Влияние сорта металлоида на формирование электронной структуры неупорядоченных сплавов переходный металл-металлоид

© Д.А. Королев, В.Я. Баянкин, Е.П. Елсуков

Физико-технический институт Уральского отделения Российской академии наук, 426001 Ижевск, Россия E-mail: uufti@fti.udmurtia.su

(Поступила в Редакцию 24 апреля 2000 г. В окончательной редакции 29 мая 2000 г.)

> Приведены результаты рентгеновских эмиссионных исследований особенностей электронной структуры неупорядоченных сплавов Fe–Si и Fe–P. На основании анализа параметров спектров и известных литературных данных предложена качественная модель формирования электронной структуры неупорядоченных сплавов Fe–P, которая позволила объяснить концентрационное поведение среднего магнитного момента на атом железа в исследованных неупорядоченных системах.

> Исследования выполнены в лаборатории электронной структуры поверхности Физико-технического института УрО РАН по программе фундаментальных исследований по теме 1.14.1.3 (№ Гос. рег. 01.9.40003591).

Неупорядоченные сплавы, полученные различными способами, представляют новое состояние вещества, отличное от кристаллических упорядоченных материалов. При этом многие неупорядоченные системы не имеют простых кристаллических аналогов, а их состав можно изменять непрерывно в рамках однофазного состояния. Это позволяет получать гомогенные сплавы и исследовать особенности электронной структуры, не опасаясь сложностей, связанных со структурно-фазовыми превращениями.

Одним из наиболее важных классов неупорядоченных материалов являются сплавы типа переходный металлметаллоид. Существующая проблема заключается в выяснении влияния сорта металлоида на особенности формирования валентной полосы неупорядоченных сплавов. Цель настоящей работы — исследование особенностей формирования электронной структуры неупорядоченных сплавов Fe–Si и Fe–P.

1. Эксперимент

Объектами исследования влияния сорта металлоида на особенности формирования электронной структуры неупорядоченных сплавов типа переходный металлметаллоид были выбраны микрокристаллические порошки сплавов $Fe_{1-x}Si_x$ (x = 6-50 at.%) и бинарный аморфный сплав эвтектического состава $Fe_{80}P_{20}$.

Сплавы Fe–Si были выполнены в вакуумной индукционной печи в атмосфере аргона из высокочистых компонентов (99.99% Fe, 99.99% Si). Гомогенизацию слитков проводили в вакууме 10^{-4} Ра при T = 1423 К в течение 6 часов. Для получения неупорядоченных порошков слитки измельчались в шаровой планетарной мельнице "Пульверизетте-5". Измельчение проводилось в атмосфере аргона. Средний размер частиц порошка составлял 2 μ m.

Бинарный аморфный сплав Fe₈₀P₂₀ был получен методом закалки из расплава. Толщина аморфной ленты составляла 12–14 μ m, что соответствует скорости охлаждения расплава порядка 10⁶ K/s.

Для аттестации структуры и структурной однофазности использовалась рентгеновская дифракция. Было показано, что сплав $Fe_{80}P_{20}$ является рентгеноаморфным, а полученные микрокристаллические порошки сплавов Fe–Si имеют разупорядоченную структуру типа ОЦК при концентрациях до 33 аt.% Si; при бо́лыших концентрациях кремния была обнаружена разупорядоченная структура гексагонального типа.

В качестве экспериментального метода исследования электронной структуры использовалась рентгеновская эмиссионная спектроскопия, позволяющая выделить вклад парциальных плотностей состояний каждого компонента в валентную полосу сплава.

Рентгеновские флуоресцентные спектры Si(P) K_{β_1} и Fe $L_{\alpha_{1,2}}$ для сплавов Fe $_{1-x}$ Si $_x$, Fe $_{80}$ P $_{20}$ и интерметаллида Fe $_3$ P, а также чистых кремния, железа, красного фосфора были получены на рентгеновском флуоресцентном спектрометре "САРФ-1".

