Электронная структура и поляризуемость квантовых металлических нитей

© А.Н. Смогунов, Л.И. Куркина, О.В. Фарберович

Воронежский государственный университет, 394693 Воронеж, Россия

E-mail: san@jok.vsu.ru

(Поступила в Редакцию 12 января 2000 г.)

В рамках теории функционала плотности и модели "желе" исследованы электронная структура и линейный отклик на внешнее электрическое поле нитей простых металлов с квантово-размерным поперечным сечением. Обнаружено немонотонное изменение работы выхода и статической поляризуемости нити при увеличении ее радиуса. Получены спектры фотопоглощения для нитей Na с различным поперечным сечением. Исследовано влияние диэлектрического окружения на свойства нитей. Увеличение диэлектрической проницаемости среды приводит к уменьшению статической поляризуемости металлических нитей. Найдено, что при помещении нитей Na в диэлектрическую матрицу поверхностный плазменный резонанс в сечении фотопоглощения смещается из области непрерывного спектра в область перед порогом ионизации.

Работа выполнена при поддержке РФФИ (грант № 99-15-96028).

В последние годы большой интерес вызывают свойства низкоразмерных квантовых систем, к которым можно отнести квазидвумерные тонкие пленки, квазиодномерные нити и трубки, а также нульмерные квантовые точки. В данных системах с поперечным сечением порядка нескольких нанометров ярко проявляются квантоворазмерные эффекты. При этом размерная зависимость характеристик имеет, как правило, немонотонный характер. Кроме того, свойства квантово-размерных систем в значительной степени зависят от их эффективной размерности, которая существенно влияет на характер энергетического спектра квазичастиц. В частности, понижение размерности электронной системы приводит к уменьшению числа конечных состояний при рассеянии электронов и, следовательно, к увеличению электронной подвижности [1], делая такие системы перспективными при создании быстродействующих элементов в микрои наноэлектронике. Вследствие увеличения напряженности эффективного кулоновского поля во внутренней области при уменьшении размерности в полупроводниках наблюдается значительное возрастание энергии связи примесных атомов [2]. Помимо этого, эффективная размерность системы влияет на отношение количества атомов на поверхности к числу атомов в объеме и, следовательно, на величину поверхностных эффектов.

К сожалению, использование для расчета электронной структуры низкоразмерных систем первопринципных методов, известных из зонной теории, приводит к большим трудностям из-за отстутствия трансляционной симметрии по крайней мере в одном из направлений. Поэтому для исследования подобных объектов требуется разработка специальных моделей и методов. Свойства простых металлов достаточно хорошо могут быть описаны в рамках модели "желе", в которой дискретный заряд ионных остовов решетки равномерно "размазан" по всему объему системы. Эта модель позволяет без особых усложнений учесть межэлектронное взаимодействие и исследовать влияние эффективной размерности системы на свойства электронной подсистемы. Модель "желе" успешно применялась для исследования электронных свойств бесконечных и полуограниченных кристаллов [3–5], тонких пленок [6] и кластеров простых металлов [7–12]. В частности, в рамках модели "желе" для кластеров простых металлов были получены практически все основные результаты, наблюдаемые в экспериментах: оболочечный характер электронной структуры и магические числа [7,8], увеличение статической поляризуемости [8–12] и уменьшение частоты поверхностного плазмона [10–12] по сравнению с классическими значениями и т.д.

В настоящей работе в рамках теории функционала плотности исследована электронная структура квантоворазмерных нитей простых металлов и их взаимодействие с электромагнитным полем. Реальные металлические нити моделируются бесконечными цилиндрическими нитями-"желе" с плотностью фона, имеющего в цилиндрических координатах вид

$$n_{+}(\mathbf{r}) = n_0 \Theta(R - r), \tag{1}$$

где R — радиус нити, $n_0(r_s) = 3/(4\pi r_s^3)$ — средняя плотность валентных электронов в объемном металле, r_s — электронный радиус Вигнера–Зейтца. Ось нити выбрана совпадающей с осью Z.

1. Теория

В рамках теории функционала плотности электронная плотность $n(\mathbf{r})$ металлической нити в основном состоянии может быть найдена путем решения самосогласованных одночастичных уравнений Кона-Шэма [13–15] (далее используются атомные единицы $e^2 = \hbar = m = 1$)

$$\left[-\frac{\nabla^2}{2} + V_{\text{eff}}(\mathbf{r})\right]\psi_j(\mathbf{r}) = \epsilon_j\psi_j(\mathbf{r}), \qquad (2)$$

$$V_{\text{eff}}(\mathbf{r}) = V_C(\mathbf{r}) + V_{xc}(\mathbf{r}), \qquad (3)$$

$$V_C(\mathbf{r}) = \int \frac{n(\mathbf{r}') - n + (\mathbf{r}')}{|\mathbf{r} - \mathbf{r}'|} d\mathbf{r}', \qquad (4)$$

$$n(r) = \sum_{j} f_{j} |\psi_{j}(\mathbf{r})|^{2}, \qquad (5)$$

где для рассматриваемого спин-ограниченного случая числа заполнения электронных состояний $f_j = 0$, 2. Эффективная потенциальная энергия электрона V_{eff} включает в себя кулоновскую V_C и обменно-корреляционную V_{xc} составляющие. Плотность положительного заряда $n_+(\mathbf{r})$ в модели "желе" описывается формулой (1). Для V_{xc} в данной работе использовалось локальное приближение Воско и др. [16].

