Полосы излучения связанных экситонов в кристаллах ZnSe и смешивание плазмонов и фононов

© В.С. Вавилов*, А.А. Клюканов, К.Д. Сушкевич, М.В. Чукичев*, А.З. Ававдех, Р.Р. Резванов*

Молдавский государственный университет, 2009 Кишинев, Молдавия * Московский государственный университет им. М.В. Ломоносова, 119899 Москва, Россия E-mail: klukanov@cinf.usm.md

(Поступила в Редакцию 18 сентября 2000 г.)

Проведены исследования катодолюминесценции кристаллов ZnSe, отожженных в расплаве Вi при температуре 1200 K в течении 120 h. Найдено, что в образцах с различной концентрацией электронов проводимости расстояние между сателлитами фононной структуры в сериях связанных экситонов I_1^s -nLO и I_1^d -nLO и относительная интенсивность сателлитов различны. Показано, что это различие обусловлено смешиванием фононов и плазмонов. Рассчитана форма спектра излучения связанных экситонов в кристаллах ZnSe в области 450–470 nm и получено удовлетворительное согласие с экспериментом.

В [1] было высказано предположение, что в области линии излучения I_1^d -2LO ($\lambda = 456$ nm) кристаллов ZnSe, отожженных в расплаве Bi, наблюдается новая линия связанных экситонов I_1^s , которая имеет богатую LO-фононную и плазмонную структуру. Отличительной особенностью линии I_1^s (по сравнению с I_1^d) является большая величина констант взаимодействия с LO-фононами и плазмонами, которые определяют интенсивность линий излучения. Данная работа посвящена дальнейшему исследованию формы спектра, относительных интенсивностей и расстояний между сателлитами в сериях линий связанных экситонов $I_1^{s,d}$ -nLO.

Люминесценция возбуждалась электронным пучком с энергией 40 keV при температуре образца 4.2 К. Длительность импульсов составляла 0.4 µs при частоте следования 200 Hz. Излучение анализировалось с помощью монохроматора ДФС-12 в видимой области спектра. На рис. 1 представлены экспериментальные результаты по катодолюминесценции двух отожженных в расплаве Ві образцов ZnSe с различной концентрацией электронов проводимости. На кривой 1 наблюдаются линии I^d₁-LO $(\lambda = 451.0 \,\mathrm{nm})$ и I_1^d -2LO $(\lambda = 456.2 \,\mathrm{nm})$. Последняя накладывается на широкую линию I_1^s с максимумом в районе $\lambda = 456$ nm. Два длинноволновых спутника линии Is представляют собой ее LO-фононные повторения I_1^s -LO ($\lambda = 461 \text{ nm}$) и I_1^s -2LO ($\lambda = 467 \text{ nm}$). Многоплазмонная структура линий I^s-nLO не разрешается, так как в кристаллах с низкой концентрацией электронов ($\omega_p \ll \omega_{LO}$) время жизни au плазмонов недостаточно велико ($au \omega_p < 1$) и плазмоны не являются элементарными возбуждениями кристалла. Тем не менее взаимодействие рекомбинирующих электрона и дырки с плазмой приводит к уширению линий серии *I*^s-*nLO*. Кривая *1* на рис. 1 недвусмысленно показывает, что в области длин волн $\lambda \approx 456\,\mathrm{nm}$ имеет место суперпозиция линий I^s и I^d₁-2LO. Это является прямым подтверждением предположения о новой линии I₁^s и ее сателлитах. Аналогичные спектры были получены и на других образцах ZnSe с низкой концентрацией плазмы электронов проводимости. В зависимости от соотношения концентраций центров, ответственных за линию I_1^s и линию I_1^d , наложение спектров может наблюдатся как в районе I_1^s и I_1^d -2LO ($\lambda = 456$ nm), так и в районе I_1^s -LO и I_1^d -3LO ($\lambda = 461$ nm). Несмотря на малость константы взаимодействия связанного экситона, ответственного за линию I_1^d , с плазмой свободных электронов, взаимодействие проявляется и для линии I_1^d — в уширении при концентрации плазмы $n_e \leq 10^{16}$ сm⁻³. Для сравнения укажем на спектры катодолюминесценции, представленные на рис. 1 работы [1], из которых видно сужение бесплазмонных линий I_1^d -2LO при $n_e \geq 10^{17}$ сm⁻³, когда плазмонный сателлит отделяется от бесплазмонной линии.

