Радиолюминесценция ионизованных электронных центров окраски в кристаллах LiF

© Л.А. Лисицына

Томский государственный архитектурно-строительный университет, 634003 Томск, Россия E-mail: lisitsyn@list.epd.tpu.edu.ru

(Поступила в Редакцию 20 марта 2000 г. В окончательной редакции 19 мая 2000 г.)

Методами импульсной спектрометрии исследовалась фотолюминесценция (ФЛ), изменение оптического поглощения и радиолюминесценции (РЛ) со временем после окончания воздействия импульса электронов на кристаллы LiF при различных режимах облучения и исходной радиационной дефектности.

Выявлено различие свойств РЛ и ФЛ ионизованных F_2^+ - и F_3^+ -центров, обнаружено существование нескольких механизмов радиационного создания каждого из центров, отличающихся энергетическими и кинетическими параметрами, а также характером температурных зависимостей. Доказано, что ионизованные центры в излучательном состоянии образуются в процессе взаимодействия соответствующего нейтрального центра с дырками разной степени термализации. Предложен механизм возбуждения свечения этих центров.

Работа выполнена при финансовой поддержке Миннауки (грант по направлению "Лазерная физика").

Накопление с ростом величины интегральной поглощенной дозы в материале центров окраски влияет на характер и эффективность первичных процессов взаимодействия излучения с веществом. Применение техники импульсных измерений позволяет прямыми методами исследовать взаимодействие электронных возбуждений с радиационными дефектами. Так, в частности, установлено, что с ростом поглощенной дозы уменьшается энергетический выход френкелевских пар и автолокализованных экситонов в регулярной решетке. При этом возрастает эффективность излучательного канала диссипации поглощенной энергии радиации [1]. Выяснение механизмов возбуждения свечения радиационных дефектов представляет несомненный интерес для описания процессов дефектообразования.

Настоящая работа посвящена исследованию радиолюминесценции ионизованных электронных центров окраски F_2^+ и F_3^+ .

1. Метод исследования

В кристалле предварительно создавались различные типы электронных центров (F, F_2 , F_3 , F_2^+ , F_3^+) в необходимом соотношении между ними путем варьирования температуры облучения, величины интегральной дозы, а также температуры и времени выдержки кристалла после окончания облучения. Затем кристалл подвергался воздействию единичного импульса электронов (ИЭ) со следующими параметрами: длительность ИЭ 20 ns, средняя энергия электронов — 200 keV и флюенс 10^{11} cm⁻².

Во временном интервале $10^{-8}-10^3$ s после окончания воздействия ИЭ измерялись кинетические кривые релаксации поглощения в максимумах полос центров и кинетика затухания радиолюминесценции (РЛ) центров. Исследования проводились при различных температурах кристалла при облучении в интервале 80-300 К и различной исходной радиационной дефектности материала.

Изменение концентрации центров оценивалось по изменению поглощения в максимуме соответствующих полос или интенсивности фотолюминесценции (ФЛ) этих центров. Поскольку центры создаются как за время действия ИЭ, так и пострадиационно, поглощение и ФЛ измерялись в облученном кристалле в заданном временном интервале после окончания воздействия ИЭ.

Измерения абсолютных значений концентрации F_3^+ -центров в кристаллах LiF затруднено вследствие наложения полос поглощения этих центров (460 и 420 nm [2]) и полосы на 450 nm, обусловленной F_2 -центрами. Поэтому для этих центров произведены оценки только относительных изменений концентрации по интенсивности ФЛ.

Дозная зависимость интенсивности РЛ и ФЛ центров при 300 К исследовалась следующим образом. Кристалл облучался серией ИЭ с частотой следования $1 \cdot 10^{-2}$ Hz. Интенсивность РЛ центров измерялась через 10 пѕ после окончания действия каждого ИЭ серии, а интенсивность ФЛ — перед началом действия последующего ИЭ. При постоянной частоте следования ИЭ интенсивность ФЛ пропорциональна числу центров, созданных как за время действия ИЭ, так и во временном промежутке между последовательными ИЭ.