Аксиальная симметрия задачи позволяет выбрать волновые функции ψ_j в виде собственных функций операторов вращения и трансляции вдоль оси Z

$$\psi_j(\mathbf{r}) = rac{e^{i(m\varphi+kz)}}{\sqrt{2\pi L}} R_{nm}(r).$$

Функции ψ_j нормированы на основной объем высотой L, волновой вектор вдоль оси нити $k = 2\pi p/L$. Целые числа *m* и *p* характеризуют неприводимые представления операторов вращения и трансляции вдоль оси Z. Конечно, все физические результаты не зависят от параметра L.

Радиальные волновые функции R_{nm} удобно представить в виде $R_{nm}(r) = P_{nm}(r)/\sqrt{r}$, где P_{nm} удовлетворяют одномерному уравнению Шредингера

$$\left[rac{1}{2}\left(rac{d^2}{dr^2}-rac{m^2-1/4}{r^2}
ight)-V_{ ext{eff}}(r)+arepsilon_{nm}
ight]P_{nm}(r)=0.$$

Таким образом, энергетические состояния характеризуются квантовыми числами *n*, *m*, *k*

$$\varepsilon_j = \varepsilon_{nm} + \frac{k^2}{2},$$

т.е. каждый уровень ϵ_{nm} порождает одномерную параболическую подзону размерного квантования, характеризующуюся квантовыми числами *n* и *m* (рис. 1).

Введем в рассмотрение величину $N(\epsilon)$, равную числу состояний с энергией меньшей ϵ ,

$$N(\epsilon) = (2L/\pi) \sum_{\epsilon_{nm} < \epsilon} \sqrt{\epsilon - \epsilon_{nm}}.$$

Энергия Ферми E_F определяется из трансцендентного уравнения

$$N = N(E_F) = (2L/\pi) \sum_{\epsilon_{nm} < E_F} \sqrt{E_F - \epsilon_{nm}}, \qquad (6)$$

где число валентных электронов в основном объеме

$$N = \frac{3R^2L}{4r_s^3}.$$
 (7)

Рис. 1. Схематическая структура энергетических зон систем с аксиальной симметрией; $\epsilon_j = \epsilon_{nm} + k^2/2$, где $k = 2\pi p/L$, p — целое число.

Наряду со свободными нитями представляют интерес также нити, помещенные в диэлектрическую матрицу. Влияние диэлектрического окружения на свойства металлических нитей исследовалось в данной работе с использованием модели, предложенной Лушниковым и др. [17]. Данная модель успешно применялась для кластеров [12,18–21]. Диэлектрическая матрица в этом подходе моделируется некоторым параметром $\varepsilon(\mathbf{r})$. Напряженность электрического поля в присутствии диэлектрической среды $\mathbf{E}^{\varepsilon}(\mathbf{r}) = \nabla V_{C}^{\varepsilon}(\mathbf{r})$ удовлетворяет уравнению Максвелла

$$\operatorname{div} \mathbf{D}(\mathbf{r}) = 4\pi [n_+(\mathbf{r}) - n(\mathbf{r})],$$

где $\mathbf{D}(\mathbf{r}) = \varepsilon(\mathbf{r})\mathbf{E}^{\varepsilon}(\mathbf{r})$ —вектор электрического смещения. Если металлическая нить радиусом *R* помещается в однородную диэлектрическую матрицу, в качестве $\varepsilon(\mathbf{r})$ в первом приближении можно взять макроскопическую диэлектрическую проницаемость среды ε . Тогда, учитывая непрерывность V_C^{ε} и вектора *D* (который в силу симметрии имеет только радиальную составляющую), получаем

$$V_C^{\varepsilon}(r) = \begin{cases} V_C(r) - V_C(R)(\varepsilon - 1)/\varepsilon, & r \leq R \\ V_C(r)/\varepsilon, & r > R. \end{cases}$$

Таким образом, электронная плотность основного состояния нитей, помещенных в диэлектрическую матрицу, находится путем решения самосогласованных уравнений (2)-(5), где в уравнении (3) $V_C(r)$ заменяется на $V_C^{\varepsilon}(r)$. Отметим, что в нашем подходе обменно-корреляционный потенциал для нитей в диэлектрике задается тем же функционалом, что и для свободных нитей.

Если система находится в слабом зависящем от времени электрическом поле $\delta V_{\text{ext}}(\mathbf{r}, t)$, электронная плотность меняется со временем: $n(\mathbf{r}, t) = n(\mathbf{r}) + \delta n(\mathbf{r}, t)$. В рамках теории функционала плотности [22,23] индуцированная электронная плотность $\delta n(\mathbf{r}, t)$ может быть получена при рассмотрении отклика системы невзаимодействующих электронов на некоторое возмущение эффективного поля $\delta V_{\text{eff}}(\mathbf{r}, t)$. В этом случае с точностью до членов, линейных по внешнему полю, Фурье-компонента $\delta n(\mathbf{r}, \omega)$ связана с соответствующей компонентой эффективного поля $\delta V_{eff}(\mathbf{r}, \omega)$ соотношением [24]

$$\delta n(\mathbf{r},\omega) = \int \chi^0(\mathbf{r},\mathbf{r}',\omega) \delta V_{\text{eff}}(\mathbf{r}',\omega) d\mathbf{r}', \qquad (8)$$

$$\delta V_{\text{eff}}(\mathbf{r},\omega) = \delta V_C(\mathbf{r},\omega) + \frac{\partial V_{xc}[n]}{\partial n}\Big|_{n=n(\mathbf{r})} \delta n(\mathbf{r},\omega), \quad (9)$$

$$\delta V_C(\mathbf{r},\omega) = \delta V_{\text{ext}}(\mathbf{r},\omega) + \int \frac{\delta n(\mathbf{r}'',\omega)}{|\mathbf{r}-\mathbf{r}'|} d\mathbf{r}', \qquad (10)$$

где возмущение эффективного поля δV_{eff} складывается из индуцированной кулоновской части и обменно-корреляционной составляющей, для которой в данной работе использовалось адиабатическое приближение [23].