В кристаллах с относительно высокой концентрацией плазмы ($n_e \approx 10^{17} \,\mathrm{cm}^{-3}$, $\hbar \omega_p \approx 10 \,\mathrm{meV}$) многоплазмонная структура серии I_s^s -nLO разрешается (кривая 2 на

Рис. 1. Спектры катодолюминесценции кристаллов ZnSe при *T* = 4.2 K. *1* — высокоомный образец, *2* — низкоомный образец.

рис. 1), а бесплазмонные линии I_1^s -LO ($\lambda = 461.3$ nm) и I_1^s -2LO ($\lambda = 466.8$ nm) являются более узкими и интенсивными по сравнению с плазмонными сателлитами вследствие сильной дисперсии и затухания плазмонов.

Таким образом, если рассматривать широкий интервал концентраций плазмы электронов проводимости $n_e \approx 10^{14} - 10^{18} \,\mathrm{cm}^{-3}$, то на начальном этапе в области низких концентраций (в смысле выполнения неравенства $\omega_p \ll \omega_{LO}$) при переходе от $n_e \approx 10^{14} \,\mathrm{k} \, 10^{16} \,\mathrm{cm}^{-3}$ кулоновское вазимодействие связанных экситонов с плазмой проявляется в уширении линий $I_1^{s,d}$ -nLO. Для серии I_1^s -nLO этот эффект более существен, чем для I_1^d -nLO (кривая I на рис. 1). Однако с дальнейшим ростом концентраций до значений $n_e \approx 10^{17} - 10^{18} \,\mathrm{cm}^{-3}$ уширение сменяется сужением линий $I_1^{s,d}$ -nLO. Это происходит, когда энергия плазмона оказывается достаточно большой и плазмонный сателлит отщепляется от бесплазмонной линии.

Анализ серий $I_1^{s,d}$ -*nLO* показывает, что относительная интенсивность и расстояние мжеду сателлитами в разных образцах различны. Расстояние изменяется от 31 до 32 meV, а относительная интенсивность линий I_1^s -LO и I₁^s-2LO составляет 1.2:1 (кривая 2 на рис. 1), 1:1 (кривая 1 на рис. 1 [1] и 0.9:1 (кривая 2 на рис. 1) [1]). По нашему мнению, все эти результаты обусловлены смешиванием плазмонов и LO-фононов, благодаря чему происходит перенормировка частот элементарных возбуждений кристалла и в зависимости от концентрации плазмы изменяется среднее число испущенных (на один фотон) продольных смешанных плазмон-фононов с частотами ω_+ и ω_- [2–4]. Критическими здесь оказываются величины концентрации электронов проводимости $n_e \approx 10^{16} - 10^{17} \, {\rm cm}^{-3}$. Частоты смешанных плазмонфононных элементарных возбуждений определяются выражением [2]

$$\omega_{\pm} = \frac{1}{2} \left\{ \omega_{LO}^2 + \omega_{p\infty}^2 \pm \left[\left(\omega_{LO}^2 + \omega_{p\infty}^2 \right)^2 - 4\omega_{p\infty}^2 \omega_{TO}^2 \right]^{\frac{1}{2}} \right\}^{\frac{1}{2}}.$$
(1)

В пределе низких концентраций плазмы, удовлетворяющих неравенству $\omega_p \ll \omega_{LO}$ ($n_e \leq 10^{16} \,\mathrm{cm}^{-3}$), частота $\omega_+ \rightarrow \Omega_{LO}$, а $\omega_- \rightarrow \omega_p$, тогда как при выполнении обратного неравенства $\omega_p \gg \omega_{LO}$, т.е. при высоких концентрациях $n_e \geq 10^{18} \,\mathrm{cm}^{-3}$ частота $\omega_- \rightarrow \omega_{TO} = \omega_{LO} (\varepsilon_\infty / \varepsilon_0)^{1/2}$, а $\omega_+ \rightarrow \omega_{p\infty}$. Здесь $\omega_p = (4\pi n_e e^2 / \varepsilon_0 m_e^*)^{1/2} = \omega_{p\infty} (\varepsilon_\infty / \varepsilon_0)^{1/2}$. При $n_e \approx 10^{16} \,\mathrm{cm}^{-3}$ энергия плазмона составля-

