Влияние процессов ориентации нелинейных оптических фрагментов боковой цепи в гребнеобразных полимерах метакрилового ряда на генерацию второй гармоники в пленках

© Г.К. Лебедева, И.М. Соколова*, В.Н. Иванова, В.А. Лукошкин**, Н.Л. Лорецян, В.В. Кудрявцев

Институт высокомолекулярных соединений Российской академии наук, 199004 Санкт-Петербург, Россия E-mail: kudryav@hq.macro.ru * Государственный электротехнический университет, 197022 Санкт-Петербург, Россия

** Физико-технический институт им. А.Ф. Иоффе Российской академии наук, 194021 Санкт-Петербург, Россия E-mail: V.Lukosh@pop.ioffe.rssi.ru

(Поступила в Редакцию 3 августа 2000 г.)

Получены новые гребнеобразные сополимеры сложных эфиров метакриловой кислоты с оптически нелинейным хромофором — производным 4'- (4-нитробензилиденамино)фенола в боковой цепи. Изучены процессы принудительной ориентации в электрическом поле ковалентно связанных с основными цепями нелинейных оптических хромофоров, а также влияние условий ориентации на нелинейную оптическую активность второго порядка полимерных пленок. Показана связь химической структуры и состава сополимеров с величиной и стабильностью поверхностного электронного потенциала соответствующих пленок. Установлено, что при максимальном приближении области однородности электрического поля в образце к его толщине достигаются максимальная степень ориентации хромофорных групп в объеме полимера и, как следствие, высокая интенсивность сигнала второй гармоники.

Исследование нелинейных оптических свойств полимерных материалов привлекает в последние годы все большее внимание. Полимеры, содержащие нелинейнооптические фрагменты (хромофоры), могут иметь большие нелинейные оптические коэффициенты, если органические молекулы, ответственные за оптическую нелинейность, выстроены в определенном порядке. Тонкие пленки полимерных материалов легко получить методами обычной микроэлектронной технологии, что особенно ценно для применения в приборах оптоэлектроники. В связи с этим актуальными становятся синтез новых полимеров с нелинейными оптическими свойствами и исследование условий, при которых полимеры в максимальной степени способны проявлять нелинейную оптическую (HO) активность.

Известно [1], что для генерации второй гармоники (ГВГ) в полимерах с нецентросимметричными НО-группами необходимо образование ориентированных молекулярных структур. Начиная с 80-х годов для ориентации дипольных молекул хромофорных групп в макромолекулах широко и успешно используется процесс полинга (поляризация под действием внешнего электрического поля) при температуре, близкой к температуре размягчения (Tg) полимера. Целый ряд работ [2-4] посвящен изучению кинетики спада интенсивности сигнала второй гармоники после прекращения электризации и выявлению связи между кинетическими параметрами спада поверхностного потенциала и нелинейной оптической восприимчивостью. Разнообразие полученных результатов и предложенных для их объяснения моделей обусловлено достаточной сложностью релаксационных

процессов, протекающих в полимерном образце и поразному проявляющих себя в зависимости от природы исследуемого полимера.

В настоящей работе проведено комплексное исследование процессов ориентации хромофорных групп и ГВГ в новых полимерах. В качестве объектов исследования выбраны гребнеобразные сополимеры эфиров метакриловой кислоты, содержащие в боковых цепях алкильные и/или фторалкильные радикалы наряду с введенным с помощью спейсера (-CH₂- или -CF₂-) оптически нелинейного хромофора — азометинового фрагмента. Возможности изменения состава сополимеров (количества звеньев с хромофорными группами), амфифильных свойств (введение гидрофобных фторалкильных и гидрофильных карбоксильных групп), свободного объема полимеров, а также сравнительно невысокие значения T_{g} [5] позволяют считать эти сополимеры удобным материалом для моделирования процессов ориентации, как свободной в пленках Ленгмюра-Блоджетт, так и возникающей в результате воздействия внешнего электрического поля.

