Составляющие низкотемпературной теплоемкости гексаборидов редкоземельных элементов

© В.В. Новиков

Брянский государственный педагогический университет, 241036 Брянск, Россия

(Поступила в Редакцию 24 января 2000 г. В окончательной редакции 23 июня 2000 г.)

Изучена температурная зависимость теплоемкости $C_p(T)$ девяти соединений MB₆ (M: La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy) при температурах 5–300 К. Используя принцип подобия решеточных теплоемкостей изоструктурных соединений, определены решеточный $C_1(T)$ и избыточный $\Delta C(T)$ вклады в теплоемкость гексаборидов. Решеточная теплоемкость C_1T представлена в виде суммы дебаевских вкладов подрешеток металла и бора: $C_1(T) = C_M(T) + 6C_B(T)$. Определены температуры Дебая подрешеток θ_M и θ_B . Аномалии избыточной теплоемкости $\Delta C(T) = C_p(T) - C_1(T)$ соотнесены с явлениями магнитного упорядочения, вкладом Шоттки, эффектом Яна–Теллера.

Исследование выполнено при частичной поддержке Министерства общего и специального образования РФ (грант № 79-5-1.1-25).

Одной из основных проблем при изучении теплоемкости магнетиков является выделение различных вкладов в величину полной теплоемкости. В общем случае полная теплоемкость магнетика представляет собой сумму решеточного C_l , электронного C_e , ядерного C_n , ферро- или антиферромагнитного (C_f или C_{a-f}), парамагнитного (C_{p-m}) вкладов [1], а при повышенных температурах и ангармонической составляющей C_{α} .

Вклад свободных электронов $C_e(T)$ линейно изменяется с температурой в широкой температурной области. Другие вклады в теплоемкость при повышенных температурах являются сложными функциями температуры. Поэтому для разделения полной теплоемкости на решеточную и избыточную составляющие часто используют метод сосответствия решеточных теплоекмостей изоструктурных соединений [2,3]. В упрощенном варианте этого метода решеточные теплоемкости считают пропорциональными молярной массе. В работе [4] для определения избыточной (магнитной) теплоемкости гексаборида церия сравнивались рассчитанные дебаевские теплоемкости СеВ₆ и немагнитного LaB₆.

В настоящей работе сделана попытка разделения решеточной и избыточной составляющих теплоемкости гексаборидов MB_6 (M: La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy) при температурах 5–300 K, а также определения вкладов подрешеток металла и бора в решеточную теплоемкость гексаборидов.

На рис. 1 представлены экспериментальные зависимости теплоемкости $C_P(T)$ девяти образцов гексаборидов, полученные в работах [5–12], сопоставленные с данными других исследований [4,13–17]. Обращают на себя внимание характерные особенности кривых $C_p(T)$: 1) наличие аномалий $C_p(T)$ при низких темпратурах (за исключением SmB₆ и LaB₆), имеющих сложный характер в ряде гексаборидов; 2) близкий к линейному ход кривых $C_p(T)$ при повышенных температурах. Выделение решеточной составляющей теплоемкости выполнено в предположении, что при комнатной температуре все вклады в теплоемкость гексаборидов, кроме решеточного, пренебрежимо малы, а теплоемкость LaB₆ во всем изученном интервале температур только решеточная [18]. Следуя авторам [3], полагаем, что решеточные теплоемкости изоструктурных соединений представляют собой одинаковые функции термодинамической и дебаевской температур $f(\theta/T)$. Отношение характеристических температур гексаборидов лантана и редкоземельного элемента при комнатной температуре

$$\theta_{\text{LaB}_6}(300 \,\text{K}) / \theta_{\text{MB}_6}(300 \,\text{K}) = r$$

считается постоянной величиной для данного гексаборида во всем изученном интервале температур. В таблице приведены величины дебаевских температур гексаборидов при 300 К и соответствующие из значения *r*. По соотношению

$$\theta_{\rm MB_6}(T) = \theta_{\rm LaB_6}(T)/r$$

и таблицам дебаевских функций [19] определены температурные изменения решеточной теплоемкости гексаборидов $C_l(T)$ в интервале 5–300 К (рис. 1).

