Термодинамические и кинетические свойства икосаэдрической квазикристаллической фазы системы AI–Pd–Tc

© М.Н. Михеева, Г.Х. Панова, А.А. Теплов, М.Н. Хлопкин, Н.А. Черноплеков, А.А. Шиков

Российский научный центр "Курчатовский институт", 123182 Москва, Россия

E-mail: khlopkin@isssph.kiae.ru

(Поступила в Редакцию 26 апреля 2000 г.)

Впервые изучены свойства квазикристаллической фазы в системе Al–Pd-Tc. Рентгеновские исследования показали, что квазикристаллическая фаза в сплаве Al₇₀Pd₂₁Tc₉ обнаруживает гранецентрированную икосаэдрическую квазирешетку с параметром a = 6.514 Å. Эксперименты по отжигу дают основание считать, что данная икосаэдрическая фаза является термодинамически стабильной. Были исследованы теплоемкость образца Al₇₀Pb₂₁Tc₉ в области температур 3–30 K, электросопротивление и магнитная восприимчивость в области 2–300 K. Электросопротивление обнаруживает типичную для квазикристаллов высокую величину (600 $\mu\Omega \cdot$ ст при комнатной температуре), небольшой положительный температурный коэффициент сопротивления при температурах выше 50 K и отрицательный — ниже 50 K. Магнитная восприимчивость носит слабый парамагнитный характер. Определены коэффициент при линейном вкладе в теплоемкость ($\gamma = 0.24$ mJ/g atom K²) и характеристический параметр Дебая ($\Theta = 410$ K). Обсуждаются причины особенностей колебательного спектра квазикристаллов.

Работа поддерживается Российским фондом фундаментальных исследований и выполнена в рамках проекта № 98-02-17398.

Как известно, квазикристаллы представляют собой особый класс твердых тел, который не обладает периодическим порядком, свойственным обычным кристаллическим системам. Однако квазикристаллы не являются и разупорядоченными системами, как аморфные материалы. Они имеют особый тип дальнего порядка, так называемый "квазипериодический". Дальний некристаллический ориентационный порядок (например, отвечающий вращательной симметрии пятого порядка, как это имеет место в икосаэдрических квазикристаллах) был обнаружен методами электронографии и рентгенографии [1].

Первые квазикристаллические материалы, представлявшие собой обогащенные алюминием сплавы на основе переходных металлов и имевшие икосаэдрическую структуру, были термодинамически нестабильны. Позднее были получены стабильные икосаэдрические квазикристаллы в системах Al–Cu–Li, Al–Cu–Fe–TM (TM = Fe, Ru, Os), Mg–Zn–Ga, Mg–Zn–R (R = Y, Dy, Tb, Ho, Er) и Al–Pd–TM (TM = Mn, Re) [2–7].

Исследование тройных систем типа Al–Pd–TM (TM = Mn, Re) показало, что икосаэдричекая фаза образуется для составов, соотношение компонент в которых близко к 7:2:1. В седьмой группе Периодической таблицы Менделеева между Mn и Re располагается технеций. Поэтому есть основание предположить, что в системе Al–Pb–Tc также должна существовать квазикристаллическая икосаэдрическая фаза. Однако сообщения о системе Al–Pb–Tc до недавнего времени отсутствовали, в первую очередь потому, что Tc не имеет стабильных изотопов, является малодоступным и работа с ним требует выполнения правил радиационной безопасности. Попытки получения квазикристаллического сплава $Al_{70}Pb_{20}Tc_{10}$ были неудачными [8].

Впервые квазикристаллическая икосаэдрическая фаза Al-Pb-Tc была получена методом обычного затвердевания в нашей предыдущей работе [9].

Цель настоящей работы — экспериментальное изучение термодинамических и транспортных свойств этой фазы.