1. Эксперимент

Сополимеризацией соответствующих сомономеров по свободнорадикальному механизму были синтезированы полимер I и ряд неописанных ранее полимеров (II–IV) общей формулы, представленной на рис. 1. Следует отметить, что синтезированные полимеры способны образовывать пленки Ленгмюра-Блоджетт [6], отличающиеся высокоупорядоченной структурой, оптической

Рис. 1. Общая формула сополимеров I–IV (фигурной скобкой выделен нелинейно-оптический фрагмент). Сополимер I — $n:m:p = 60:40:0, X = CF_2$; сополимер II — $n:m:p = 35:55:10, X = CF_2, Y = CH_2$; сополимер III — $n:m:p = 0:80:20, X = Y = CH_2$; гомополимер IV — $n:m:p = 0:0:100, Y = CF_2, n, m, p$ — соотношение исходных компонентов (в mol.%).

однородностью и контролируемой до бимолекулярного слоя толщиной.

Азометиновый фрагмент — 4'-(4-нитробензилиденамино)фенол, его алкил-(фторалкил-) производные 6-[4'-(4-нитробензилиденамино)фенокси]гексанол, 6-[4'(4-нитробензилиденамино)фенокси]декафторгексанол и их метакриловые эфиры 6-[4'-(4-нитробензилиденамино-)фенокси]гексилметакрилат и 6-[4'-(4-нитробензилиденамино)-фенокси]декафторгексилметакрилат были синтезированы по методикам, аналогичным [7], и очищены методом колоночной хроматографии на силикагеле (элюенты: диэтиловый эфир–гексан = 1:1).

Сополимеры I–III были получены радикальной полимеризацией соответствующих мономеров в растворе в N,N-диметилацетамиде (30 wt. %) с инициатором перекисью бензоила (1 wt. %) — при температуре 60°С. Гомополимер IV получен термической полимеризацией в массе.

Полимеры I, II, IV были очищены переосаждением из растворов в циклогексаноне в бензол, сополимер III — в метанол с последующей сушкой в вакууме (10^{-2} Torr) при 50°C. Характеристические вязкости [η] сополимеров I–III в циклогексаноне составили 0.15 · 10^2 cm²/g, гомополимер IV в ацетоне — $0.54 \cdot 10^2$ cm³/g.

Строение и состав полимеров I–IV подтверждены спектрами ЯМР ¹Н и УФ-спектроскопией. ЯМР ¹Н-спектры сняты на приборе Bruker AC-200 (200.1 MHz) относительно сигналов растворителя. В данной работе в качестве растворителей были использованы дейтерированные хлороформ ((CD₃)₂CO) и диметилсульфоксид $(DMSO-d_6)$. Электронные спектры поглощения получены на спектрофотометре Specord M-40.

1) Полимер I. ЯМР 1 Н[(CD₃)₂CO], $\delta = 0.8-1.2$ (CH₃), 1.5–2.0 (CH₂), 3.2–3.8 (OCH₂), 4.5–4.9 (CH₂–CF₂), 6.8 (HCF₂). По соотношению сигналов протонов отдельных групп (указаны в скобках после величины сигнала) в спектре ЯМР 1 Н оценено отношение повторяющихся звеньев в сополимере (80:20) (здесь и далее δ — химический сдвиг протонов).

УФ-спектр пленки (λ_{\max}) спектрально прозрачен от 280 nm.

2) Полимер II. ЯМР ¹Н[(CD₃)₂CO], $\delta = 0.88-2.05$ (Н алиф., протон, находящийся в линейной цепочке –CH₂–CH₂–), 3.2–3.8 (CH₂O–бензольное кольцо (Ar.)), 4.00 (CH₂O), 4.5–4.9 (CH₂–CF₂), 6.8 (HCF₂), 7.2–7.8 (Н аром., протон, находящийся в бензольном кольце), 8.6 (H,N = CH).

УФ-спектр пленки (λ_{max}): 265 nm, 300 nm (мало интенсивная полоса поглощения с наметившимся максимумом — плечо), 344 nm (плечо).

3) Полимер III. ЯМР ¹Н [DMSO- d_6], $\delta = 0.8(-CH_3)$, 1.2–1.7(-CH₂), 3.1–4.0 (CH₂O-Ar.-CH₂O), 7.05–8.4 (Н аром.), 8.6 (Н, N = CH).

УФ-спектр пленки (λ_{max}): 265, 300 (плечо) и 344 nm (плечо).