Вычитанием решеточной составляющей из полной теплоемкости определена температурная зависимость избыточной теплоемкости гексаборидов:

$$\Delta C(T) = C(T) - C_l(T).$$

Характерные зависимости $\Delta C(T)$ для некоторых гексаборидов приведены на рис. 2.

Резкие аномалии на кривых $\Delta C(T)$ при низких температурах обусловлены процессами магнитного упорядочения.

Размытые максимумы в области умеренных температур 100–200 К (рис. 2) представляют собой вклад Шотт-

Рис. 1. Молярная теплоемкость $C_p(T)$ гексаборидов лантана (1), церия (2), празеодима (3), неодима (4), самария (5), европия (6), гадолиния (7), тербия (8) и диспрозия (9). Сплошные линии — данные наших работ [5–12]; штриховые решеточный вклад в теплоемкость.

ки. Штриховые линии на рисунке — это расчетная теплоемкость Шоттки CeB₆, NdB₆ и PrB₆ по данным [20,21] о расщеплении энергетических уровней кристаллическим электрическим полем [11].

Аномалии вблизи 30–40 К на кривых $\Delta C(T)$ для DyB₆ (рис. 2) и для GdB₆ и TbB₆, не приведенных на рисунке, обусловлены, по-видимому, эффектом Яна–Теллера [22].

Аномалии температурных зависимостей избыточной теплоемкости $\Delta C(T)$ гексаборидов будут рассмотрены нами в последующих публикациях.

Молярная решеточная теплоемкость гексаборида представлена в виде суммы дебаевских теплоемкостей подрешеток металла и бора

$$C_{\mathrm{MB}_6}(T) = C_{\mathrm{M}}(T) + 6C_{\mathrm{B}}(T).$$

Характеристическая температура подрешетки бора $\theta_{\rm B}$ определена по значению грамм-атомной теплоемкости этой подрешетки при $T=300\,{\rm K}$

$$C_{\rm B}(300\,{\rm K}) = \frac{1}{6} [C_l(300\,{\rm K}) - 0.98\cdot 3R].$$

Здесь $C_l(300 \text{ K})$ — полная решеточная теплоемкость гексаборида при T = 300 K. Из ее величины вычитается теплоемкость подрешетки металла, величина которой при T = 300 K принимается близкой к дюлонговской.

Характеристическая температура металлической подрешетки $\theta_{\rm M}$ определена графической экстраполяцией к абсолютному нулю зависимости $\theta_{\rm M}(T)$ в области

Рис. 2. Избыточная теплоемкость $\Delta C = C - C_l$ гексаборидов церия (1), празеодима (2), неодима (3), самария (4), диспрозия (5). Штриховые линии — расчетный вклад Шоттки.

Характеристические температуры гексборидов θ_{MB_6} (300 K) при T = 300 K, дебаевские температуры подрешеток металла θ_M и бора θ_B , величины $r = \theta_{LaB_6}(300 \text{ K})/\theta_{MB_6}(300 \text{ K})$

Соединение	LaB ₆	CeB ₆	PrB ₆	NdB ₆	SmB ₆	EuB ₆	GdB ₆	TbB ₆	DyB ₆
$\theta_{\rm MB_6},{ m K}$	1085	1140	1080	1044	1065	1220	1113	990	970
r	1	0.9518	1.005	1.039	1.019	0.8893	0.9748	1.096	1.119
$\theta_{\rm M},{\rm K}$	205	203	210	200	210	198	212	207	208
$\theta_{\rm B},{ m K}$	1230	1293	1218	1170	1200	1383	1254	1025	1074

5-100 К, полученной по температурной зависимости теплоемкости металлической подрешетки

$$C_{\rm M}(T) = C_l(T) - 6C_{\rm B}(T)$$

Полученные величины характеристических дебаевских температур подрешеток металла $\theta_{\rm M}$ и бора $\theta_{\rm B}$ гексаборидов представлены в таблице. Как видно из таблицы, для всех изученных гексаборидов величины $\theta_{\rm M}$ близки.