1. Приготовление образцов и исследование структуры

Слиток сплава номинального состава $Al_{70}Pd_{21}Tc_9$ был приготовлен плавкой исходных металлических компонентов высокой чистоты: Al 99.999, Pd 99.99 и Tc 99.98%. Плавка проводилась в электродуговой печи с водоохлаждаемым медным подом. Использовались нерасходуемые вольфрамовые электроды. Для того чтобы обеспечить однородность сплава, заготовку переворачивали с последующей переплавкой 4 раза. Затем заготовка отжигалась в вакууме при 940°C в течение 3 суток, после чего закаливалась в воду. Образец был светло-серого цвета с металлическим блеском. Из полученной заготовки был вырезан штабик размером $1.65 \times 1.7 \times 5.35$ mm, а также приготовлен порошок для исследования структуры. Подробно методика приготовления образца описана в работе [9].

Структура полученного сплава исследовалась методом порошковой рентгенографии на рентгенодифрактометре Philips ADP-10 с графитовым монохроматором, предназначенным для измерения радиоактивных образцов. Использовалось излучение K_{α} -линии меди. Представленная на рис. 1 рентгенограмма отожженного образца $Al_{70}Pd_{21}Tc_9$ идентична рентгенограммам Al-Pd-Mn и Al-Pd-Re в квазикристаллической гранецентрирован-

Рис. 1. Рентгенограмма порошка Al–Pd–Tc. Пики, соответствующие гранецентрированной икосаэдрической структуре, отмечены темными стрелками. Светлые стрелки указывают на пики, которые можно приписать гексагональному соединению Al₃Pd₂. Индексы икосаэдрической фазы обсуждаются в тексте.

ной икосаэдрической (q-ГЦИ) фазе. На рентгенограмме наблюдаются дополнительные пики, не принадлежащие q-ГЦИ-фазе, которые относятся, скорее всего, к соединению Al₃Pd₂, присутствующему в виде примесной фазы, и гало в области $2\theta = 18-30^{\circ}$, связанное с лаковым покрытием образца.

Пики на рис. 1, отвечающие квазикристаллической фазе, промаркированы стрелками с двумя индексами N и M по схеме Кана [10]. Следует отметить, что присутствие пика, промаркированного как (7, 11), подтверждает, что наша квазикристаллическая фаза является также гранецентрированной икосаэдрической. Эта структура может рассматриваться как шестимерная сверхструктура в примитивной гиперкубической решетке в прямом пространстве с параметром шестимерной решетки *а*_{*P*}, который в 2 раза меньше параметра *a_F* гранецентрированной решетки [2]. Дифракционные картины, экспериментально полученные на гранецентрированных икосаэдрических фазах, таковы, что рефлексы, соответствующие сверхструктурному упорядочению (N = 4n + 3, где n — целое число), часто бывают очень слабыми по сравнению с рефлексами примитивной решетки. Соответственно они обычно индексируются с помощью индексов примитивной решетки с параметром решетки $a_P = a_F/2$.

Для икосаэдрических пиков значения волновых векторов даются выражением

$$Q_{\rm par} = \frac{2\pi}{a_P} \sqrt{\frac{N + M\tau}{2 + \tau}},\tag{1}$$

где a_P — параметр квазирешетки и $\tau = (\sqrt{5} - 1)/2$ — золотое сечение.

На рис. 2 построена зависимость волнового вектора Q, определенного для каждого рентгеновского пика, индексированного в икосаэдрическую фазу, от произведения $Q_{\text{par}}a_P$, вычисленного по формуле (1). Зависимость $Q(Q_{\text{par}}a_P)$ для всех индексированных икосаэдрических

рефлексов показана на рис. 2 вместе с прямой линией, описывающей эту зависимость. Среднее абсолютное отклонение положений пиков $3 \cdot 10^{-3}$ Å много меньше, чем полная средняя ширина на половине максимума $2 \cdot 10^{-2}$ Å, что является весомым аргументом в пользу применимости принятого нами способа индексирования, изложенного выше.

