Критический ток, захваченные магнитные поля и разорванные вихри в керамических ВТСП образцах

© А.А. Козловский, В.Ф. Хирный

Институт монокристаллов Академии наук Украины, 310001 Харьков, Украина E-mail: root@isc.kharkov.ua

(Поступила в окончательном виде 31 марта 2000 г.)

Получены зависимости критических токов от величины захваченных H_{TRAP} и остаточных H_{REM} магнитных полей в гранулированных керамических ВТСП образцах $YBa_2Cu_3O_x$ и $Bi_{1.6}Pb_{0.4}Sr_2Ca_2Cu_3O_x$. Впервые был учтен вклад в эти поля полей рассеяния разорванных квантованных магнитных вихрей.

Исследование критического тока Іс неразрывно связано с изучением захвата магнитного потока сверхпроводниками второго рода. В основном исследовалось воздействие на величину І_с магнитных полей, оставшихся в образцах после выключения внешнего магнитного поля, см., например, [1]. Но полного понимания природы захваченного магнитного поля достигнуто не было. Практически не было изучено влияние на І_с захваченных полей, созданных собственным магнитным полем H_i транспортного тока I_t после выключения последнего. Известно [2], что при достижении измерительным током I значения I_c поле H_i проникает внутрь керамических ВТСП в виде колец, образованных из квантованных магнитных вихрей. После выключения тока вихревые кольца остаются в образцах. Исследованию влияния не только их магнитных полей на I_c , но и внешних полей H, параллельных образцу и току, посвящена данная работа.

1. Поперечные круговые поля

Зависимость $I_c(I_t)$ исследовалась на семи керамических ВТСП образцах: № 1-3 — образцы состава "1-2-3" (у образца № 2 иттрий заменен на эрбий) и № 4-7 образцы состава Bi1.6Pb0.4Sr2Ca2Cu3Ox, исследованные в [2] (их характерные свойства приведены в таблице, где D — диаметр, L — длина). С целью создания кругового магнитного поля при комнатной температуре через образцы пропускался ток І_t. В этом круговом магнитном поле они охлаждались до T = 77 K (режим FC), после чего ток I_t выключался. Круговое магнитное поле в сверхпроводящих образцах захватывалось в виде вихревых колец. Затем проводились измерения Іс по четырехзондовой схеме. Образцы находились в жидком азоте. Определяемой величине І_с соответствовало минимальное падение напряжения на образце $\simeq 1.5 \cdot 10^{-6}$ V. Измерения проводились в магнитном поле Земли. Когда направления токов It и измерительного I совпадали, критическое значение Іс последнего обозначали в виде $I_{c\uparrow\uparrow}$, а при их разных направлениях — $I_{c\uparrow\downarrow}$.

На рис. 1, а для образца № 1 приведены зависимости $I_{c\uparrow\uparrow}(I_t)$ — кривая 1 и $I_{c\uparrow\downarrow}(I_t)$ — кривая 2, характерные для всех образцов состава 123. На кривых 1 и 2 имеются

особенности — максимум и изменение наклона соответственно при одном и том же значении тока I_t . I_{c0} величина критического тока (см. таблицу), полученная при T = 77 К и H = 0 после охлаждения в нулевом магнитном поле (ZFC режим). Ток I_{c0} создает на поверхности образца поле $H_0 \cong 6.6$ Ое. На рис. 1, *b* приведены данные для Bi_{1.6}Pb_{0.4}Sr₂Ca₂Cu₃O_x-образца № 4.

Полученный результат на рис. 1, *а* качественно объясняется присутствием захваченных в образце круговых колец, образованных из вихрей Джозефсона и Абрико-

Рис. 1. Изменение приведенных критических токов I_c/I_{c0} в зависимости от величины транспортного тока I_t в образцах YBa₂Cu₃O_x (*a*) и Bi_{1.6}Pb_{0.4}Sr₂Ca₂Cu₃O_x (*b*). *1* — направления токов I_t и *I* совпадают; *2* — направления токов противоположны.