Рис. 3. Теплоемкость гексаборида лантана. 1 — экспериментальные величины $C_P(T)$; 2, 3, 4 — расчетные зависимости теплоемкости подрешетки бора 6С_В, лантана С_{La}, электронного газа C_e ; 5 — суммарная расчетная теплоемкость $C_{\text{La}} + 6C_{\text{B}} + C_e$.

В качестве примера на рис. З приведены температурные зависимости теплоемкости подрешеток лантана и бора в LaB₆, рассчитанные по полученным величинам θ_{La} и θ_B , а также полная расчетная теплоемкость гексаборида лантана с учетом вклада свободных электронов. Как видно из рисунка, расчетные величины удовлетворительно соответствуют экспериментальным. На рис. 4 приведены экспериментальные кривые $C_p(T)$ для гексаборидов лантана, неодима, самария и гадолиния в области 5–1000 К по данным работ [23,24] и рассчитанные зависимости

$$C_{\rm MB_6}(T) = C_{\rm M}(T) + 6C_{\rm B}(T) + C_e(T) + C_{\alpha}(T)$$

для этих гексаборидов. При этом принималось, что величины электронного вклада $C_e(T)$ в теплоемкость гексаборида лантана и РЗЭ одинаковы: $C_e(T) = 2.5 \cdot 10^{-3} \text{ T [8]}.$

Вклад в теплоемкость, обусловленный термическим расширением, для всех гексаборидов подсчитывался по соотношению $C_{\alpha}(T) = 3\alpha C_p T/a$, где α — коэффициент термического расширения LaB₆, равный $5 \cdot 10^{-6} \text{ K}^{-1}$ [6], a — константа, равная 0.74 [25]. Как видно из рисунка, расчетные кривые $C_P(T)$ удовлетворительно соответствуют данным эксперимента.

Рис. 4. Теплоемкость гексаборидов лантана (1), неодима (2), самария (3), гадолиния (4) в области 5–1000 К. Сплошные линии — расчетные кривые; I-4 — экспериментальные величины (ниже 300 К — только решеточная часть теплоемкости).

Отметим, что величины $\theta_{\rm B}$ в принятом подходе оказываются несколько заниженными, так как получены без учета вклада Шоттки в теплоемкость гексаборидов при T = 300 К. Теплоемкость Шоттки для CeB₆, NdB₆ и PrB₆ (рис. 2) при T = 300 К составляет 1–4 J/mol·K. Пренебрежение вкладом Шоттки приводит к заниженным значениям величин $\theta_{\rm MB_6}$ (300 K) на 15–30 K, а величин $\theta_{\rm B}$ — на 20–50 К. Поэтому при T = 1000 К расчетные величины 6C_B, а следовательно, и $C_{\rm MB_6}$ оказываются завышенными на 0.5–1.5 $J/{\rm mol·K}$. Эта величина меньше погрешности измерений теплоемкости вблизи T = 1000 К и ее можно не принимать во внимание. Величину $\Delta \theta_{\rm B} = \pm 50$ К, очевидно, следует считать абсолютной погрешностью значений $\theta_{\rm B}$, приведенных в таблице.

Основные результаты работы состоят в следующем: 1) решеточный вклад в теплоемкость гексаборидов РЗЭ может быть выделен из полной теплоемкости, исходя из принципа соответствия решеточных теплоемкостей изоструктурных соединений; 2) при температурах 5–1000 К теплоемкость кристаллической решетки гексаборидов может быть представлена суммой вкладов невзаимодействующих дебаевских подрешеток металла и бора; 3) по определенным в работе характеристическим температурам подрешеток $\theta_{\rm M}$ и $\theta_{\rm B}$ может быть рассчитана решеточная теплоемкость гексаборидов РЗЭ до 1000 К.