Параметр квазирешетки a_P может быть определен с большой точностью при анализе порошковых спектров на больших углах по отношению к падающему рентгеновскому пучку. Причина состоит в том, что производная параметра квазирешетки a_P по углу Брэгга θ

Рис. 2. Волновой вектор Q, определенный для каждого рентгеновского пика, отвечающего гранецентрированной икосаэдрической фазе, как функция произведения $Q_{par}a_P$, вычисленного для икосаэдрической структуры. При определении Qдля каждого пика использовалось взвешенное среднее значение длины волны K_{α} -дублета.

дается выражением

$$da_P/d\theta = -a_P \operatorname{ctg}\theta$$
,

т.е. большие углы Брэгта очень чувствительны к малым изменениям параметра квазирешетки. Усреднение данных по $Q_{\text{par}}a_P/Q$ в области дифракционных углов $63^\circ < 2\theta < 90^\circ$, которое включает три рефлекса, дает параметр квазирешетки $a_P = 6.514 \pm 0.004$ Å. Эта величина очень близка к величине квазирешеточного параметра $a_P = 6.451$ Å для икосаэдрического квазикристалла Al–Pd–Mn [11].

Следует отметить, что некоторые порошковые дифракционные пики, которые не могут быть индексированы в икосаэдрическую структуру, наиболее вероятно, происходят от присутствия Al₃Pd₂, который кристаллизуется в гексагональной структуре типа Al₃Ni₂ с параметрами ячейки a = 4.217 и c = 5.166 Å (рис. 1).

Литой образец Al₇₀Pd₂₁Tc₉ содержал смесь фаз гранецентрированной икосаэдрической фазы и одной или больше других фаз. После отжига в вакууме при 940°C в течение трех дней существенная часть образца трансформировалась в икосаэдрическую фазу. Это наблюдение дает основание предположить, что икосаэдрическая фаза в этой системе сплава является стабильной.

Если предположить, что примесная фаза является металлической с типичными для металлов величинами электронной теплоемкости и электросопротивления, то можно качественно оценить долю примесной фазы в данном образце. Оценка доли примесной металлической фазы по величине электронного вклада в теплоемкость позволяет полагать, что доля примесной металлической кристаллической фазы в исследованном образце составляет менее 15% и, следовательно, для квазикристаллической фазы более — 85%.

Исследование электросопротивления, магнитной восприимчивости и теплоемкости

Температурная зависимость электросопротивления измерялась в отдельном эксперименте на постоянном токе стандратным четырехконтактным методом с использованием прижимных контактов.

Измерения магнитной восприимчивости проводились на приборе для измерения дифференциальной магнитной восприимчивости в полях ~ 1 Ое с чувствительностью $10^{-10} \,\mathrm{A} \cdot \mathrm{m}^2$ в температурном интервале 4–350 K, основанном на разработанной методике двойного синхронного детектирования [12]. Методика позволяет проводить абсолютные измерения магнитной восприимчивости небольших образцов массой порядка нескольких десятков миллиграмм с удельной магнитной восприимчивостью 10^{-7} emu/g, она отличает диа- и парамагнитные сигналы и определяет положение нуля с точностью ~ $10^{-10} \,\mathrm{A} \cdot \mathrm{m}^2$.

Теплоемкость образца измерялась адиабатическим методом с импульсным нагревом [13]. Масса образца

Молярная теплоемкость при постоянном давлении C_p квазикристалла $Al_{70}Pd_{21}Tc_9$ в зависимости от температуры T (1 g atom=49.96 g)

Т, К	$C_p, mJ/g atom K$	Т, К	C_p , mJ/g atom K
3	1.57	17	178
4	2.81	18	217
5	4.71	19	260
6	7.45	20	310
7	11.3	21	366
8	16.4	22	428
9	23.2	23	496
10	31.8	24	571
11	42.8	25	652
12	56.4	26	737
13	73.0	27	828
14	93.0	28	921
15	117	29	1017
16	145	30	1113

составляла 52 mg, экспериментальная ошибка была около 10% в температурной области 3-6 K и менее 5% в области 6-30 K.

Результаты исследования теплоемкости, магнитной восприимчивости и электросопротивления квазикристаллического образца Al–Pd–Tc представлены на рис. 3–6 и в таблице.