Функция отклика χ^0 системы невзаимодействующих электронов выражается через собственные функции ψ_j и значения ϵ_j уравнений Кона–Шэма (2) следующим образом:

$$\chi^{0}(\mathbf{r},\mathbf{r}',\omega) = \lim_{\Delta \to +0} \sum_{i,j} (f_{i} - f_{j}) \frac{\psi_{i}^{*}(\mathbf{r})\psi_{j}(\mathbf{r})\psi_{j}^{*}(\mathbf{r}')\psi_{i}(\mathbf{r}')}{\omega - (\epsilon_{j} - \epsilon_{i}) + i\Delta}.$$
(11)

Используя запаздывающие функции Грина

$$G(\mathbf{r},\mathbf{r}',\epsilon) = \lim_{\Delta \to +0} \sum_{j} \frac{\psi_{j}(\mathbf{r})\psi_{j}^{*}(\mathbf{r}')}{\epsilon - \epsilon_{j} + i\Delta},$$

можно получить более удобное для расчета представление функции отклика

$$\chi^{0}(\mathbf{r}, \mathbf{r}', \omega) = \sum_{i} f_{i} [\psi_{i}^{*}(\mathbf{r})\psi_{i}(\mathbf{r}')G(\mathbf{r}, \mathbf{r}', \epsilon_{i} + \omega) + \psi_{i}(\mathbf{r})\psi_{i}^{*}(\mathbf{r}')G^{*}(\mathbf{r}, \mathbf{r}', \epsilon_{i} - \omega)].$$

В данной работе использовалось дипольное приближение, так как для рассматриваемых нитей ($R \leq 10$ a. u.) в оптической области электромагнитного излучения длина волны $\lambda \gg R$. Кроме того, составляющая электромагнитной волны, поляризованная вдоль оси нити (ось Z), в силу симметрии не индуцирует электронную плотность и, следовательно, не поглощается. Поэтому электрическое поле можно считать направленным вдоль оси X, и потенциальная энергия электрона в этом случае имеет вид

$$\delta V_{ext}(\mathbf{r},t) = E_{\perp} r \cos \varphi e^{-i\omega t}, \qquad (12)$$

где E_{\perp} — амплитуда напряженности электрического поля.

Индуцированная электронная плотность δn и δV_C имеет ту же угловую зависимость, что и внешнее возмущение

$$\delta n(\mathbf{r}, \omega) = \delta n(r, \omega) \cos \varphi,$$

$$\delta V_C(\mathbf{r}, \omega) = \delta V_C(r, \omega) \cos \varphi$$

и связаны между собой соотношением

$$\delta V_C(r,\omega) = E_{\perp}r + 2\pi \int_0^\infty \frac{r_<}{r_>} \delta n(r',\omega)r'dr', \qquad (13)$$

где $r_{<}(r_{>})$ — меньшее (большее) из r и r'.

Радиальные части $\delta n(r, \omega)$ и $\delta V_{\text{eff}}(r, \omega)$ связаны посредством радиальной функции отклика

$$\begin{split} \delta n(r,\omega) &= \int_0^\infty \chi^0(r,r',\omega) \delta V_{\text{eff}}(r',\omega) r' dr', \\ \chi^0(r,r',\omega) &= \frac{\sqrt{8}}{\pi^2} \sum_{\epsilon_{nm} < E_F} \sqrt{E_F - \epsilon_{nm}} R_{nm}(r) R_{nm}(r') \\ &\times \left[G_{m+1}(r,r',\epsilon_{nm}+\omega) + G_{m-1}(r,r',\epsilon_{nm}+\omega) \right. \\ &\left. + G_{m+1}^*(r,r',\epsilon_{nm}-\omega) + G_{m-1}^*(r,r',\epsilon_{nm}-\omega) \right] \end{split}$$

Радиальная функция Грина G_m строится через регулярное и сингулярное решения радиального уравнения Шредингера с эффективным полем V_{eff} [25].

Влияние диэлектрического окружения на линейный отклик металлических нитей может быть исследовано в рамках изложенного выше подхода. В данном случае диэлектрическая среда описывается параметром $\varepsilon(\mathbf{r}, \omega)$, зависящим от частоты. Напряженность индуцированного электрического поля в присутствии диэлектрика $\delta \mathbf{E}^{\varepsilon}(\mathbf{r}, \omega) = \nabla \delta V_{C}^{\varepsilon}(\mathbf{r}, \omega)$ удовлетворяет уравнению Максвелла

$$\operatorname{div} \delta \mathbf{D}(\mathbf{r}, \omega) = -4\pi \delta n(\mathbf{r}, \omega),$$

где $\delta \mathbf{D}(\mathbf{r}, \omega) = \varepsilon(\mathbf{r}, \omega) \delta \mathbf{E}^{\varepsilon}(\mathbf{r}, \omega)$ — изменение вектора электрического смещения. Как и при расчете электронной структуры, если нить помещается в однородную диэлектрическую среду, $\varepsilon(\mathbf{r}, \omega)$ в первом приближении заменяется зависящей от частоты макроскопической диэлектрической проницаемостью среды $\varepsilon(\omega)$. Кроме того, ширина запрещенной зоны многих диэлектрических сред оказывается больше энергий электронных переходов для металлических систем. Для таких диэлектриков в подходящем частотном интервале зависящая от частоты диэлектрическая проницаемость может быть заменена статической диэлектрической проницаемостью ε .