N₂	1	2	3	4	5	6	7
Состав	YBCO	ErBCO	YBCO	BPSCCO	BPSCCO	BPSCCO	BPSCCO
I_{c0}, \mathbf{A}	3.83	6.75	13.6	1.2	2.88	2.92	8.15
D, mm	2.3	2.5	6.2	2.0	3.1	3.1	1.6

Свойства исследуемых образцов с $L = 1.5 \, \text{cm}$

сова. В плотных YBCO образцах при $T = 77 \, \text{K}$ джозефсоновских вихрей значительно меньше абрикосовских. Последние при этой температуре оказываются запиннингованными внутри гранул, где они образовались еще при $T \cong T_c$, когда первое H_{c1g} критическое магнитное поле гранул мало отличалось от нуля. Поэтому кольца пронизывали гранулы, межгранульные связи и неоднородности. Из-за существования пустот и несверхпроводящих включений, размеры которых больше, чем лондоновская глубина проникновения магнитного поля λ_L , кольца разрываются. Магнитная связь между их частями нарушается. О разорванных (магнитно-несвязанных) вихрях известно давно [3]. Вывод о возможности их существования в керамических ВТСП следует из анализа работы сверхпроводящих низкотемпературных тонкопленочных трансформаторов, работающих на постоянном токе [3].

В гранулярных ВТСП в отличие от сплошной сверхпроводящей среды, в которой магнитное поле H_v находится внутри вихрей, магнитное поле будет и снаружи кусков вихрей, образующих разорванные кольца. Линии магнитной индукции этого поля рассеяния H_d (кроме расположенных вблизи оси вихрей) будут замкнуты снаружи разорванных вихревых колец и гранул, поскольку $H_d < H_{c1g}$. Распределение поля H_d снаружи образца № 1 было определено при помощи датчика Холла при 77 К. Круговое поле H_d было порядка 0.5 Ое и напоминало поле магнетика, у которого $\oint H_d dl = 0$ вдоль замкнутого пути L, проведенного вне образца. Более подробно об этом будет сообщено позже.

Усредненное поле внутри образца $H_{\text{REM}} = \sum (H_v - H_d),$ которое создано разорванными вихревыми "кольцами, имеет тот же знак, как если бы оно было создано целыми вихрями. Здесь *n* — число разорванных вихревых колец, находящихся в образце. Предполагаем, что присутствие поля H_{REM} сказывается на проникновение вихревых колец в образец при I = I_c следующим образом. При вхождении колец того же знака, что и у разорванных запиннингованных колец, энергетический барьер $E_{\uparrow\uparrow}$ для их вхождения будет более высоким, чем барьер Е0 при измерении критического тока I_{c0}. Это связано с силами отталкивания, которые действуют на входящее кольцо со стороны магнитных полей разорванных вихревых колец. Поэтому для достижения критического значения измерительным током I необходимо создать поле $H_i > H_0$. Результатом этого будет выполнение неравенства $I_{c\uparrow\uparrow} > I_{c0}$, когда направления токов I и I_t совпадают. Когда I и I_t направлены противоположно друг другу, в образец будут проникать вихревые кольца, циркуляция которых имеет противоположный знак по отношению к циркуляции запиннингованных в образце разорванных колец. Последние будут притягивать входящие в образец кольца и создавать условие, при котором будет выполняться неравенство $I_{c\uparrow\downarrow} < I_{c0}$. Изменения характера зависимости $I_c(I_t)$ при $I_t \ge 10$ A на кривых рис. 1, *a*, по-видимому, проявляются из-за уменьшения величины энергетического барьера с увеличением тока I_t .

Приведенное выше рассмотрение применимо и для макроскопических включений замороженного потока, т.е. связок вихрей Абрикосова.

У Ві_{1.6}Pb_{0.4}Sr₂Ca₂Cu₃O_x-образца (№ 4) со слабыми силами пиннинга (т. е. низким значением I_{c0}) $I_{c\uparrow\uparrow}$ и $I_{c\uparrow\downarrow}$ уменьшаются при увеличении магнитного поля, но в различной степени (рис. 1, *b*). Это происходит, повидимму, из-за существования в рыхлых керамических Ві_{1.6}Pb_{0.4}Sr₂Ca₂Cu₃O_x-образцах кольцевых вихрей Джозефсона [2]. Между проникающими и запиннингованными кольцами происходят взаимодействия типа флуксонфлуксонных при совпадении направлений токов I_t и Iи флуксон-антифлуксонных взаимодействий солитонного типа [4] при разных направлениях токов I_t и I. В обоих случаях происходит выделение тепла. Из-за диссипации энергии величина критического тока уменьшается. Аналогично вели себя образцы № 5 и 6.