На рис. 3 приведена температурная зависимость электросопротивления Al-Pd-Tc в области температур 2–300 К. В этой зависимости наблюдается минимум при T = 50 К. Удельное сопротивление при 300 К обнаруживает типичную для квазикристаллов высокую величину и составляет 600 $\mu\Omega \cdot \text{cm}$.

В широкой области температур выше 50 К наблюдается незначительный положительный температурный коэффициент сопротивления, величина которого не превышает $8 \cdot 10^{-4} \, \text{K}^{-1}$ в интервале 50–300 К. При температурах ниже 50 К имеет место отрицательный температурный коэффициент сопротивления.

Рис. 3. Температурная зависимость электросопротивления квазикристаллического образца Al-Pd-Tc в области температур 2–300 K.

Рис. 4. Температурная зависимость магнитной восприимчивости квазикристаллического образца Al–Pd–Tc в области температур 4–300 К. Размер точек по вертикали определяет точность измерения величины χ .

Рис. 5. Температурная зависимость теплоемкости Al-Pd-Tc в области температур 3-10 K в координатах C/T от T^2 .

Сравнение полученных экспериментальных данных по температурной зависимости электросопротивления Al–Pd–Tc с соответствующими данными для других квазикристаллических соединений показывает, что в указанной области температур наблюдаются как положительные, так и отрицательные температурные коэффициенты сопротивления. Более того, существуют квазикристаллические системы, в частности Al₈₆Co₁₄, которые также демонстрируют минимум в температурной зависимости электросопротивления в области низких температур [14].

Тем не менее при анализе возможных причин существования положительного температурного коэффициента сопротивления нельзя исключить возможное влияние примесной фазы Al₃Pd₂, дополнительные пики которой обнаружены на рентгенограмме (рис. 1).

Высокая величина электросопротивления образца позволяет полагать, что примесная металлическая фаза не образует непрерывной области, и, следовательно, ее доля в объеме образца ниже перколяционного предела.

На рис. 4 представлена температурная зависимость магнитной восприимчивости квазикристаллического образца Al-Pd-Tc в области температур 4–300 К. В исследованном температурном интервале магнитная восприимчивость крайне мала и имеет положительный знак, что указывает на ее парамагнитную природу. Из экспериментальных данных также следует уменьшение парамагнитной восприимчивости с понижением температуры с коэффициентом ~ $1.3 \cdot 10^{-7}$ emu/g · K.

Теплоемкость в области температур 3–10 К представлена на рис. 5 в координатах C/T от T^2 . В данных координатах график температурной зависимости теплоемкости близок к прямой линии, что соответствует обычному для металлов закону: $C = \gamma T + \beta T^3$.

Коэффициенты γ и β , определенные методом наименьших квадратов, а также низкотемпературное значение характеристической температуры Дебая Θ , связанное с β соотношением $\beta = 12\pi^4 R/(5\Theta^3)$, где R — газовая постоянная, составляют: $\gamma = 0.24$, $\beta = 0.029$ mJ/g atom·K⁴, $\Theta = 410 \, \text{K}$. Линейный по температуре член отвечает электронному вкладу в теплоемкость, а кубический соответствует колебательному вкладу. Отметим, что величина коэффициента γ при линейном по температуре члене существенно ниже, чем в обычных металлах, что указывает на низкую плотность электронных состояний на уровне Ферми. В работе [15] отмечено, что именно низкая плотность электронных состояний на уровне Ферми способствует понижению энергии системы и может являться причиной стабилизации квазикристаллической фазы икосаэдрической симметрии.

Величина коэффициента $\gamma = 0.24 \text{ mJ/g} \cdot \text{аtom} \cdot \text{K}^2$ при линейном по температуре члене может быть использована для оценки содержания в образце металлической примесной фазы. Если считать, что линейный по температуре член в теплоемкости исследованного образца полностью обусловлен присутствием примесной фазы, которая характеризуется величиной коэффициента при линейном члене γ_i , а квазикристаллическая фаза характеризуется существенно меньшим значением линейного члена, то можно оценить сверху долю η этой примесной фазы металлической фазы по соотношению: $\eta = \gamma_i \gamma$. Полагая, что величина $\gamma_i = 1.6 \text{mJ/g} \cdot \text{аtom} \cdot \text{K}^2$, что близко к типичному для простых металлов значению, получаем оценку доли примесной фазы $\eta < 15\%$.