Радиальная часть $\delta V_c^{\varepsilon}(r,\omega)$ для рассматриваемой симметрии внешнего поля (12) может быть найдена из уравнения Пуассона

$$\left[\frac{1}{r}\frac{d}{dr}\left(r\frac{d}{dr}\right) - \frac{1}{r^2}\right]\delta V_C^{\varepsilon}(r,\omega) = -\frac{4\pi}{\varepsilon}\delta n(r,\omega).$$

Для нити радиусом R, помещенной в матрицу с диэлектрической проницаемостью ε , граничные условия при r = R приводят к следующему выражению для δV_C^{ε} :

$$\delta V_C^{\varepsilon}(r,\omega) = \begin{cases} \delta V_C(r,\omega) - \left(\frac{\varepsilon-1}{\varepsilon+1}\right) \\ \times \frac{r}{R} \delta V_C(R,\omega), & r \leq R \\ \left[\delta V_C(r,\omega) + \left(\frac{\varepsilon-1}{\varepsilon+1}\right) \\ \times \frac{R}{r} \delta V_C(R,\omega) \right] \varepsilon^{-1}, & r > R, \end{cases}$$

где $\delta V_C(r, \omega)$ выражается через индуцированную плотность тем же образом, что и в случае свободных нитей (13).

Таким образом, линейный отклик нитей, находящихся в диэлектрической матрице, описывается системой самосогласованных уравнений (8)–(10), где в уравнении (9) $\delta V_C(\mathbf{r}, \omega)$ должна быть заменена на $\delta V_C^{\varepsilon}(r, \omega) \cos \varphi$. Следует отметить, что учет диэлектрика при описании электронной структуры неявным образом влияет и на линейный отклик нитей посредством изменения функции χ^0 (которая строится через измененные ψ_j , ϵ_j и G (11)) и электронной плотности основного состояния n(r). Как и при изучении электронной структуры, в предложенном подходе индуцированный обменно-корреляционный потенциал имеет тот же вид, что и для свободных нитей, и зависит от ε только через n(r) и $\delta n(\mathbf{r})$.

2. Электронная структура

На рис. 2 представлены электронная плотность и потенциальные энергии электрона для нити-"желе" с $r_s = 4.00$ a.u. (что соответствует плотности валентных электронов в Na) и радиусом R = 16 a. u., находящейся в вакууме и диэлектрической матрице с $\varepsilon = 5$. Обращают на себя внимание две характерные особенности, присущие всем поверхностным задачам (полуограниченные кристаллы, пленки, нити, кластеры). Во-первых, распределение электронной плотности не имеет резкого края, т.е. электроны проникают за пределы положительного фона (r > R). Поэтому эффективный радиус нити оказывается больше радиуса положительного фона $R_{\rm eff} = R + \delta(R)$. Это различие характеризуется параметром $\delta(R)$, который связан с величиной "вытекшего" за поверхность фона электронного заряда [8] и слабо зависит от радиуса нити *R*. Во-вторых, электронная плотность и потенциальная энергия электрона осциллируют во внутренней области с периодом $\lambda_F/2$ (фриделевские осцилляции). Сравнение результатов данной работы с аналогичными исследованиями кластеров [7,8,12], тонких пленок [6] и полуограниченных металлов [3,4] показывает, что роль поверхностных эффектов (величина "вытекшего" электронного заряда и амплитуда фриделевских осцилляций) возрастает при уменьшении размерности системы (при переходе от полуограниченных кристаллов к двумерным пленкам, к одномерным нитям и к нульмерным кластерам), что является следствием

Рис. 2. Электронная плотность и потенциальные энергии электрона для нити Na радиусом R = 16 а.u. в вакууме (сплошные линии) и в диэлектрической среде с $\varepsilon = 5$ (пунктирные линии). Вертикальные штриховые линии проведены с интервалом $\lambda_F/4$, где $\lambda_F = 2\pi/k_F = 3.274r_s$ а.u. — длина волны электрона при энергии Ферми.

увеличения числа атомов на поверхности по отношению к числу атомов в объеме.

Осциллирующий (с периодом $\lambda_F/2$) характер электронной плотности во внутренней области позволяет сделать некоторые предположения относительно заполнения энергетических зон при увеличении радиуса нити. При малых r волновая функция $R_{nm}(r) \sim r^m$, откуда следует, что ненулевой вклад в электронную плотность на оси нити (при r = 0) вносят лишь зоны с m = 0. Поэтому заполнение очередной зоны с m = 0 приводит к появлению нового периода в распределении электронной плотность. Можно, следовательно, сделать предположение о периодическом (с периодом $\lambda_F/2$) заполнении энергетических зон с m = 0.