ФЛ центров исследовалась при возбуждении в соответствующих полосах поглощения: ФЛ F_2^+ -центров — при возбуждении в полосе на 650 nm, F_2 -центров — в полосе на 450 nm, F_3^+ -центров — в полосе на 460 nm.

2. Результаты исследований

2. 1. Радиационное создание F_2^+ -центров. Ранее [3] было показано существование трех инициированных действием ИЭ стадий роста поглощения в макси-

Рис. 1. Кинетика релаксации поглощения в максимуме F_2^+ -полосы (*a*) и свечения в полосе на 910 nm (*b*), инициированная воздействием ИЭ при 300 K на кристалл, содержавший до облучения *F*-и *F*₂-центры.

муме F_2^+ -полосы на 650 nm (рис. 1): безынерционной по отношению к действию ИЭ и двух пострадиационных, характеристическое время роста поглощения на которых зависит от температуры кристалла при облучении. Каждая из стадий обусловлена соответствующим механизмом создания центров, отличающимся временны́ми и энергетическими параметрами, а также характером температурной зависимости процессов.

Доказано, что первые две стадии роста обусловлены созданием центров в результате взаимодействия F_2 -центров с дырками разной степени термализации, тогда как третья стадия — созданием F_2^+ -центров в результате взаимодействия F-центров и анионных вакансий.

В результате воздействия на кристалл ИЭ возникает РЛ, спектр которой состоит из ряда полос. Спектральное положение одной из них — полосы на 910 nm, а также величина ее полуширины и закон изменения с температурой совпадают с соответствующими характеристиками ФЛ F_2^+ -центров, возбуждаемой в F_2^+ -полосе поглощения (650 nm).

Импульс свечения на 910 nm имеет два компонента (рис. 1) — короткий, соизмеримый с длительностью ИЭ и присутствующий при любой температуре в интервале 80-300 K, и инерционный компонент, появляющийся при $T \ge T_a$, где T_a — температура делокализации V_k -центров в кристалле LiF (140 K).

Сравнительный анализ свойств ФЛ и РЛ F_2^+ -центров показал следующее.

1) Существует линейная зависимость между интенсивностью РЛ F_2^+ -центров и концентрацией присутствующих в кристалле F_2 -центров, как при 300, так и при 80 К (кривые *a*, *b* на рис. 2). Из представленных на рис. 2, кривая *a*, результатов следует, что при 300 К дозные зависимости числа накопленных в кристалле F_2 -центров и интенсивности возбуждаемой при этом РЛ F_2^+ -центров

совпадают. При 80К эксперимент, результаты которого приведены на рис. 2, кривая b, проводился следующим образом. В кристалле, облученном при 300 К, создавались следующие центры: F, F_2, F_2^+ . Затем кристалл подвергался воздействию серии ИЭ при 80 К. Под действием дооблучения имело место разрушение накопленных центров и возбуждение свечения на 910 nm. В результате действия первого ИЭ серии полностью разрушались все предварительно накопленные F₂⁺-центры, однако свечение на 910 nm наблюдалось не только в результате действия первого ИЭ серии, но и всех последующих. При этом изменение интенсивности свечения с ростом числа ИЭ (дозы дооблучения) было пропорционально изменению величины поглощения в максимуме F_2 -полосы.

В отличие от РЛ интенсивность $\Phi Л F_2^+$ -центров не зависит от концентрации присутствующих в кристалле

Рис. 2. Дозная зависимость поглощения в максимуме полос F_{2} - (*1a*, *1b*), F_{2}^{+} - (*c*) и F_{3} -центров (*1d*, *1f*), интенсивности РЛ на 910 (*2a*, *2b*) и 530 nm (*2d*, *2f*), ФЛ F_{3}^{+} -центров (*e*). Частота следования ИЭ $f = 1 \cdot 10^{-2}$ Нz при 300 (*a*, *c*-*e*) и 80 (*b*, *f*).