При $n_e \approx 10^{16} \,\mathrm{cm^{-3}}$ энергия плазмона составляет $\hbar \omega_p = 2.9 \,\mathrm{meV}$ и смешиванием плазмонов и *LO*фононов, согласно формуле (1), можно пренебречь. Однако при $n_e \approx 10^{17} \,\mathrm{cm^{-3}}$ смешивание необходимо учесть. Действительно, с использованием формулы (1) и значений параметров кристалла ZnSe находим при концентрации $n_e \approx 1.7 \, 10^{17} \,\mathrm{cm^{-3}}$ и $\hbar \omega_{LO} = 31 \,\mathrm{meV}$ величи́ны энергий плазмон-фононных мод: $\hbar \omega_+ = 32 \,\mathrm{meV}$, $\hbar \omega_- = 11.6 \,\mathrm{meV}$ ($\hbar \omega_p = 12 \,\mathrm{meV}$). Обе частоты ω_+ и ω_- с ростом концентрации плазмы увеличивается. Таким образом, мы можем заключить, что наблюдаемое изменение энергии $\hbar \omega_+$ от $\hbar \omega_{LO} = 31 \,\mathrm{meV}$ при низкой концентрации до $\hbar\omega_+ = 32 \,\mathrm{meV}$ при высокой концентрации обусловлено смешиванием плазмонов и фононов. Отметим, что разброс в энергии продольных оптических фононов того же порядка величины можно встретить и в других работах (см., например, [5]). Более существенно рост концентрации от $n_e \approx 10^{16}$ до 10^{17} сm⁻³ сказывается на относительной интенсивности сателлитов, которая определяется средним числом N₊ и N₋, испущенных на один фотон смешанных плазмон-фононов с частотами ω_+ и ω_- . Как было отмечено в работе [1], сильное взаимодействие с плазмонами и фононами характерно для центров акцепторного или донорного типов, когда радиусы состояний электрона и дырки значительно отличаются друг от друга. При этом $N_+ \sim 1/a_+$, где *a*₊ — наименьший из радиусов (электрона или дырки). В соответствии с формулой (2) работы [1] находим

$$\frac{N_{+}}{N_{LO}} = \frac{a_{LO}}{a_{+}} \frac{\omega_{LO}}{\omega_{+}} \frac{\omega_{+}^{2} - \omega_{TO}^{2}}{\omega_{+}^{2} - \omega_{-}^{2}} \frac{\omega_{LO}^{2} - \omega_{P}^{2}}{\omega_{LO}^{2} - \omega_{TO}^{2}}.$$
 (2)

При $n_e \leq 10^{16} \,\mathrm{cm}^{-3}$ смешивание не происходит и $N_+ = N_{LO}$, а отношение $a_{LO}/a_+ = 1$, тогда как при $n_e = 1.7 \cdot 10^{17} \,\mathrm{cm}^{-3}$ находим: $N_+ = 1.3 \,N_{LO} a_{LO}/a_+$. Поскольку рассматриваемые концентрации далеки от предела, при котором происходит моттовский переход, то $a_{LO}/a_+ \approx 1$ и $N_+ = 1.3 \,N_{LO}$. Этот эффект позволяет объяснить как положение, так и относительную интенсивность линий I_1^s -nLO на спектре, представленном кривой I на рис. 1. Учитывая наложение серий I_1^s -nLO и I_1^d -nLO в области длин волн $\lambda = 450-470$ nm, спектр спонтанного излучения кристаллов ZnSe можно представить в виде

$$I(x) = A \sum_{n=0}^{\infty} \frac{\gamma (N_{LO}^d)^n / n!}{(x+n)^2 + \gamma^2} + B \sum_{n=0}^{\infty} \sum_{m=-\infty}^{\infty} e^{\frac{\beta}{2}m} I_m(z) \frac{\gamma_1 (N_{LO}^s)^n / n!}{(x+1+n+\delta+b\,m)^2 + \gamma_1^2}.$$
 (3)

Здесь $x = (\omega - \omega_0)/\omega_{LO}$, $\hbar\omega_0$ — энергия, соответствующая положению линии I_1^d -LO (450.9 nm). Все частоты вычисляются в единицах ω_{LO} , $b = \omega_p/\omega_{LO}$, $\beta = \hbar\omega_p/k_0T$, $z = N_p/\text{sh} (\beta/2)$. N_{LO} — среднее число фононов $(N_p$ — плазмонов), испущенных на один фотон, $I_m(z)$ — функции Бесселя от мнимого аргумента. Формула (3) учитывает как стоксовы, так и антистоксовы сателлиты. При $N_p \gg 1$ огибающая многоплазмонных спутников характеризуется гауссовой функцией, полуширина которой определяется кулоновским взаимодействием с плазмой свободных электронов.