4) Полимер IV. ЯМР ¹Н [DMSO- d_6], $\delta = 1.05 - 2.2$ (Н алиф.), 3.75–4.5 (CH₂O–Ar., -CH₂O–), 4.9 (CH₂–CF₂), 6.9–7.45 (Н аром.), 8.2 (Н, –N = CH–).

УФ-спектр пленки (λ_{max}): 328 nm (плечо).

Методом дифференциальной сканирующей калориметрии (ДСК) изучено фазово-агрегатное состояние гомополимера IV (с максимальным содержанием хромофорных групп) в интервале температур 20-350°С и определена температура размягчения $T_g = 80^{\circ}$ С. На термограмме ДСК гомополимера IV наблюдаются два температурных перехода: низкотемпературный (80°С) с эндотермическим эффектом, обусловленный переходом образца в размягченное состояние, и высокотемпературный (220°С) с экзотермическим эффектом, связанный с необратимыми химическими превращениями, так как он исчезает после повторного сканирования. Оптомикроскопическое исследование подтвердило результаты ДСК, а именно: 75-80°С — температура, при которой полимер растекается, и 220°С — температура, при которой растекание прекращается.

Калориметрические исследования осуществлялись на сканирующем калориметре ДСМ-2M при скорости сканирования 16°C/min (навески 20 mg, пороговая чувствительность 10⁻⁴ W). Оптомикроскопические измерения выполнены на столике Боэтиуса в поляризованном свете.

Для изучения процессов ориентации хромофорных групп и ГВГ использовались образцы в виде полимерных пленок, полученных методом центрифугирования на двух типах подложек: Si-подложки для исследования релаксации зарядов в режиме изотермической разрядки и предметное стекло толщиной 180 µm для оптических измерений. Толщина полимерных пленок варьировалась

в пределах 0.3-20 µm. Образцы подвергались термообработке при 100°C в течение трех часов и дополнительно еще в течение часа непосредственно перед процессом электризации для создания одинаковой термической предыстории. Для электрического контакта при поляризации полимерных пленок на стеклянных подложках на обратную сторону подложки наносился электрод в виде тонкой металлической фольги, который удалялся перед проведением оптических измерений. Электризация образцов осуществлялась в коронном разряде постоянного тока, который не превышал 3 µА, с использованием трехэлектродной схемы включения. Уровень начального значения поверхностного потенциала U_e⁰ задавался отрицательным потенциалом сеточного электрода и изменялся в пределах -(100-600) V. Время электризации t_e варьировалось от 1 до 30 min, температура электризации T_e — от 14 до 75°С. В случае электризации при повышенных температурах образец предварительно нагревался до заданной температуры, после действия коронного разряда нагрев отключали, и образец под полем остывал до комнатной температуры.

Для измерения поверхностного потенциала образцов использовался метод вибрирующего электрода с подачей компенсирующего напряжения [8]. Использование в зарядном устройстве сеточного электрода позволяло контролировать процесс электризации. Эффективность процесса определялась отношением поверхностного потенциала к потенциалу сеточного электрода (U_e^0/U_g) . Спад этого отношения во времени при комнатной температуре был выбран нами в качестве характеристики процесса релаксации в образце.

ГВГ в исследуемых образцах осуществлялась импульсным лазером (YAG-Nd³⁺), работающим в режиме модулированной добротности; длина волны излучения составляла 1.06 µm, длительность импульса 15 ns. Энергия излучения в импульсе менялась в широком интервале (до 30 mJ). Гауссов пространственный профиль лазерного пучка обеспечивался селекцией поперечных мод с помощью внутрирезонаторной диафрагмы. Часть излучения (4%) отщеплялась светоделителем и направлялась на фотодиод ФД-24К для контроля энергии возбуждающего излучения. Основная часть р-поляризованного излучения фокусировалась на образец линзой $F = 100 \, \text{mm}$. Излучение второй гармоники направлялось на решеточный монохроматор МДР-2 и далее на фотоумножитель ФЭУ-106. Электрические сигналы с обоих фотоприемников поступали на интегрирующие аналого-цифровые преобразователи и через приборный интерфейс КАМАК на персональный компьютер для дальнейшей обработки.