Полученные данные позволили в исследованном интервале температур выделить из экспериментально измеренной теплоемкости колебательный вклад и сделать выводы о характере энергетической зависимости плотности колебательных состояний. С этой целью колебательную компоненту теплоемкости $C_{\rm vib} = C - \gamma T$ целесообразно представить на графике в координатах $C_{\rm vib}/T^3$ от T, поскольку детальный анализ, выполненный в работе [16], показал, что величина $C_{\rm vib}/T^3$ является приближенным образом функции $\omega^2 g(\omega)$ при $\hbar\omega = 4.93k_BT$, где k_B и \hbar — соответственно постоянные Больцмана и Планка.

Рис. 6. Температурная зависимость колебательной теплоемкости в координатах C_{vib}/T^3 от *T*. *1* — квазикристалл Al₇₀Pd₂₁Tc₉, настоящая работа; *2* — алюминий [17,18].

На рис. 6 представлены температурные зависимости колебательной теплоемкости исследованной нами системы Al-Pd-Tc, а также чистого алюминия [17,18] в координатах $C_{\rm vib}/T^3$ от T в области температур 3–30 К. Температурная зависимость $C_{\rm vib}/T^3$ для Al-Pd-Tc проходит через широкий максимум при $T \approx 26 \, {\rm K}$, что соответствует наличию в колебательном спектре интенсивной низкочастотной моды, расположенной при энергии $\hbar\omega \approx 12 \,\mathrm{meV}$. Указанная низкочастотная мода вносит дополнительный вклад в колебательную энергию квазикристаллической фазы Al₇₀Pd₂₁Tc₉ в области низких частот и, следовательно, соответствующий вклад в колебательную теплоемкость в области низких температур. Максимум в зависимости $C_{\rm vib}/T^3$ от T наблюдался также и в икосаэдрических квазикристаллах Al-Cu-Co и Al–Pd–Re [19,20].

3. Обсуждение

Сравним колебательную теплоемкость квазикристаллической системы, на 70% состоящей из алюминия, с таковой для чистого алюминия. Поскольку в исследуемой системе 30% атомов алюминия замещены атомами палладия и технеция, масса которых почти в 4 раза больше, то средняя масса m атома в системе Al₇₀Pd₂₁Tc₉ составляет m = 50 атомных единиц массы, что почти в 2 раза больше массы атома алюминия [10]. Колебательная теплоемкость Cvib при низких температурах определяется средней скоростью звука, которая в свою очередь существенно зависит от средней массы атома: $C_{\rm vib}(T/\Theta)^3 \sim T^3 (m/k)^{3/2}$. Здесь κ — эффективная силовая постоянная, пропорциональная соответствующему упругому модулю. Естественно было бы ожидать увеличения низкотемпературной теплоемкости квазикристалла в несколько раз по сравнению с теплоемкостью чистого алюминия за счет двукратного увеличения средней массы атома, однако наблюдаемое увеличение теплоемкости как в исследуемой системе, так и в других квазикристаллах на основе алюминия не так велико. Из рис. 6 видно, что при равных температурах теплоемкость квазикристалла в области низких температур отличается от таковой для алюминия не более чем на 50%.

В работах [21] было показано, что в реальных системах при замещении одних атомов другими может существенно изменяться силовое взаимодействие между атомами, в том числе и между атомами матрицы, что приводит к перенормировке фононного спектра матрицы. Существенную роль в перенормировке фононного спектра играет электронная подсистема. В работе [22] теоретически рассмотрена перенормировка фононного спектра за счет электрон-фононного взаимодействия и выведено соотношение

$$\langle \omega^2 \rangle \cong \langle \Omega^2 \rangle_0 - \frac{4}{5} E_F N(E_F) \frac{N(E_F) \langle I^2 \rangle}{M},$$
 (2)

где $\langle \omega^2 \rangle$ — средний квадрат частоты фононного спектра, перенормированного электрон-фононным взаимодействием, $\langle \Omega^2 \rangle_0$ — средний квадрат частоты затравочного фононного спектра, E_F — энергия Ферми, $N(E_F)$ плотность электронных состояний на уровне Ферми, $\langle I^2 \rangle$ — матричный элемент электрон-фононного взаимодействия, M — масса атома.