Влияние диэлектрического окружения на n(r) сводится к вытягиванию электронной плотности за границу положительного фона (r > R) и к незначительному уменьшению амплитуды фриделевских осцилляций. При этом V_{eff} во внутренней области сдвигается вверх как целое, практически не изменяя свою форму. Уменьшение глубины и увеличение ширины потенциальной ямы приводят практически к одинаковому повышению энергетических уровней ϵ_{nm} . Данные эффекты наблюдались также для сферических кластеров [19,20].

Известно [15,26], что работа выхода IP для протяженных систем (пленки, нити и т.д.) связана с энергией Ферми соотношением

$$IP = -E_F$$

Рис. 3. Работа выхода для нитей Li, Na, K как функция R/λ_F . Вертикальные линии с индексами *nm* обозначают радиусы нитей, при которых начинает заполняться очередная энергетическая зона с квантовыми числами *nm*.

Зависимость работы выхода для Li нитей $(r_s = 3.25 \text{ a.u.})$, Na $(r_s = 4.00 \text{ a.u.})$ и К $(r_s = 4.86 \text{ a.u.})$ от радиуса представлена на рис. 3. Чтобы получить плавные кривые, расчет проводили с достаточно малым шагом по радиусу нити R. Реальные металлические нити имеют, однако, дискретный набор радиусов, оценить которые можно из следующих соображений. Предположим, что в основном объеме высотой L (в качестве L удобно выбрать параметр решетки объемного кристалла) может находиться целое число атомов N. Формула (7) показывает, что радиус нити Na (L = 8 a.u.) может принимать в этом случае значения $R_N \approx 3.3\sqrt{N}$, которые указаны на рисунке квадратами.

При увеличении радиуса нити IP осциллирует в соответствии с заполнением энергетических зон, приближаясь снизу к работе выхода W соответствующего объемного кристалла (горизонтальные штриховые линии). Усредненная размерная зависимость IP (пунктирные кривые) может быть представлена формулой

$$\tilde{IP} = W - C/R$$
,

где C = 1.5 eV. Аналогичные исследования других низкоразмерных систем (кластеров и пленок) выявили, что *IP* кластеров стремится сверху к *W* [7], в то время как для пленок усредненная *IP* не зависит от ее толщины [6]. Данный результат согласуется с исследованиями [27] о влиянии кривизны поверхности системы на различные ее характеристики (в том числе и на работу выхода).

Укажем, что на рис. З работы выхода для нитей разных металлов представлены в масштабе R/λ_F , в котором они имеют схожий размерный характер. Объяснить это можно следующим образом. При одинаковых значениях R/λ_F число электронов в основном объеме нитей Li, Na,

К определяется по формуле (7) и пропорционально $1/\lambda_F$ (так как $r_s \sim \lambda_F$). Если произвести замену координат $r' = r/\lambda_F$, то для нитей разных металлов $V_{\text{eff}}(r')$ принимает одинаковый вид (осциллирует во внутренней области с периодом 1/2). Поэтому при одном и том же R/λ_F энергетические уровни ϵ_{nm} (и, как видно из формулы (6), E_F) для нитей разных металлов пропорциональны $1/\lambda_F^2$ и число заполненных энергетических зон оказывается одинаковым.

3. Статическая поляризуемость

Дипольная поляризуемость единицы длины нити выражается через индуцированную электронную плотность соотношением

$$\alpha(\omega) = -\frac{\pi}{E_{\perp}} \int_0^\infty \delta n(r,\omega) r^2 dr.$$
(14)

При $\omega = 0$ это выражение определяет статическую поляризуемость α . Классическая теория, достаточно хорошо описывающая свойства объемных металлов, оказывается неприменимой к системам с квантово-размерными поперечными сечениями. На рис. 4 показана размерная зависимость статической поляризуемости нитей Li, Na, K. Полученная α больше классического значения ($\alpha_{cl} = R^2/2$) и может быть представлена в виде

$$\alpha = \frac{(R = \delta(R))^2}{2}.$$
 (15)

Таким образом, металлическая нить поляризуется под действием внешнего поля как классический проводящий цилиндр с эффективным радиусом $R_{\text{eff}} = R = \delta(R)$. Увеличение эффективного радиуса нити (характеризующееся параметром $\delta(R)$) можно объяснить проникновение электронов за границу положительного фона в основном состоянии (этот эффект обсуждался выше).

Рис. 4. Статическая поляризуемость нитей Li, Na, K (выраженная в единицах классической величины $\alpha_{cl} = R^2/2$) как функция R/λ_F . Усредненные размерные зависимости показаны штриховыми линиями.

Рис. 5. Изменение статической поляризуемости по сравнению с вакуумным значением при увеличении диэлектрической проницаемости среды: a — для нитей радиусом R = 8 а.u. с различной плотностью валентных электронов; b — для нитей Na с R = 6.8 и 10 а.u.

Аналогичный результат известен также для сферических кластеров [8–12], поляризуемость которых больше классического значения ($\alpha_{cl} = R^3$) и имеет вид

$$\alpha = (R + \delta(R))^3. \tag{16}$$

В работе [28] было показано, что учет межэлектронного взаимодействия приводит к уменьшению поляризуемости металлических кластеров. Поэтому обнаруженное увеличение статической поляризуемости квантоворазмерных систем по сравнению с предсказаниями классической теории может рассматриваться также как следствие ослабления эффективного межэлектронного взаимодействия из-за проникновения электронов за поверхность положительного фона. Формулы (15), (16) показывают, что отличие поляризуемости квантовой металлической системы от классического результата зависит от размерности системы: при одном и том же радиусе поляризуемость нитей меньше отличается от классического значения по сравнению с кластерами. Как и для сферических кластеров [9], можно показать, что при увеличении радиуса нити $\delta(R) \rightarrow \delta_p$, где δ_p положение центра тяжести индуцированной электронной плотности для соответствующего полуограниченного металла. Поэтому при больших радиусах поляризуемость нити может быть представлена следующим образом:

$$\alpha \approx \frac{(R+\delta_p)^2}{2}$$

Наши расчеты дали $\delta_p = 1.25$, 1.20 и 1.15 а.
и. для Li, Na и K соответственно.