2. Обсуждение результатов

Первоначально были исследованы электретные свойства пленок синтезированных полимеров I–IV. Полученные результаты представлены на рис. 2, 3. Сравнение кинетики спада поверхностного потенциала пленок со-

Рис. 2. Кинетика спада поверхностного потенциала (U_e/U_g) для полимеров I (*a*), II (*b*), III (*c*), IV (*d*) при различных температурах электризации (T_e) и начальных значениях напряженности внутреннего поля в образцах (E_i^0). Величины T_e (°C) и соответственно: E_i^0 (V/m) *a*) 14 и 0.25 · 10⁷, *b*) *I* — 14 и 0.25 · 10⁷, *2* — 14 и 1.0 · 10⁷, *3* — 55 и 0.23 · 10⁷; *c*) *I* — 14 и 0.25 · 10⁷, *2* — 70 и 0.25 · 10⁷; *d*) *I* — 14 и 0.3 · 10⁷, *2* — 60 и 0.3 · 10⁷.

полимеров I–III для случаев электризации при комнатной температуре (рис. 2, a и кривые 1 на рис. 2, b, c) позволяет сделать заключение, что введение в структуру полимера I звеньев с полярными НО-группами (II и III)

Рис. 3. Кинетика спада поверхностного потенциала в зависимости от начального значения напряженности внутреннего поля (E_i^0) в образцах гомополимера IV. E_i^0 (V/m): $I = 5.7 \cdot 10^7$, $2 = 12.5 \cdot 10^7$, $3 = 66.7 \cdot 10^7$.

приводит к значительному снижению эффективности процесса электризации U_e^0/U_g (при $t_e = 0$) и снижению стабильности U_e . Отметим, что величины U_e^0/U_g и U_e меньше для сополимера III, в котором содержание хромофорных звеньев больше. Однако гомополимер IV близок по эффективности электризации и стабильности поверхностного потенциала к полимеру I (рис. 2, *a* и кривая *I* на рис. 2, *d*).

Повышение температуры электризации от 14°С до температуры, близкой к T_g , для всех исследованных НО-полимеров (II–IV) приводит к усилению спада поверхностного потенциала (рис. 2, *b*–*d*), причем наиболее сильное изменение наблюдается для образцов полимера II (кривые 1, 3 на рис. 2, *b*) с наименьшим содержание звеньев с боковыми заместителями, т.е. характеризующегося наибольшей долей свободного объема.

Увеличение начального значения напряженности внутреннего электрического поля (E_i^0) в образцах сразу после завершения поляризации практически не влияет на кинетику спада поверхностного потенциала для полимера II (кривые 1, 2 на рис. 2, b) и сильно влияет на кинетику процесса для гомополимера IV (кривые 1–3 на рис. 3). Полученные результаты указывают на то, что в процессе релаксации U_e для полимера II определяющим является механизм собственной электропроводности, а для гомополимера IV — дрейфовый механизм релаксации инжектированного разряда [9].

Следовательно, если рассматривать полимеры I–IV как электреты, то по мере убывания электретных свойств их можно расположить в следующем порядке: I–IV–II–III. Разумно полагать, что анализ электретных параметров позволяет предварительно оценить эффективность электризации полимеров, имея в виду получение максимальной степени ориентации НО-хромофорных групп для ГВГ.

Оптические измерения интенсивности сигналов ГВГ пленок полимеров II–IV подтвердили наши предположения. Наибольший по величине сигнал ГВГ был обнаружен на пленках полимера IV, причем с увеличением температуры электризации от 14 до 70°С интенсивность сиганла возрастала на 1.5 порядка. Поэтому дальнейшие исследования процессов ориентации НО-фрагментов полимера и ГВГ проводились на гомополимере IV. Приведенная на рис. 4 временная зависимость интенсивности сигнала второй гармоники образца U_s имеет два ярко выраженных участка — быстрого и замедленного спада, что указывает на наличие быстрой и медленной составляющих процесса релаксации НО-хромофора. Рис. 5 иллюстрирует влияние толщины (d) полимерного образца на спад интенсивности сигнала второй гармоники во времени при практически одинаковом значении E_i^0 . Интенсивность сигнала нелинейно возрастает с толщиной пленки. Вследствие технологических причин измерение оптических характеристик начиналось, как правило, через два часа после завершения процесса электризации, из-за чего нам трудно провести абсолютное сопоставление временны́х зависимостей U_e и U_s , как это сделано в [10]. Однако в нашем случае можно выявить следующие закономерности: переход к участку медленного спада зависимости U_s наступает позднее, чем аналогичный переход в зависимости U_e/U_g , и в обоих случаях тем позднее, чем больше толщина образцов. Сочетание перечисленных

Рис. 4. Кинетика спада интенсивности сигнала второй гармоники (U_s) в пленке гомополимера IV толщиной 1.6 μ m при температуре 20°C после электризации пленки при $T_e = 70$ °C, $U_g = -600$ V, $E_i^0 = 3.3 \cdot 10^6$ V/m в течение 10 min.