Погрешность в определении энергетического положения точек соответствующих спектров составляла: $\pm 0.2 \text{ eV}$ (Si(P) K_{β_1}) и $\pm 0.1 \text{ eV}$ (Fe $L_{\alpha_{1,2}}$). Разброс значений интенсивностей не превышал 6%. Полученные спектры обрабатывались стандартным образом (исправление на искажения, вносимые аппаратурой и шириной внутреннего уровня; исключение фона; нормировака; сглаживание).

Анализ спектров Si(P) K_{β_1} и Fe $L_{\alpha_{1,2}}$, соответствующих переходам Si(P) (3p-1s), Fe (3d4s-2p), позволяет судить о распределении электронной плотности 3p- и 3d-электронов Si(P) и Fe соответственно в валентной полосе сплавов.

2. Результаты и обсуждение

Основными особенностями всех полученных рентгеновских эмиссионных полос в неупорядоченных сплавах $Fe_{80}P_{20}$ и $Fe_{1-x}Si_x$ (рис. 1 и 2) являлись: 1) смещение

Рис. 1. Рентгеновские эмиссионные PK_{β_1} -полосы: аморфного сплава $Fe_{80}P_{20}$, интерметаллида Fe_3P и красного фосфора.

Рис. 2. Рентгеновские эмиссионные SiK_{β_1} -полосы: неупорядоченных сплавов $Fe_{85}Si_{15}$, $Fe_{75}Si_{25}$ и чистого кремния.

максимумов интенсивности $P(Si)K_{\beta_1}$ - и $FeL_{\alpha_{1,2}}$ -полос в сторону меньших энергий по сравнению со спектрами чистых элементов; 2) наличие плеча на высокоэнергетическом склоне $P(Si)K_{\beta_1}$ -полосы, связанного с взаимодействием 3p-электронов P(Si) и 3d-электронов Fe. Данная особенность присутствует также в интерметаллиде Fe₃P (рис. 1).

Проведенные ранее исследования силицидов переходных металлов (ПМ), находящихся в упорядоченном состоянии, показали, что химическая связь ПМ-Si носит ковалентно-металлический характер, причем происходит усиление ковалентной составляющей в ряду ПМ₃Si-ПМ₅Si₃-ПМSi-ПМSi₂ [1].

Достаточно подробно было изучено влияние сорта металлоида на структуру рентгеновских эмиссионных VK_{β_5} -полос в упорядоченных соединениях V-*sp*-элемент [2]. Было показано, что VK_{β_5} -спектр в данных соединениях является трехполосным. При этом выделялись подполосы, генетически связанные с 3*d*-состояниями V и *пр*-состояниями *sp*-элемента [3]. Характер расположения данных подполос относительно друг друга зависит от сорта атомов *sp*-элемента и его положения в периодической системе элементов. Например, при увеличении атомного номера по периоду (от Al к Si, от Ga к Ge, от Sn к Sb) наблюдается увеличение энергетического расстояния между рассматриваемыми подполосами.

Обнаруженные закономерности изменений параметров спектров характерны и для соединений V и Ti с C, N, O [4,5], а также сплавов на основе Cr [6] и Mn [7].

Сравнивая основные термодинамические характеристики [8] различных соединений переходных металллов с *sp*-элементами (см. таблицу), можно увидеть отчетливую закономерность, заключающуюся в увеличении $|\Delta G|$ и $|\Delta H|$ при увеличении атомного номера *sp*-элемента по периоду, что свидетельствует об усилении химического взаимодействия компонентов сплава. В то же время происходит увеличение энергетического расстояния между подполосами спектров, генетически связанными с *d*-состояниями переходного металла и *p*-состояниями металлоида [2–7], т.е. возможно связать энергетическое расстояние между подполосами спектра с увеличение ское расстояние между подполосами спектра с увеличение ское расстояния между подполосами спектра с увеличение ское расстояние между подполосами спектра с увеличение ское расстояния между подполосами спектра с увеличение ское расстояния между подполосами спектра с увеличение ское расстояние между подполосами спектра с увеличение ское расстояние между подполосами спектра с увеличением стабильности данных соединений.