Используя известное соотношение (см., например, [23]), связывающее матричный элемент электронфононного взаимодействия с константой электронфононной связи λ ,

$$\lambda = rac{N(E_F)\langle I^2
angle}{M\langle \omega^2
angle},$$

можно преобразовать уравнение (2) к виду

$$\langle \Omega^2 \rangle_0 = \langle \omega^2 \rangle \left(1 + \frac{4}{5} E_F N(E_F) \lambda \right) \approx \langle \omega^2 \rangle \left(1 + \frac{6n\lambda}{5} \right).$$

Во второй части равенства использовано соотношение, справедливое в модели свободных электронов,

$$E_F N(E_F) = 3n/2,$$

где *n* — число валентных электронов металла.

Видно, что в модели свободных электронов, которую допустимо применять для чистого алюминия, в перенормировочный множитель входят всего два параметра число валентных электронов и константа электронфононной связи, величины которых известны: n = 3из валентности, а оценка величины констаны электронфононной связи λ из сверхпроводящих свойств по уравнению Мак-Миллана приведена в [23], $\lambda = 0.38$. Оценки масштаба перенормировки фононного спектра алюминия по соотношению (2) показывают, что электрон-фононное взаимодействие в алюминии весьма существенно (почти а 1.5 раза) снижает частоту фононного спектра. В квазикристаллах же плотность электронных состояний на уровне Ферми существенно меньше (в нашей системе почти в 6 раз меньше, чем в алюминии, для которого $\gamma = 1.35 \, \text{mJ/g} \cdot \text{atom} \cdot \text{K}^2$). Поэтому в квазикристалле эффект перенормировки фононных частот электронфононным взаимодействием существенно меньше. Таким образом, можно полагать, что изменение теплоемкости квазикристалла за счет увеличения средней массы атома в существенной степени компенсируется эффектом изменения перенормировки спектра за счет электронфононного взаимодействия.

Рассмотрим возможные причины появления в колебательном спектре интенсивной низкочастотной моды, проявляющейся в виде максимума на кривой зависимости $C_{\rm vib}/T^3$ от температуры.

Известно [24], что колебательный спектр кристаллических систем с тяжелыми примесными атомами имеет резонансную особенность, связанную с так называемыми квазилокальными колебаниями, предсказанными в работе [25] и экспериментально обнаруженными в [26,27]. Позднее аналогичные особенности колебательного спектра были обнаружены и в неупорядоченных аморфных системах [28]. Детальные численные расчеты для вклада квазилокальных колебаний в теплоемкость систем с различными отношениями масс выполнены в [29]. Однако в случае тяжелой примеси в легкой матрице существуют простые соотношения как для квазилокальной частоты, так и для величины изменения теплоемкости [22]

$$\frac{\omega_R^2}{\omega_D^2} \approx \frac{1}{3} \frac{M}{M_d - 0.6M},\tag{3}$$

$$\frac{\Delta C_{\rm vib}}{C_{\rm vib}} = 0.091 \cdot \eta \cdot \left(\frac{\omega_D}{\omega_R}\right)^3,\tag{4}$$

где ω_R — частота квазилокальных колебаний, ω_D — характерная (дебаевская) частота исходного вещества (матрицы), M — масса атома матрицы, M_d — масса тяжелого примесного атома, причем $M_d \gg M$, η — концентрация тяжелых примесных атомов, $C_{\rm vib}$ — колебательная теплоемкость исходного вещества, $\Delta C_{\rm vib}$ — добавочный вклад в колебательную теплоемкость за счет тяжелых примесных атомов.