В Ві_{1.6}Рb_{0.4}Sr₂Ca₂Cu₃O_x-образце (№ 7) магнитный поток не захватывался, поэтому $I_{c\uparrow\uparrow}$ и $I_{c\uparrow\downarrow} = I_{c0}$.

Захват потока также не наблюдали при пропускании по образцам (№ 1,4,7) переменного тока с частотой 50 Hz.

2. Продольные линейные поля

Поля рассеяния должны быть и у линейных квантованных магнитных вихрей, находящихся в керамических ВТСП, которые вносят вклад в величину H_{REM} и влияют на I_c . Чтобы проверить это, при T = 77 К исследовалась зависимость $I_c(H)$, когда поле H было параллельно току. Измерения проводили в двух режимах: в ZFC и FC. В первом случае критический ток, который измеряли в возрастающем внешнем поле, обозначали как $I_{1c}(H)$, в убывающем — $I_{2c}(H)$. Критический ток $I_{3c}(H)$ измерялся в магнитном поле, которое оставалось в образце после включения и выключения внешнего магнитного поля после охлаждения образца до 77 К. В FC-режиме измерений образец охлаждали в магнитном поле до 77 К и, не выключая поле, измеряли критический ток,

Рис. 2. Зависимости приведенных критических токов от величины внешнего поля H: $1 - I_{1c}(H)$; $2 - I_{2c}(H)$; $3 - I_{6c}(H)$; $4 - I_{4c}(H)$; $5 - I_{5c}(H)$ и $6 - I_{3c}(H)$.

который обозначали как $I_{4c}(H)$. Критический ток $I_{5c}(H)$ измерялся в остаточном магнитном поле, когда после охлаждения до 77 К поле выключалось. И, наконец, измерялся критический ток $I_{6c}(H)$, когда после охлаждения в поле оно выключалось и снова включалось.

На рис. 2 приведены данные для иттриевого образца № 1. В режиме ZFC гистерезис кривых $I_{1c}(H)$ и $I_{2c}(H)$ появлялся в результате захвата магнитного потока в гранулах при достижении магнитным полем Hвеличины $H_{c1g} \cong 300$ Ое. Из постоянства зависимостей $I_{3c}(H) \cong I_{c0}(H)$ следует, что при уменьшении внешнего поля до нуля магнитный поток либо покидал образец, либо оставалась величина захваченного поля, меньшая первого критического поля межгранульных связей H_{c1i} .

Как видно на рис. 2, для всех полей выполняется неравенство $I_{1c} < I_{4c}$. Это происходит из-за частичной компенсации внешнего поля захваченным магнитным полем H_{TRAP} , созданным полем рассеяния разорванных линейных магнитных вихрей, которые были запиннингованы в гранулах при $T = T_c$.

При измерении в режиме FC до $H \leq 75$ Oe $I_{6c} \cong I_{4c}$, $H_{\text{REM}} = H_{\text{TRAP}}$, где H_{REM} — поле, которое осталось в образце после выключения внешнего поля. Но, начиная с полей $H \ge 75$ Ое, выполнялось неравенство $I_{6c} < I_{4c}$. Иными словами, при измерении І6с внешнее поле компенсировалось в меньшей степени, чем при измерении I_{4c} . Поэтому $H_{\text{REM}} < H_{\text{TRAP}}$. Обнаруженная особенность объясняется влиянием на свойства вихрей поверхностного барьера Бина-Ливингстона гранул [5]. При измерении *І*_{4с} поверхностный барьер гранул занижен внешним магнитным полем. Вихри, расположенные от поверхности гранул на расстоянии $x \cong \lambda_L$, притягиваются к ней с некоторой силой F(x). Если $F(x) < F_p$ (где F_p — сила пиннинга), то все запиннингованные вихри остаются в образце. При измерении І5с, т.е. после выключения поля, барьер повышается. F(x) увеличивается и может стать больше, чем F_p. При этом вихри, которые расположены на расстоянии х от поверхности, покинут образец. При повторном включении поля (измерение тока I_{6c}) количество вихрей в образце не изменится, так как $H < H_{c1g}$. Следовательно, значение H_{REM} останется тем же.