Основные термодинамические константы некоторых соединений переходных металлов с *sp*-элементами [8]

Соединение	ΔH_{298}^0 , cal/mol	ΔG_{298}^{0} , cal/mol	Соединение	ΔH_{298}^0 , cal/mol	ΔG_{298}^{0} , cal/mol
VC _{0.88}	-24.1		Fe ₃ Si	-22.4	
VN	-51.9	-45.7	Fe ₃ P	-40	
VO	-100	-93.5	FeS ₂	-42.4	-36.2
MnC	-17.0		MnSi	-17.0	
MnN	-46.1		MnP	-23.0	
MnO ₂	-124.4	-111.3	MnS	-49.0	-46.9
Ni ₃ C	9.0	7.6	Ni ₃ Si	-35.5	
Ni ₃ N	0.2		Ni ₃ P	-53.0	
NiO	-57.3	-50.6	Ni ₃ S ₂	-47.5	

По сравнению с интерметаллидами разупорядочение сплавов Fe–Si и Fe–P приводит к формированию собственной *p*-зоны *sp*-элемента, так как в данном случае наиболее вероятно нахождение двух атомов металлоида на расстоянии ближайших соседей, что приводит к перераспределению интенсивностей в низкоэнергетической области рентгеновских эмиссионных Si K_{β_1} -полос [9]. В частности, при переходе порядок–беспорядок уменьшается интенсивность 3*d*-подобной полосы в рентгеновских эмиссионных Si K_{β_1} -спектрах [10].

В целом ряде публикаций [11–14] отмечается, что две подполосы в валентном спектре металлоидов в аморфных сплавах типа $\Pi M_{80} X_{20}$ (ΠM — переходный металл, X — металлоид) обязаны своим происхождением гибридизации Xnp- и $\Pi M3d$ -состояний, причем вклад Xnp-состояний преобладает у дна зоны, а $\Pi M3d$ -состояния доминируют в высокоэнергетической области.

Сравнение K_{β_1} -полос Si и P в соответствующих сплавах Fe₈₅Si₁₅ и Fe₈₀P₂₀ (рис. 1 и 2) показывает, что за счет большего числа *p*-электронов, задействованных в химическом взаимодействии, эффект гибридизации в аморфном сплаве Fe₈₀P₂₀ проявляется более ярко, чем в сплаве Fe₈₅Si₁₅. Наблюдается увеличение энергетического расстояния между основным максимумом спектра и 3*d*-подобной полосой в P K_{β_1} -спектре аморфного сплава Fe₈₀P₂₀ (2.8 eV) по сравнению с подобной характеристикой Si K_{β_1} -полосы неупорядоченных сплаво Fe–Si (2.6 eV).

Использовав известные литературные данные [15,16], а также результаты настоящей работы, можно увидеть, что увеличение энергетического разделения подполос в рентгеновских эмиссионных K_{β_1} -спектрах металлоидов происходит в ряду: Fe–Al (2.5 eV) [15] \rightarrow Fe–Si (2.6 eV) \rightarrow Fe–P (2.8 eV) \rightarrow Fe–S (3.3 eV) [16], т.е. в рамках предложенного подхода в данном ряду наблюдается усиление химического взаимодействия компонентов сплава.

Согласно качественной модели формирования электронной структуры неупорядоченных сплавов $Fe_{1-x}Si_x$ и $Fe_{1-x}Sn_x$ [17], формирование ковалентных связей с некоторым смещением электронной плотности от атома *sp*-элемента (Si, Sn) к атому Fe при активном участии 3*d*-электронов Fe происходит при концентрациях x > 10-12 at.% Si и x > 25-30 at.% Sn соответственно. Очевидно, что за счет дополнительного *p*-электрона, имеющегося у изолированного атома фосфора, формирование подобных связей должно происходить при концентрациях P, меньших, чем Si и Sn. Справедливость этого утверждения доказывается поведением среднего магнитного момента на атом Fe, величина которого для неупорядоченных сплавов Fe–P начинает уменьшаться при концентрациях фосфора ~ 6 at.% [18].