Рис. 3. Температурная зависимость интенсивности $\Phi \Pi$ на 910 nm, возбуждаемой в полосе 650 nm (*1a*); РЛ на 910 (*2a*) и 670 nm (*b*), инициированной воздействием единичного ИЭ на кристалл LiF, содержащий *F*-и *F*₂-центры.

 F_2 -центров. Этот вывод следует из результатов прямых экспериментов по возбуждению ФЛ F_2^+ -центров в кристаллах с различной концентрацией F_2 -центров при F_2^+ = const.

2) Интенсивность РЛ F_2^+ -центров, возбуждаемая единичным ИЭ, не зависит от концентрации F_2^+ -центров, присутствующих в кристалле до облучения. Об этом свидетельствует различие дозных зависимостей РЛ F_2^+ -центров, возбуждаемой действием каждого последующего ИЭ, и числа F_2^+ -центров, создаваемых за время между двумя последовательными ИЭ (кривые 2*a*, *c* на рис. 2).

В отличие от РЛ интенсивность ФЛ F_2^+ -центров пропорциональна концентрации F_2^+ -центров в области исследованных концентраций ($\leq 2.10^{17}$ cm⁻³).

3) Температурные зависимости интенсивности короткого компонента РЛ и интенсивности ФЛ F_2^+ -центров совпадают. Совпадают и значения энергий активации процессов температурного тушения РЛ и ФЛ при $T \ge 130$ К (рис. 3).

4) Только на первой и второй стадиях создание F_2^+ -центров сопровождается возникновением РЛ этих центров (рис. 1). На третьей стадии в секундном временном интервале после окончания ИЭ при 300 К F_2^+ -центры создаются в основном состоянии.

2.2. Радиационное создание F_3^+ -центров. В спектре возбуждаемой ИЭ РЛ кристалла LiF присутствует полоса на 530 nm, спектральное положение которой, величина полуширины и закон изменения ее с температурой совпадают с соответствующими характеристиками ФЛ F_3^+ -центров.

Импульс РЛ на 530 nm, как и импульс описанной выше РЛ на 910 nm, имеет короткий компонент, соизмеримый с длительностью ИЭ, и инерционный, появляющийся при температуре делокализации V_k -центров в кристалле.

В отличие от ФЛ на 530 nm интенсивность РЛ в этой области не зависит от концентрации F_3^+ -центров, присутствующих до облучения в кристалле. Об этом свидетельствует отсутствие совпадения характера дозной зависимости интенсивности РЛ F_3^+ -центров, возбуждаемой действием ИЭ, и интенсивности ФЛ F_3^+ -центров, пропорциональной концентрации этих центров, создаваемых за время действия ИЭ и во временном промежутке между двумя последовательными ИЭ (кривые 2*d*, *e* на рис. 2).

Интенсивность РЛ на 530 nm пропорциональна концентрации присутствующих до облучения в кристалле нейтральных F_3 -центров, что следует из обнаруженной нами линейной корреляции между интенсивностью РЛ и величиной поглощения в максимуме полосы F_3 -центров (375 nm) при 300 и 80 K (кривые f, d на рис. 2). Эксперимент, результаты которого приведены на рис. 2, кривая f, проводился следующим образом. В кристалле облучением при 300 K создавались следующие центры: $F, F_2, F_2^+, F_3^+, F_3$. Затем кристалл подвергался воздействию серии ИЭ при 80 K. Полоса на 530 nm в спектре РЛ появилась не только в результате действия первого ИЭ на кристалл, в котором присутствовали F_3^+ -центры, но и при действии всех последующих ИЭ серии. С ростом числа ИЭ (дозы дооблучения) наблюдается корреляция в уменьшении интенсивности свечения в полосе на 530 nm и величины поглощения в максимуме F_3 -полосы на 375 nm.

Из описанных выше результатов исследований радиационного создания F_3^+ -центров можно сделать следующие выводы.