Классическая электростатика утверждает, что индуцированная плотность и, следовательно, поляризуемость проводящего цилиндра (как и других металлических систем) не изменяются при его помещении в диэлектрическую матрицу. Квантово-механические расчеты дают другой результат: поляризуемость нитей убывает с увеличением ε , причем тем быстрее, чем больше r_s (рис. 5, a) и меньше радиус нити R (рис. 5, b). Этот эффект был обнаружен также для кластеров [18] и объясняется наличием двух конкурирующих процессов. С одной стороны, диэлектрическое экранирование межэлектронного взаимодействия приводит к увеличению $\delta n(r)$ за краем положительного фона (аналогичный результат для электронной плотности основного состояния n(r)обсуждался выше) и к увеличению амплитуды осцилляций $\delta n(r)$ во внутренней области. С другой стороны, диэлектрическое экранирование внешнего поля значительно уменьшает $\delta n(r)$ на всем радиальном интервале. При этом влияние второго процесса (приводящего к уменьшению α) усиливается с увеличением r_s и уменьшением R. Отметим, что для нитей в отличие от кластеров доминирующим оказывается эффект экранирования внешнего поля. Например, поляризуемость кластера Na с R = 10 a.u. возрастает с увеличением ε [18], тогда как поляризуемость нити Na с R = 10 a.u. убывает (рис. 5, *b*).

4. Динамическая поляризуемость

При исследовании динамического отклика нитей к частоте электромагнитного поля добавлялась малая мнимая величина $\Delta = 0.001 \text{ Ry}$ в целях моделирования конечного времени жизни возбужденных состояний. Данная добавка, кроме того, позволяет устранить сингулярности в функции отклика χ^0 (11) и улучшить сходимость итерационного процесса решения самосогласованных уравнений (8)–(10).

Сечение фотопоглощения определяется мнимой частью динамической поляризуемости (14)

$$\sigma(\omega) = \frac{4\pi\omega}{c} \mathrm{Im}\alpha(\omega).$$

Используя уравнения (8)–(10), (14), можно получить эквивалентное выражение для $\sigma(\omega)$ [29]

$$\sigma(\omega) = -\frac{4\pi\omega}{E_{\perp}^{2}} \int \delta V_{\text{eff}}^{*}(\mathbf{r},\omega) \text{Im}\chi^{0}(\mathbf{r},\mathbf{r}',\omega)$$
$$\times \delta V_{\text{eff}}(\mathbf{r}',\omega) d\mathbf{r} d\mathbf{r}'. \tag{17}$$

На рис. 6 показаны спектры фотопоглощения нитей Na радиусом R = 7, 8.5 и 10 а.u. (что соответствует заполнению двух, трех и четырех зон) с учетом и без учета межэлектронного взаимодействия (в последнем случае вместо $\delta V_{\rm eff}$ в выражение (17) подставляется внешнее поле $\delta V_{\rm ext}$). Для случая невзаимодействующих электронов при $\Delta \rightarrow 0$ получается известное соотношение

$$\sigma(\omega) = \frac{4\pi^2 \omega}{E_{\perp}^2} \sum_{i,j} f_i (2 - f_j) |\langle \psi_i | \delta V_{\text{ext}} | \psi_j \rangle|^2 \delta(\omega - \epsilon_j + \epsilon_i),$$

где, как и выше, для спин-ограниченного случая числа заполнения электронных состояний $f_j = 0, 2$. Видно,

Рис. 6. Сечения фотопоглощения нитей Na с радиусом R = 7, 8.5 и 10 а.u. с учетом (сплошные кривые) и без учета (штриховые линии) межэлектронного взаимодействия. Стрелками указаны положения порога ионизации IP и классическое значение частоты поверхностного плазменного резонанса w_{cl}^s .

что в рамках дипольного приближения (12) возможными оказываются прямые ($\Delta k = 0$) межзонные переходы при условии $\Delta m = \pm 1$. В приближении невзаимодействующих электронов положение пиков фотопоглощения, связанных с переходами зона–зона, в точности совпадает с разностью соответствующих энергетических уровней ϵ_{nm} . Для взаимодействующих электронов в пределе $\Delta \rightarrow 0$ формула (17) переходит в выражение

$$\sigma(\omega) = \frac{4\pi^2 \omega}{E_{\perp}^2} \sum_{i,j} f_i (2 - f_j) |\langle \psi_i | \delta V_{\text{eff}} | \psi_j \rangle|^2 \delta(\omega - \epsilon_j + \epsilon_i),$$

т.е. дает, как и следовало ожидать, спектр фотопоглощения невзаимодействующих электронов, находящихся в возмущенном эффективном поле $\delta V_{\rm eff}$.