Необходимо отметить, что при одной и той же концентрации металлоида (например, ~ 20 at.%) в неупорядоченных сплавах Fe–Si и Fe–P средний магнитный момент на атом Fe ($\bar{m}_{\rm Fe}$) уменьшается при переходе от Fe–Si (1.8 μ_B) к Fe–P (1.65 μ_B), т.е. при изменении характера гибридизации 3*d*-электронов Fe и 3*p*-электронов металлоида (Si, P) происходит перераспределение электронной плотности, приводящее к уменьшению среднего магнитного момента на атом Fe [18,19].

Таким образом, в настоящей работе на основании корреляции увеличения энергетического разделения подполос рентгеновских эмиссионных спектров с уменьшением значений основных термодинамических характеристик (ΔH_{298}^0 , ΔG_{298}^0), что свидетельствует о переходе к более стабильному химическому соединению, предположено, что в неупорядоченных сплавах Fe–P наблюдается усиление химического взаимодействия компонентов сплава по сравнению с Fe–Si.

Список литературы

- [1] Е.И. Гладышевский, Ю.К. Гореленко, И.Д. Щерба, В.И. Яровец. Металлофизика **31**, *1*, 63 (1995).
- [2] Э.З. Курмаев, С.А. Немнонов, В.П. Белаш, Ю.В. Ефимов. ФММ 33, 3, 578 (1972).
- [3] С.А. Немнонов, Э.З. Курмаев, В.И. Минин, В.Г. Зырянов, И.А. Брытов. ФММ **30**, *3*, 569 (1970).
- [4] Э.З. Курмаев, С.А. Немнонов, А.З. Меньшиков, Г.П.Швейкин. Изв. АН СССР. Сер. физ. **31**, *6*, 996 (1967).
- [5] С.А. Немнонов, Э.З. Курмаев. ФММ 27, 5, 816 (1969).
- [6] E.Z. Kurmaev, V.P. Belash, S.A. Nemnonov, A.S. Shulakov. Phys. State Sol. (b) 61, 365 (1974).
- [7] Л.Д. Финкельштейн, С.А. Немнонов. ФММ 32, 3, 662 (1971).
- [8] М.Х. Карапетьянц, М.Л. Карапетьянц. Основные термодинамические константы неорганических и органических веществ. Химия, М. (1968). 472 с.
- [9] В.И. Анисимов, А.В. Постников, Э.З. Курмаев, Г. Вих. ФММ 62, 4, 730 (1986).
- [10] Е.П. Елсуков, В.П. Чураков, Г.Н. Коныгин, В.Я. Баянкин. Металлы *1*, 172 (1991).
- [11] Э.З. Курмаев, В.М. Черкашенко, Л.Д. Финкельштейн. Рентгеновские спектры твердых тел. Наука, М. (1989). 176 с.
- [12] В.Я. Баянкин, В.И. Ладьянов, В.А. Трапезников, В.П. Чураков. ФММ 82, 1, 85 (1996).
- [13] K. Tanaka, M. Yoshino, K. Suzuki. J. Phys. Soc. Japan 51, 12, 3882 (1982).
- [14] E. Belin, C. Bonnelle, S. Zuckerman, F. Machizaud. J. Phys. F14, 625 (1984).
- [15] В.Г. Зырянов, В.И. Минин, С.А. Немнонов, М.Ф. Сорокина. ФММ **31**, *2*, 335 (1971).
- [16] С.А. Немнонов, С.С. Михайлова, Л.Д. Финкельштейн, В.И. Минин, Е.Б. Бланкова. Деп. ВИНИТИ № 2695 (1974).
- [17] Е.П. Елсуков, Д.А. Королев, О.М. Канунникова, Г.Н. Коныгин, В.Я. Баянкин. ФММ **89**, *3*, 39 (2000).
- [18] Е.П. Елсуков. ФММ 76, 5, 5 (1993).
- [19] E.P. Yelsukov, E.V. Voronina, G.N. Konygin, V.A. Barinov, S.K. Godovikov, G.A. Dorofeev, A.V. Zagainov. J. Magn. Magn. Mater. 166, 334 (1997).