1) Создание под действием радиации F_3^+ -центров в излучательном состоянии имеет место в двух временны́х интервалах: за время действия ИЭ и после его окончания с временно́й задержкой, определяемой временем жизни V_k -центров при соответствующей температуре. До начала наших исследований были известны только длинновременные пострадиационные стадии создания этих центров в основном состоянии в результате протекания двух процессов: при взаимодействии F_2 -центров с анионными вакансиями и при взаимодействии F_2^+ -центров с F-центрами [4-6].

2) Число создаваемых действием ИЭ F_3^+ -центров в излучательном состоянии коррелирует с концентрацией предварительно созданных в кристалле нейтральных F_3 -центров и не зависит от концентрации предварительно созданных F_3^+ -центров.

3. Обсуждение результатов

В спектре РЛ, инициированной действием ИЭ на кристалл LiF, наряду с другими присутствуют полосы, по своим спектрально-кинетическим параметрам совпадающие с наблюдаемыми полосами свечения при оптическом возбуждении кристалла. В частности, свечение на 910 и 530 nm в спектре РЛ может быть возбуждено и оптически в полосе поглощения F_2^+ - и F_3^+ -центров соответственно.

При сопоставительном анализе характеристик РЛ на 910 и 530 nm было установлено наличие следующих общих свойств.

1) Импульс РО как на 910, так и на 530 nm имеет безынерционный и инерционный компоненты, последний появляется выше температуры делокализации V_k -центров.

2) Интенсивности РЛ на 910 и 530 nm не зависят от концентрации присутствующих до облучения соответственно F_2^+ - и F_3^+ -центров.

3) Интенсивности РЛ на 910 и 530 nm коррелируют с концентрацией присутствующих до облучения в кристалле соответственно F_2^+ - и F_3^+ -центров. Подобие свойств РЛ F_2^+ - и F_3^+ -центров свидетельству-

Подобие свойств РЛ F_2^+ - и F_3^+ -центров свидетельствует об одинаковом способе возбуждения свечения этих центров под действием ИЭ.

Совокупность полученных нами экспериментальных фактов по радиационному возбуждению свечения центров свидетельствует, с одной стороны, об идентичности спектральных и кинетических характеристик ФЛ и РЛ ионизованных центров, а с другой — о том, что присутствие в кристалле до облучения этих ионизованных центров не влияет на выход возбуждаемого ИЭ свечения. Соединить эти на первый взгляд противоречивые факты можно, предположив, что в излучательное состояние под действием ИЭ переходят не присутствующие до облучения ионизованные центры, а ионизованные центры, создаваемые за время действия ИЭ. В самом деле, прямые количественные измерения показывают, что в кристалле, не содержащем до облучения F_2^+ ионизованные центры, в результате действия ИЭ имеет место как их создание, так и возбуждение свечения в наносекундном и в микросекундном временны́х интервалах (см., например, рис. 1).

Если в кристалле до облучения присутствуют ионизованные центры, то при тех высоких плотностях возбуждения какие используются в настоящей работе они полностью разрушаются за время действия единичного ИЭ. При этом захват одного электрона F_2^+ -центрами приводит к созданию F_2 -центров в излучательном синглетном и триплетном состояниях [2], а последовательный захват двух электронов — к созданию F_2^- -центров в основном состоянии [7]. Разрушение F_3^+ -центров под действием ИЭ в результате захвата одного или двух электронов сопровождается созданием соответственно F_3 - и F_3^- -центров.

Таким образом, в результате действия каждого ИЭ имеет место два альтернативных процесса: разрушение всех присутствующих до облучения ионизованных центров и создание дополнительного числа ионизованных центров. Появление РЛ, интенсивность которой, как и эффективность создания ионизованных центров, определяется концентрацией предварительно созданных соответствующих нейтральных центров, свидетельствует о том, что в излучательном состоянии находятся только вновь создаваемые ионизованные F_2^{+} - и F_3^{+} -центры.