Рис. 5. Кинетика спада интенсивности сигнала второй гармоники (U_s) в пленках гомополимера IV при 20°С в зависимости от толщины (*d*) пленок. *d* (μ m): *1* — 3.5, *2* — 1.6, *3* — 0.3.

факторов позволяет предположить, что в исследованных образцах полимера IV уже в процессе электризации имеет место дрейф инжектированного заряда в объем образца на некоторую глубину, благодаря чему уменьшается область, в которой может происходит эффективная ориентация хромофорных групп в однородном поле. С ростом толщины образца относительное влияние этой области на степень ориентации хромофоров ослабевает, и интенсивность сигнала второй гармоники возрастает. Причиной спада сигнала второй гармоники во времени является, весьма вероятно, релаксация инжектированного заряда, обусловленная дрейфом инжектированных носителей заряда через объем образца, что приводит к снижению действующей в образце напряженности поля и соответственно разориентации хромофорных групп. Спад интенсивности сигнала второй гармоники происходит с некоторым запаздыванием относительно спада U_e, что обусловлено релаксационным характером ориентационной поляризации.

Таким образом, установлено, что максимальная степень ориентации НО-хромофорных звеньев в результате полинга может быть получена в высокоомных полимерах, имеющих высокую стабильность поверхностного потенциала во времени. Выявлена зависимость стабильности поверхностного потенциала от структуры и состава исследованных сополимеров. Для гребнеобразных сополимеров, в которых НО-фрагмент связан с основной цепью с помощью углеводородного спейсера, стабильность U_e уменьшается с ростом концентрации хромофорных групп и увеличением свободного объема полимера при повышении температуры электризации. В случае фторсодержащего спейсера даже 100% загруженность хромофорными группами не приводит к ухудшению стабильности электронного потенциала, что находится в согласии с фактом улучшения диэлектрических свойств полимера при замене углеводородного спейсера фторсодержащим. Выбор оптимального режима электризации с точки зрения получения максимальной величины и стабильности сигнала второй гармоники включает в себя не только условие близости T_e к T_g , но и выбор толщины образцов и потенциала электризации, обеспечивающих достижение однородности электрического поля в максимально возможном объеме образца.

Список литературы

- [1] А.В. Ванников, А.Д. Гришина, Р.В. Рихвальский, А.Т. Пономаренко. Успехи химии 67, 6, 507 (1998).
- [2] E.E. Havinga, P. Van Peit. Ber. Bunsenges. Phys. Chem. 83, 816 (1979).
- [3] G. Meredith, J. Van Dusen, D. Williams. Macromolecules 15, 1385 (1982).
- [4] A. Garito, K. Singer. Laser Focus 80, 59 (1982).
- [5] Т.И. Борисова, Л.Д. Будовская, В.Н. Иванова, Н.А. Никонорова, Е.Н. Ростовский, Е.Р. Чичагова, В.А. Шевелев. Высокомолекуляр. соединения A12, 12, 2672 (1980).

- [6] V. Safronov, V.V. Kudriavcev, G.K. Lebedeva, V.N. Ivanova, M.I. Bitsenko, L.A. Feigin. Mater. Sci. Eng. C5, 285 (1998).
- [7] B.K. Mandal, T. Takahashi, M. Maeda, S. Kurnar, A. Blumstein, T. Sukant. Makromol. Chem. **192**, 1009 (1991).
- [8] C.W. Reedyk, M.M. Perlman. J. Electrochem. Soc. 15, 1, 49 (1968).
- [9] J.P. Batra. J. Appl. Phys. 42, 1124 (1971).
- [10] L.-Y. Liu, D. Ramkrishna, H.S. Lackritz. Macromolecules 27, 5987 (1994).