В соответствии с формулой (3) для построения теоретического спектра излучения необходимо знать ширины *LO*-фононных и плазмонных сателлитов γ и γ_1 , а также положение линии I_1^s , которое определяется параметром δ . Согласно полученным нами результатам,

Рис. 2. Форма спектра излучения связанных экситонов в ZnSe. Рассчитанный по формуле (3) спектр — непрерывная линия. Экспериментальные данные — точки.

линия I^s смещена на 0.3 nm в коротковолновую область по отношению к линии I_1^d -2LO, а N_{LO}^s для серии I_1^s -nLO составляет величину порядка 2 при концентрациях плазмы $n_e \ge 10^{17} \, \mathrm{cm}^{-3}$. Если использовать эти данные и при низкой концентрации плазмы, то теоретические расчеты оказываются в противоречии с экспериментом. Теоретическая серия I_1^s -*nLO* при $N_{LO}^s = 2$ и $\delta = 0.06$ оказывается сдвинутой в длинноволновую сторону относительно экспериментальной, а интенсивность линии I^s₁-2LO завышенной по отношению к интенсивности линии I_1^s -LO. Проблема состоит в том, что определить параметр δ непосредственно из эксперимента невозможно. Однако каким образом необходимо изменить этот параметр и константу N^s_{LO} при переходе к низким концентрациям легко понять, если учесть смешивание плазмонов и фононов. Действительно, с учетом смешивания вклад в энергию связи экситона от взаимодействия с продольными плазмон-фононами определяется формулой

$$\Delta E_B = N_+ \hbar \omega_+ + N_- \hbar \omega_-. \tag{4}$$

Согласно проведенным оценкам, с ростом концентрации энергия ΔE_B (4) увеличивается, а линия I_1^s смещается в длинноволновую сторону. Таким образом, параметр δ при низкой концентрации больше, чем при высокой. Подбор параметра δ производился по лучшему согласию теоретического и экспериментального спектров (кривая 1 на рис. 1). Найдено, что линия I^s при концентрации плазмы $n_e \leq 10^{16}\,\mathrm{cm}^{-3}$ оказывается сдвинутой относительно линии I₁^s-2LO в коротковолновую сторону на величину $\delta = 0.15 \ (\delta \hbar \omega = 4.6 \,\mathrm{meV}).$ Отметим, что учет дисперсии оптических фононов и разогрева плазмы оказались недостаточными для объяснения этого сдвига. Полуширины линий I^d₁-nLO могут быть определены прямо по экспериментальным данным. Для многоплазмонных сателлитов полуширина $2\gamma_1$ ограничена тем условием, что многоплазмонная структура в соответствии с экспериментом не разрешена $(a/\gamma_1 < 1)$. Относительная величина интенсивности серии I_1^d -nLO и I_1^s -nLO определяется константами A и B в формуле (3). Таким образом, как видно из рис. 2, при значениях параметров A = 16, B = 0.25, b = 0.05 ($\hbar\omega_p = 1.55 \text{ meV}$), $N_{LO}^d = 0.25$, $N_{LO}^s = 1.4$, $N_p = 3$, $\gamma_1 = 0.07$ (при меньшем значении параметра γ_1 многоплазмонная структура оказывается несглаженной), $\gamma = 0.04$, T = 4.2 K согласие с экспериментом оказывается удовлетворительным. Чувствительность спектров излучения и поглощения связанных экситонов к концентрации плазмы (нелинейность спектральных функций в зависимости от интенсивности облучения) может быть использована в устройствах оптической обработки информации.

Список литературы

- В.С. Вавилов, А.А. Клюканов, К.Д. Сушкевич, М.В. Чукичев, А.З. Ававдех, Р.Р. Резванов. ФТТ 41, 7, 1176 (2000).
- [2] Ф. Платцман, П. Вольф. Волны и взаимодействия в плазме твердого тела. Мир, М. (1975). 436 с. Гл. 5. §34.
- [3] В.С. Вавилов, А.А. Клюканов, Э.А. Сенокосов, Л.Э. Чиботару, М.В. Чукичев. ФТТ **33**, *1*, 63 (1991).
- [4] В.С. Вавилов, А.А. Клюканов, М.В. Чукичев, О.М. Шаповал, А.З. Ававдех, Р.Р. Резванов. ФТП 28, 12, 2113 (1994).
- [5] Д.Д. Недеогло, А.В. Симашкевич. Электрические и люминесцентные свойства селенида цинка. Штиинца, Кишинев (1994).