Возможны следующие механизмы возбуждения свечения создаваемых центров: а) в результате реабсорбции свечения других центров; б) в результате передачи энергии электронного возбуждения создаваемому центру.

Известно, что в спектре кристалла LiF имеет место спектральное совпадение поглощательного перехода в F_2^+ -центрах и излучательного перехода F_2 -центров [8]. Возникновение свечения F_2^+ -центров при оптическом возбуждении в полосе поглощения F_2 -центров является следствием реабсорбции F_2^+ -центрами излучения F_2 -центров

$$F_2 \xrightarrow{h\vartheta} (F_2)^* \to F_2 + h\vartheta(F_2),$$

 $F_2^+ + h\vartheta(F_2) \to (F_2^+)^* \to F_2^+ + h\vartheta(F_2^+).$

Ì

Поскольку в спектре РЛ подверженного воздействию ИЭ кристалла одновременно присутствуют полосы излучения как F_2 -, так и F_2^+ -центров, отрицать наличие реабсорбционного механизма возбуждения свечения F_2^+ -центров нет основания. Однако можно утверждать, что в процессе радиационного воздействия такой механизм не является определяющим. В самом деле, при определяющем вкладе реабсорбционного механизма следует ожидать корреляцию между величинами интенсивностей РЛ F_2 - и F_2^+ -центров. Однако такой корреляции не обнаружено ни с изменением температуры при облучении, ни при преднамеренном введении в кристалл при F_2 = const различной концентрации F_2^+ -центров. Например, как установлено нами, РЛ F_2 -центров претерпевает сильное тушение в области $T \ge 80$ К, тогда как интенсивность РЛ F_2^+ -центров остается неизменной до температуры 130 К, выше которой начинается тушение (рис. 3). В [9,10] было показано, что эффективность термоактивированного внутрицентрового интеркомбинационного перехода в F_2 -центре, являющегося причиной тушения РЛ F_2 -центров, не зависит от наличия или отсутствия в кристалле F_2^+ -центров.

Таким образом, совпадение кинетических параметров релаксации свечения РЛ со временем жизни зонных и автолокализованных дырок в кристалле, корреляция выхода свечения с концентрацией предварительно введенных в кристалл соответствующих нейтральных центров и независимость выхода свечения от присутствующих в кристалле соответствующих ионизованных центров все эти факты свидетельствуют о том, что, во-первых, центры в излучательном состоянии образуются в процессе создания, во-вторых, в создании ионизованных центров принимает участие соответствующий нейтральный центр, в-третьих, процесс создания связан как с зонными, так и автолокализованными дырками.

Предлагается следующий механизм создания ионизованных центров в излучательном состоянии. На первом этапе имеет место захват в области соответствующего нейтрального центра зонной или автолокализованной дырки. На втором этапе туннелирование электрона с нейтрального центра на дырку приводит к созданию ионизованного центра и околодефектного экситона. На третьем этапе происходит передача энергии от околодефектного экситона рядом расположенному ионизованному центру с последующим ее высвечиванием на нем. В соответствии с предложенным механизмом процессы создания, например F_2^+ -центров, могут быть представлены в виде следующих реакций:

безынерционный процесс —

$$F_2(S_0) + p \to F_2^+ + e^0 \to (F_2^+)^* \xrightarrow{\tau_0} (F_2^+) + h\vartheta(F_2^+),$$
(1)

инерционный, определяемый подвижностью V_k-центров —

$$F_2(S_0) + V_k \xrightarrow{\tau_v} F_2^+ + e^0 \to (F_2^+)^* \xrightarrow{\tau_0} (F_2^+) + h\vartheta(F_2^+), \quad (2)$$

где τ_0 — радиационное время жизни центра; τ_v — время жизни V_k -центров; e^0 — околодефектное электронное возбуждение; p, V_k — зонная и автолокализованная дырки соответственно; $F_2(S_0)$ — F_2 -центры в основном синглетном состоянии.