Оценка частоты квазилокальной моды, полученная подстановкой в соотношение (3) масс матрицы — алюминия, примеси — палладия и экспериментально определенной дебаевской частоты ($\theta = 410$ K), дает $\hbar\omega_R = 136$ K = 12 meV, что хорошо согласуется с данными эксперимента. Оценка амплитуды максимума в $C_{\rm vib}/T^3$ по соотношению (4) при концентрации тяжелых атомов 30% дает величину порядка 100%, что тоже соответствует наблюдаемому в эксперименте.

Следует отметить, однако, что квазилокальные колебания не являются единственно возможной причиной появления максимума в температурной зависимости величины $C_{\rm vib}/T^3$. Подобные максимумы существуют и в обычных металлах, в частности в алюминии, вследствие дисперсии скорости звука. Поэтому наблюдаемую в квазикристаллах немонотонную зависимость величины $C_{\rm vib}/T^3$ от температуры, вообще говоря, можно было бы объяснить и этой причиной. К сожалению, исследования дисперсии скорости звука в квазикристаллах Al₇₀Pd₂₁Tc₉ не проводились.

Кроме того, существует модель [30], связывающая появление резонансных низкочастотных колебательных мод с флуктуациями плотности и силовых постоянных в системах, не обладающих трансляционной симметрией. В этой модели также возникает низкочастотная мода, однако нет точных соотношений, связывающих характеристики этой моды с контролируемыми параметрами системы.

Таким образом, можно полагать, что наиболее вероятной причиной образования в квазикристаллах на основе сплавов алюминия с переходными металлами низкочастотной колебательной моды с энергией $\hbar\omega \sim 10-15 \,\mathrm{meV}$, проявляющейся в виде максимума $C_{\rm vib}/T^3$ в области температур 20–30 К, является эффект квазилокальных мод. Однако нельзя исключить и возможности проявления эффектов, обусловленных дисперсией скорости звука и спецификой квазикристаллического состояния, связанной с отсутствием трансляционной симметрии.

В данной работе исследованы свойства квазикристаллической фазы состава $Al_{70}Pd_{21}Tc_9$, имеющей икосаэдрическую гранецентрированную квазикристаллическую решетку с параметром $a = 6.514 \pm 0.004$ Å.

Удельное сопротивление исследуемой системы при 300 К составляет $600 \ \mu\Omega \cdot$ сm, т.е. обнаруживает типичную для квазикристаллов высокую величину электросопротивления. В температурной зависимости сопротивления ρ (T)/ ρ (300 K) наблюдается минимум при T = 50 K, при этом положительный температурный коэффициент сопротивления не превышает $8 \cdot 10^{-4}$ K⁻¹ в интервале 50–300 K, а при температурах ниже 50 K отрицательный температурный коэффициент сопротивления имеет величину порядка — $5 \cdot 10^{-4}$ K⁻¹.

Результаты измерения магнитной восприимчивости свидетельствуют о наличии слабого парамагнитного взаимодействия в исследуемой квазикристаллической системе.

Коэффициент при линейном по температуре вкладе в теплоемкость $Al_{70}Pd_{21}Tc_9$ показывает низкую плотность электронных состояний на уровне Ферми, что согласуется с данными по другим квазикристаллическим материалам. Характеристическая температура Дебая $\Theta = 410$ К. Это значение лежит в интервале известных величин Θ для стабильных квазикристаллов. Температурная зависимость $C_{\rm vib}/T^3$ для Al-Pd-Tc проходит через широкий максимум при $T \sim 26$ K, что указывает на наличие в колебательном спектре интенсивной низкочастотной моды, расположенной при энергии $\hbar\omega \sim 12$ meV.

Авторы выражают благодарность А.А. Никонову за проведение измерений магнитной восприимчивости, К.Г. Букову и М.С. Григорьеву за приготовление образцов и рентгенографические измерения, В.С. Егорову за изготовление прижимных контактов, Г.Р. Отту, по инициативе которого была эта работа начата, М.А. Черникову и В.М. Маничеву за обсуждение результатов.