Список литературы

- [1] К.П. Белов. Магнитотепловые явления в редкоземельных магнетиках. Наука, М., (1990). 95 с.
- [2] Р. Карлин. Магнитохимия. Мир, М. (1989). 399 с.
- [3] J. M. Stout, E. Katalano. J. Chem. Phys. 23, 11, 2013 (1995).
- [4] Y. Peysson, C. Ayache, J. Rossat-Mignod, S. Kunii, T. Kasuya. J. Phys. 47, 113 (1986).
- [5] Н.Н. Сирота, В.В. Новиков, С.В. Антипов. Неорган. материалы 34, 9, 1086 (1998).
- [6] Н.Н. Сирота, В.В. Новиков, В.А. Винокуров, Ю.Б. Падерно. ФТТ 40, 11, 91 (1998).
- [7] Н.Н. Сирота, В.В. Новиков, В.А. Винокуров, Л.В. Батова. ЖФХ 73, 3, 432 (1999).
- [8] Н.Н. Сирота, В.В. Новиков, В.А. Винокуров, Ю.Б. Падерно. ЖФХ 72, 11, 1967 (1998).
- [9] N.N. Sirota, V.V. Novikov. J. Mat. Proc. & Manufact. Sci. 7, 1, 111 (1998).
- [10] Н.Н. Сирота, В.В. Новиков. ЖФХ. 74. 2, 333 (2000).
- [11] В.В. Новиков. ЖФХ. (2000), в печати.
- [12] Н.Н. Сирота, В.В. Новиков, В.А. Винокуров. ЖФХ 74, 10, 1924 (2000).
- [13] T. Fujita, M. Suzuki, Y. Isikawa. Sol. State Commun. 33, 9, 947 (1980).
- [14] K. Segawa, A. Tomita, K. Iwashita, M. Kasaya, T. Suzuki, S. Kunii. J. Magn. Magn. Mater. 104 1233 (1992).
- [15] C.M. McCarthy, C.W. Tompson, R.J. Graves, H.W. White, Z. Fisk, H.R. Ott. Sol. State Commun. 36, 861 (1980).
- [16] Е.С. Коновалова, Ю.Б. Падерно, В.Е. Ячменев, Е.М. Дудник. Изв. АН СССР. Неорган. материалы 14, 12, 2191 (1978).

- [17] H.G. Smith, G. Dooling, S. Kunii, M. Kasaya, B. Liu, K. Takegahara, N. Kasuya, T. Goto. Sol. State Commun. 53, 1, 15 (1985).
- [18] Ю.Б. Падерно, Н.Ю. Шицевалова. В сб.: Бориды. Препринт АН УССР, Институт проблем материаловедения им. И.Н. Францевича, 91-№ 1, Киев (1990). С. 1.
- [19] Н.Н. Сирота. Термодинамика и статистическая физика. Вышэйшая школа, Минск (1969). 474 с.
- [20] M. Loewenhaupt, M. Prager. Z. Phys. B Condensed Matter. 62, 195 (1986).
- [21] E. Zirngiebl, B. Hillebrands, S. Blumenröder, G. Güntherodt, M. Loewenhaupt, J.M. Carpenter, K. Winzer, Z. Fisk. Phys. Rev. B 30, 7, 4052 (1984).
- [22] S. Nakamura, T. Goto, S. Kunii, K. Iwashita, A. Tamaki. J. Phys. Soc. Jpn. 63, 2 623 (1994).
- [23] T. Fujita, M. Suzuki, T. Komatsubara, S. Kunii, T. Kasuya, T. Ohtsuka. Sol. Stat. Commun. 35 1589 (1980).
- [24] А.С. Болгар, В.Б. Муратов, ЖФХ 62, 7, 1771 (1988).
- [25] С.П. Гордиенко. Порошковая металлургия 1 (217), 83 (1981).