Создание F_3^+ -центров в излучательном состоянии описывается подобными процессами, только исходным продуктом обеих реакций будут F_3 -центры. Время создания ионизованных центров по (2) определяется подвижностью V_k -центров, величина которых, как известно, зависит от температуры кристалла при облучении. Кинетические и энергетические параметры этой реакции совпадают с соответствующими характеристиками, определенными по кинетическим кривым спада поглощения в V_k -полосе.

В соответствии с (1) и (2) кинетика релаксации поглощения в максимуме полосы ионизованных центров и кинетика разгорания РЛ этих центров должны содержать как наносекундный, так и инерционный компоненты, что и находит свое экспериментальное подтверждение (см., например, рис. 1).

Согласно (1) и (2), предполагается локализация дырки в области нейтрального радиационного дефекта. Одной из причин локализации может быть деформация решетки в области дефекта, приводящая к изменению условий для миграции электронных возбуждений в кристалле.

Релаксация решетки в области дефекта приводит к искажению потенциального рельефа в области дефекта по сравнению с идеальным кристаллом. Это искажение носит осциллирующий характер и простирается на расстояние в несколько параметров решетки. Существование барьера или потенциальной ямы в непосредственной близости от дефекта зависит от относительного размера дефекта замещения. По нашим оценкам [1], в ЩГК в области F-центра в непосредственной близости от него существует потенциальная яма для положительного заряда. Дырка, попадая в область искажения потенциального рельефа, может локализоваться в одном из его минимумов, находясь при этом на некотором расстоянии от дефекта. Надо полагать, что подобная ситуация должна наблюдаться не только в области F-центров, для которых были сделаны такие оценки, но и в области нейтральных дефектов типа F₂, F₃ и т.д.

Очевидно, что локализация в решетке заряда одного знака (дырки в рассматриваемом случае) инициирует притяжение в эту область заряда другого знака с созданием околодефектного экситона (ОЭ). Если имеет место захват на дырке зонного электрона, образуется ОЭ рядом с нейтральным центром, если туннелирование на дырку электрона с расположенного рядом дефекта — образуется ОЭ рядом с созданным в результате туннелирования ионизованным центром.

Безынерционное по отношению к действию ИЭ создание ионизованных центров с эффективностью, зависящей от концентрации соответствующего нейтрального центра и не зависящей от температуры, свидетельствует в пользу туннельного процесса их создания.

Список литературы

- В.И. Корепанов, В.М. Лисицын, Л.А. Лисицына. Изв. вузов. Физика **39**, *11*, 94 (1996).
- [2] Л.А. Лисицына. ФТТ 34, 9, 2694 (1992).
- [3] Л.А. Лисицына. ФТТ **34**, *3*, 961 (1992).
- [4] J. Nahum, L. Wiegand. Phys. Rev. 158, 3, 814 (1967).
- [5] L. Zheng, Y. Ruan, S. Guo, L. Wan, H. Li. Acta Phys. Sinica 35, 1148 (1986).
- [6] H. Gu, L. Qi, L. Wan, H. Guo. Opt. Commun. 70, 3, 141 (1989).
- [7] Л.А. Лисицына, В.А. Кравченко, В.М. Рейтеров. ФТТ 33, 3, 786 (1991).
- [8] К.К. Шварц, Я.Ж. Кристапсон, Д.Ю. Лусис, А.В. Подинь. В сб.: Радиационная физика. Vol. V. Зинатне, Рига (1967). С. 179.
- [9] Л.А. Лисицына, В.А. Кравченко, В.М. Рейтеров. ФТТ 33, 10, 2801 (1991).
- [10] Л.А. Лисицына, И.В. Красноусов, В.М. Рейтеров. ФТТ 34, 3, 823 (1992).
- [11] L. Bosi, C. Bussolati, G. Spinolo. Phys. Lett. 32A, 3, 159 (1970).
- [12] T. Kurobori, T. Kanasaki, G. Imai, N. Takeuchi. J. Phys. C.: Solid Stat. Phys. 21, L397 (1988).