Основное отличие спектров фотопоглощения взаимодействующих электронов от невзаимодействующих состоит в увеличении фотопоглощения в области $\omega \approx 3.8 \, {\rm eV}$, которое можно объяснить возбуждени-

ем поверхностных коллективных колебаний (поверхностный плазменный резонанс). В рамках классической электродинамики частота поверхностного плазмона для проводящего цилиндра ($\omega_{cl}^s = \omega_p/\sqrt{2}$, где $\omega^p = (4\pi e^2 n_0/m)^{1/2} = (3/r_s^3)^{1/2}$ а.u. — частота объемного плазмона) больше, чем для проводящей сферы ($\omega_{cl}^s = \omega_p/\sqrt{3}$). Поэтому в отличие от случая кластеров Na [21] поверхностный плазмон для нитей Na попадает в область непрерывного спектра (лежит выше порога ионизации *IP*), что приводит к его наложению на одночастичные возбуждения и затрудняет идентификацию пиков фотопоглощения.

Кроме того, из рис. 6 видно, что частота поверхностного плазмона для нитей Na меньше классического значения ω_{cl}^s . Это разногласие с предсказанием классической теории (которое было найдено также и для кластеров Na [10-12]), как и в случае статической полиризуемости, можно объяснить уменьшением эффективного межэлектронного взаимодействия вследствие проникновения электронов за границу положительного фона. Как и для металлических кластеров [30], величину сдвига частоты поверхностного плазмона для нити относительно ω_{cl}^s можно оценить в рамках классического подхода, предполагая, что то же число электронов N занимают теперь объем цилиндра радиусом $R_{\rm eff} = R + \delta(R)$ и высотой L. Это приводит к увеличению электронного радиуса Вигнера–Зейтца $r'_{s} = r_{s}(1 = \delta(R)/R)^{2/3}$ и, следовательно, к уменьшению частоты поверхностного резонанса

$$\frac{\omega^{s'}}{\omega_{cl}^s} = \left[\frac{R}{R+\delta(R)}\right].$$
(18)

Для металлических кластеров аналогичные рассуждения приводят к следующему выражению для измененной частоты поверхностного плазмона:

$$\frac{\omega^{s'}}{\omega_{cl}^s} = \left[\frac{R}{R+\delta(R)}\right]^{3/2}.$$
 (19)

Сравнение уравнений (15)-(19) позволяет установить общую связь между величиной "красного" смещения поверхностного плазмона и увеличением статической поляризуемости относительно α_{cl} для кластеров и нитей

$$\left[\frac{\omega^{s'}}{\omega^s_{cl}}\right]^2 = \frac{\alpha_{cl}}{\alpha}.$$
 (20)

Уравнения (18)–(20) показывают, что частота поверхностного плазменного резонанса (как и статическая поляризуемость) отличается от своего классического значения тем больше, чем меньше размерность системы. Этот результат применительно к статической поляризуемости уже обсуждался выше.

Из классической электродинамики известно, что частота поверхностной плазменной моды для проводящего цилиндра уменьшается при помещении его в среду с диэлектрической проницаемостью ε

$$\omega_{cl}^s = \frac{\omega_p}{\sqrt{1+\varepsilon}}.$$
(21)

Рис. 7. Сечения фотопоглощения нити Na радиусом R = 10 а.u. в вакууме (сплошная кривая) и в диэлектрической среде с $\varepsilon = 5$ (штриховая кривая). Положение порога ионизации IP и классическое значение частоты поверхностного плазменного резонанса ω_{cl}^s для нити в вакууме и в диэлектрике указаны соответственно стрелками вниз и вверх (совпадение IP и ω_{cl}^s для данной нити в диэлектрической матрице с $\varepsilon = 5$ случайное).

Этот эффект связан с экранированием межэлектронного взаимодействия диэлектрической матрицей. Квантовомеханические расчеты выявили аналогичную картину. На рис. 7 в качестве примера представлены спектры фотопоглощения нити Na радиусом R = 10 a.u., находящейся в вакууме и диэлектрической среде с $\varepsilon = 5$. При помещении нити Na в диэлектрическую матрицу частота поверхностного плазмона уменьшается, что приводит к возрастанию фотопоглощения в области $\omega \approx 2 \, \mathrm{eV}$ и к его уменьшению для $\omega > 3$ eV. Кроме того, было обнаружено, что с увеличением є одночастичные резонансы для нитей Na сдвигаются в "красную" область медленнее, чем поверхностная плазменная мода, благодаря чему поверхностный плазмон смещается из области непрерывного спектра в область перед порогом ионизации и может быть хорошо идентифицирован ($\omega^s = 2.17 \, \text{eV}$). Отметим, что в случае кластеров Na наблюдалась обратная ситуация [21]: поверхностный плазмон сдвигался из области ниже порога ионизации (свободные кластеры) в область непрерывного спектра (кластеры в диэлектрической матрице),

Как и для свободных нитей, частота поверхностного плазмона для нитей Na в диэлектрике с $\varepsilon = 5$ ($\omega^s = 2.17 \text{ eV}$) оказывается меньше классического значения ($\omega_{cl}^s = 2.4 \text{ eV}$ (21)) на величину $\Delta \omega^s = 0.23 \text{ eV}$. Аналогичные исследования для кластеров [21] дали $\Delta \omega^s \approx 0.5 \text{ eV}$. Как и следовало ожидать, разногласие с предсказаниями классической теории оказывается больше для кластеров, чем для нитей. Следует отметить, что рассчитанная по формулам (18), (21) частота поверхностного плазмона для нити Na в диэлектрической матрице с $\varepsilon = 5\omega^{s'} \approx 2.16 \text{ eV}$ (в предположении $\delta(R) \approx 1.20 \text{ a.u., как было найдено при изучении ста-$ тического отклика) находится в хорошем согласии с полученным значением $\omega^s = 2.17 \, \text{eV}.$