Список литературы

- D. Shechtman, I. Blech, D. Gratias, J.W. Cahn. Phys. Rev. Lett. 53, 1951 (1984).
- [2] S. Ebalard, F. Spaepen. J. Mater. Res. 4, 39 (1989).
- [3] W. Ohashi, F. Spaepen. Nature 330, 6148, 555 (1987).
- [4] A.P. Tsai, A. Inoue, T. Masumoto. Jpn. J. Appl. Phys. 27, L1587 (1988).
- [5] A.P. Tsai, A. Inoue, Y. Yokoyama, T. Masumoto. Phil. Mag. Lett. 61, 9 (1990).
- [6] A.P. Tsai, A. Inoue, T. Masumoto. Phil. Mag. Lett. 62, 95 (1990).
- [7] C. Beeli, H.-U. Nissen, J. Robadey. Phil. Mag. Lett. 63, 87 (1991).
- [8] N.S. Athanasiou. Mod. Phys. Lett. B11, 367 (1997).
- [9] M.N. Mikheeva, A.A. Teplov, K.G. Bukov, M.S. Grigor'ev, M.A. Chernikov. Phil. Mag. Lett. (2000), in press.
- [10] J.W. Cahn, D. Shechtman, D. Gratias. J. Mater. Res. 1, 13 (1986).
- [11] C. Bellic. Ph.D. Thesis. ETH-Zurich (1992).
- [12] А.А. Никонов. ПТЭ 6, 168 (1995).
- [13] М.Н. Хлопкин, Н.А. Черноплеков, П.А. Черемных. Препринт ИАЭ № 3549/10. М. (1982). 16 с.
- [14] А.М. Братковский, Ю.А. Данилов, Г.И. Кузнецов. ФТП 68, 1065 (1989).
- [15] V.G. Vaks, V.V. Kamyshenko, G.D. Samolyuk. Phys. Lett. A 132, 2–3, 131 (1988).
- [16] A. Junod, T. Jarlborg, J. Muller. Phys. Rev. B 27, 3, 1568 (1983).
- [17] W.T. Berg. Phys. Rev. 167, 583 (1968).
- [18] W.F. Giaugue, P.F. Meads. J. Am. Chem. Soc. 63, 7, 1897 (1941).
- [19] M.A. Chernikov, A. Bianchi, E. Felder, U. Gubler, H.R. Ott. Europhys. Lett. 35, 6, 431 (1996).
- [20] K. Edagawa, M.A. Chernikov, A. Bianchi, E. Felder, U. Gubler, H.R. Ott. Phys. Rev. Lett. 77, 6, 1071 (1996).
- [21] Г.Ф. Сырых, М.Г. Землянов, Н.А. Черноплеков, Б.И. Савельев. ЖЭТФ 81, 1(7), 308 (1981).
- [22] L.G. Gomersall, B.L. Gyorffy. Phys. Rev. Lett. 33, 21, 1286 (1974).
- [23] W.L. McMillan. Phys. Rev. B1, 2, 331 (1968).
- [24] А.П. Жернов, Н.А. Черноплеков, Э. Мрозан. Металлы с немагнитными примесными атомами. М. (1992). 368 с.
- [25] Ю.М. Каган, Я.А. Иоселевский. ЖЭТФ 44, 1, 284 (1963).
- [26] Н.А. Черноплеков, М.Г. Землянов. ЖЭТФ **49**, *2*, 449 (1965).
- [27] Г.Х. Панова, Б.Н. Самойлов. ЖЭТФ 49, 2, 456 (1965).
- [28] Г.Х. Панова, А.А. Шиков, Н.А. Черноплеков, М.Н. Хлопкин, Б.И. Савельев, Е.В. Мельников. ЖЭТФ 90, 4, 1351 (1986).
- [29] А.П. Жернов, Г.Р. Аугст. ФТТ 9, 8, 2196 (1967).
- [30] В.М. Маничев, Е.А. Гусев. ФТТ 41, 3, 272 (1999).