I</i> ₍₁₁₁₎	113	1230	83	90	278	245		
Isc	250	3160	85	101	362	240		

пиролизом, но с существенно большими постоянными времени (табл. 1).

В исходном состоянии практически отсутствовала аморфная фаза, и пленки состояли только из пирохлора и нетекстурированного перовскита. Увеличение длительности стадии задержки (рис. 4, *d*) может быть вызвано существенной потерей свинца при пиролизе. Вызванная этим стабилизация пирохлора [18] приводит к затруднению образования текстурированного перовскита. Кроме того, наблюдался медленный рост количества нетекстурированного перовскита.

Быстрый рост текстурированного перовскита от подложки затруднен (рис. 4, b), поскольку образовавшийся в процессе отжига нетекстурированный перовскит блокирует рост зерен перовскита в направлении, перпендикулярном поверхности пленки (рис. 4, e).

На стадии медленного роста (рис. 4, f) происходит постепенное преобразование пирохлора в текстурированный перовскит. Также наблюдался медленный рост количества нетекстурированного перовскита.

2.3. Іп situ измерения кинетики быстрого фазового превращения. Разработанные методы анализа оптических измерений позволили исследовать кинетику быстрого фазового превращения при $T_{\rm an} = 650^{\circ}$ С, которую невозможно исследовать традиционными рентгенографическими методами (рис. 5). Изменение интегральной интенсивности рассеянного света измерялось непосредственно в процессе отжига одного образца. Очевидно, что в этом случае точность измерений значительно выше, чем для серии частично закристаллизованных образцов. Полученная величина $t_{\rm cat}$ соответствует моменту времени, при котором заканчивается стадия быстрого роста перовскита и уменьшается размерность роста $\alpha(2D) \rightarrow \alpha(1D)$.

Изменение морфологии поверхности пленок в процессе изотермического отжига при $T_{\rm an} = 650^{\circ}{\rm C}$ исследовалось с помощью оптического микроскопа в модифицированном термостате. Экспериментально удавалось различать области, соответствующие разным фазам [12]. Фазовый переход сопровождался ростом количества и размеров областей, образованных зернами текстурированного перовскита. В результате обработки кадров видеофильма была определена зависимость от времени доли площади, занятой фазой пирохлора (рис. 6), и вычислены параметры кинетики фазового превращения (табл. 2). Отметим, что они близки к параметрам, полученным из анализа интегральной интенсивности рассеянного света. Некоторое различие можно отнести на счет неполной воспроизводимости условий отжига, вызванной модификацией термостата.

Показано, что анализ in situ измерений интегральной интенсивности рассеянного света и эволюции морфологии поверхности пленок в процессе быстрого термического отжига позволяет исследовать кинетику фазового превращения пирохлор-перовскит без рентгенографических исследований. Получены параметры, характеризующие зародышеобразование и рост кристаллитов перовскита на различных стадиях фазового превращения.

Рис. 5. Измеренные непосредственно в процессе отжига интегральные интенсивности рассеянного света. Экспериментальные точки аппроксимированы зависимостью (1). $T_{an} = 650^{\circ}$ С. T_{pyr} (°С): a - 380, b - 490.

Рис. 6. Изменение в процессе отжига доли поверхности пленки, занятой зернами перовскита. Экспериментальные точки аппроксимированы зависимостью (1). $T_{an} = 650^{\circ}$ C, $T_{pyr} = 490^{\circ}$ C.

Таблица 2. Параметры кинетики фазового превращения, полученные из анализа результатов in situ оптических измерений $(T_{\rm an} = 600^{\circ}{\rm C})$

	$T_{\rm pyr}$, °C	<i>t</i> _{<i>d</i>1} , s	$ au_{flpha}$, s	$ au_{slpha}$, s	$t_{\rm cat}$, s
$I_{\rm sc}$	380	1.3	2.5	5.6	4.9
$I_{\rm sc}$	490	1.4	13	42	21
$S_{\rm per}/S_0$	490	-6.2	24	175	33

Адекватность метода подтверждена сопоставлением данных по рассеянию света и рентгенографических исследований серии частично отожженных пленок. Следует отметить, что предложенный in situ метод позволяет исследовать процесс фазового превращения в различных пленках, нанесенных на любые подложки с любыми нижними электродами. Использование метода позволит оптимизировать условия отжига для промышленного производства интегральных схем, содержащих сегнетоэлектрики.

Авторы благодарят D. Bolten, R. Gerhardt и R. Waser за пленки, предоставленные для исследований.

Список литературы

- K.G. Brooks, I.M. Reaney, R. Klissurka, Y. Huang, L. Bursill, N. Setter. J. Mater. Res. 9, 2540 (1994).
- [2] J. Chen, K.R. Udayakumar, K.G. Brooks, L.E. Cross. J. Appl. Phys. 71, 4465 (1992).
- [3] E. Griswold, L. Weaver, M. Sayer, F. Czerwinski. J. Szpunar. Micron 26, 559 (1995).
- [4] M. Huffman, F.D. Gealy, L. Kammerdiner, P. Zurcher, J.C. Zhu, M. Al-Jassim, C.J. Echer. Ferroelectrics 134, 303 (1992).
- [5] M. Klee, P.K. Larsen. Ferroelectrics 133, 91 (1992).
- [6] A.P. Wilkinson, J.S. Speck, A.K. Cheetham, S. Natarajan, J.M. Thomas. Chem. Mater. 6, 750 (1994).
- [7] S. Trolier-McKinstry, J. Chen, K. Vedam, R. Newnham. J. Amer. Ceram. Soc. 78, 1907 (1995).
- [8] M. Libera, M. Chen. J. Appl. Phys. 73, 2272 (1993).
- [9] V.Ya. Shur, S.A. Negashev, E.L. Rumyantsev, A.L. Subbotin, S.D. Makarov. Ferroelectrics 169, 63 (1995).
- [10] V.Ya. Shur, S.A. Negashev, A.L. Subbotin, E.A. Borisova, S. Trolier-McKinstry. Mater. Res. Soc. Symp. Proc. 433, 351 (1996).
- [11] V.Ya. Shur, S.A. Negashev, A.L. Subbotin, E.A. Borisova. Ferroelectrics 196, 183 (1997).
- [12] И.П. Пронин, Н.В. Зайцева, Е.Ю. Каптелов, В.П. Афанасьев. Изв. РАН. Сер. физ. 61, 2, 379 (1997).
- [13] V.Ya. Shur, E.B. Blankova, A.L. Subbotin, E.A. Borisova, D.V. Pelegov, S. Hoffmann, D. Bolten, R. Gerhardt, R.J. Waser. Europ. Ceram. Soc. 19, 1391 (1999).
- [14] В.Я. Шур, С.А. Негашев, А.Л. Субботин, Д.В. Пелегов, Е.А. Борисова, Е.Б. Бланкова, С. Тролиер-Мак Кинстри. ФТТ 41, 2, 306 (1999).
- [15] А.Н. Колмогоров. Изв. АН СССР. Сер. мат. 3, 355 (1937).
- [16] M. Avrami. J. Chem. Phys. 7, 1103 (1939).
- [17] V.Ya. Shur, E.L. Rumyantsev, S.D. Makarov. J. Appl. Phys. 84, 1, 445 (1998).
- [18] C.V.R. Kumar, R. Pascual, M. Sayer. J. Appl. Phys. 71, 2, 864 (1992).