Чтобы показать связь пика фотопоглощения при $\omega^s = 2.17 \text{ eV}$ с возбуждением поверхностного плазмона, мы исследовали изменение различных динамических характеристик при переходе через этот резонанс. В частности, интегрируя уравнение непрерывности, которое при данной симметрии задачи имеет вид

$$-i\omega\delta n(x, y, \omega) = \frac{\partial}{\partial x}j_x(x, y, \omega) + \frac{\partial}{\partial y}j_y(x, y, \omega),$$

по координатам x от 0 до ∞ и по y от $-\infty$ до ∞ можно получить выражение для тока $I(\omega) = \int j_x(0, y, \omega) dy$, протекающего через плоскость X = 0,

$$I(\omega) = 2i\omega \int_0^\infty \delta n(r,\omega) r dr.$$
 (22)

Из рис. 8 видно, что при переходе через пик фотопоглощения с частотой $\omega^s = 2.17 \text{ eV}$ действительная часть индуцированной плотности (и, следовательно, мнимая часть тока $I(\omega)$ (22)) на всем радиальном интервале

Рис. 8. Изменение комплексной индуцированной электронной плотности $\delta n(r, \omega)$ и ее модуля $|\delta n(r, \omega)|^2$ для нити Na $(R = 10 \text{ a.u.}, \varepsilon = 5)$ при переходе через поверхностный плазменный резонанс при $\omega = 2.15, 2.17$ и 2.20 eV (штриховые, сплошные и пунктирные линии соответственно).

изменяет свой знак. Это означает, что под действием электромагнитного поля с частотой ω^s электроны движуться синфазно с внешним полем. Кроме того, электронная плотность осциллирует с максимальной амплитудой (определяемой $|\delta n(r, \omega)|$) именно на поверхности нити. Эти результаты характерны для поверхностного плазменного резонанса и свидетельствуют, таким образом, о том, что пик фотопоглощения с частотой ω^s действительно обусловлен возбуждением поверхностной коллективной моды.

Список литературы

- [1] B. Tanatar. A. Gold. Phys. Rev. B52, 3, 1996 (1995).
- [2] G.W. Bryant. Phys. Rev. **B29**, 12, 6632 (1984).
- [3] N.D. Lang. Solid State Commun. 7, 1047 (1969).
- [4] N.D. Lang, W. Kohn. Phys. Rev. B1, 12, 4555 (1970).
- [5] N.D. Lang, W. Kohn. Phys. Rev. **B7**, *8*, 3541 (1973).
- [6] F.K. Schulte. Surf. Sci. 55, 427 (1976).
- [7] W. Ekardt. Phys. Rev. **B29**, *4*, 1558 (1984).
- [8] D.E. Beck. Phys. Rev. B30, 12, 6935 (1984).
- [9] D.R. Snider, R.S. Sorbello. Phys. Rev. B28, 10, 5702 (1983).
- [10] V. Kresin. Phys. Rev. **B39**, *5*, 3042 (1989).
- [11] W. Ekardt. Phys. Rev. **B31**, 10, 6360 (1985).
- [12] M.J. Puska, R.M. Nieminen, M. Manninen. Phys. Rev. B31, 6, 3486 (1985).
- [13] P. Hohenberg, W. Kohn. Phys. Rev. 136, 3, B864 (1964).
- [14] W. Kohn, L.J. Sham. Phys. Rev. A140, 4, 1133 (1965).
- [15] Теория неоднородного электронного газа / Под ред. Н. Марча, С. Лундквиста. Мир, М. (1987).
- [16] S.H. Vosko, L. Wilk, M. Nusair. Canad. J. Phys. 58, 8, 1200 (1980).
- [17] A.A. Lushnikov, A.J. Simonov. Z. Phys. 270, 1, 17 (1974).
- [18] L.I. Kurkina, O.V. Farberovich. Z. Phys. D37, 4, 359 (1996).
- [19] L1 Serra, A. Rubio. Z. Phys. D26, S122 (1993).
- [20] М.М. Герман, В.Я. Купершмидт, О.В. Фарберович. Поверхность 7, 45 (1989).
- [21] L.I. Kurkina, O.V. Farberovich. Phys. Rev. B54, 20, 14 791 (1996).
- [22] E. Runge, E.K.U. Gross. Phys. Rev. Lett. 52, 12, 997 (1984).
- [23] E.K.U. Gross, W. Kohn. Phys. Rev. Lett. 55, 26, 2850 (1985).
- [24] А.И. Ахиезер. Методы статистической физики. Наука, М. (1977).
- [25] А.И. Базь, Я.Б. Зельдович, А.М. Переломов. Рассеяние, реакции и распады в нерелятивистской квантовой механике. Наука, М. (1971).
- [26] J.P. Perdew, R.G. Parr, M. Levy, J.L. Balduz. Phys. Rev. Lett. 49, 23, 1691 (1982).
- [27] G. Makov, A. Nitzan. Phys. Rev. B47, 4, 2301 (1993).
- [28] A.A. Lushnikov, A.J. Simonov. Phys. Rev. Lett. A44, 1, 45 (1973).
- [29] A. Zangwill, P. Soven. Phys. Rev. A21, 5, 1561 (1980).
- [30] A. Dellafiore, F. Matera. Phys. Rev. B41, 6, 3488 (1990).