2.1. Определение захваченных H_{TRAP}^{j} и остаточных H_{REM}^{j} магнитных полей в межгранульной области. При определении остаточной намагниченности использовали равенство токов I_{1c} и I_{5c} , измеренных в различных режимах (рис. 2). При измерении I_{1c} в ZFC-режиме эффективное поле в межгранульной области можно представить в виде

$$H_{\rm eff1} = H_1 + H_i + H_1^g - 4\pi M_1^J, \tag{1a}$$

где H_1 — поле, в котором находился образец при измерении I_{1c} ; H_i — поле, созданное измерительным током I; H_1^g — поле в межгранульной области, созданное экранирующими токами в гранулах. Это поле в основном направлено по внешнему полю. M_1^j — намагниченность межгранульной области, которая обусловлена экранирующими токами в межгранульной области (эта часть момента направлена против внешнего поля) и джозефсоновскими вихрями, проникшими в межгранульную область (эта часть момента направлена по полю). Поскольку $H_1 < H_{c1g} \cong 300$ Ое, то вклада от вихрей внутри гранул в H_{eff1} нет. Выражение для эффективного поля при измерении I_{5c} будет иметь вид

$$H_{\rm eff5} = H_{\rm REM}^{J} + H_i, \tag{1b}$$

где H_{REM}^{J} — поле рассеяния остаточного магнитного потока в межгранульной области, созданного частями разорванных абрикосовских вихрей. Из равенства токов и эффективных полей получаем

$$H_{\rm REM}^j = H_1 + H_1^g - 4\pi M_1^j.$$
 (2)

Мы не можем оценить ни M_1^j , ни H_1^g , но, поскольку они направлены противоположно друг другу, предполагаем, что второй и третий члены в (2) взаимно компенсируются, т.е.

$$H_{\text{REM}}^j \cong H_1. \tag{3}$$

Аналогично, исходя из сравнения I_{1c} и I_{6c} , нетрудно получить

$$H_{\text{REM}}^{J} \cong H_6 - H_1, \tag{4}$$

где H_6 — поле, в котором находился образец при измерении I_{6c} .

Величину $H_{\text{REM}}^{J}(H)$ определяли также графическим методом из кривых зависимости $I_c(H)$, которые получали после того, как образец охлаждали в поле H_m , параллельном току. Затем поле H_m выключалось, и измерялся критический ток в изменявшихся по величине магнитных полях H от 0 до 300 Ое. Эти зависимости имели максимумы, которые наблюдались при максимально возможной компенсации остаточным полем внешнего поля. На рис. 3 дан график такой зависимости для $H_m = 250$ Ое. Видно, что максимуму соответствует поле 87.5 Ое, т.е. после

Рис. 3. Зависимость приведенного критического тока от величины внешнего магнитного поля, приложенного после охлаждения образца в поле $H_m = 250$ Ос.

Рис. 4. Зависимости H_{REM}^{j} (1–3) и H_{TRAP}^{j} (4) от поля H, полученные различными способами. 1 — расчет по формуле (3), 2 — графический метод, 3 — расчет по формуле (4) и 4 — расчет по формуле (5).

охлаждения образца в поле 250 Ое до 77 К и последующего выключения поля в межгранульной области остается магнитное поле, $H_{\text{REM}}^j = 87.5$ Ое. Измеряя $I_c(H)$ при различных полях H_m , получили зависимость $H_{\text{REM}}^j(H)$. На рис. 4 даны графики зависимости $H_{\text{REM}}^j(H)$, которые были построены с помощью формул (3), (4) и графического метода. Из их сравнения следует, что расчет по формуле (3) дает ошибку до 10% (т.е. в пределах ошибки измерений), тогда как, используя формулу (4), получаем только качественное соответствие.

Захваченное поле H_{TRAP}^{j} нельзя определить экспериментально. Поэтому поле H_{TRAP}^{j} рассчитывалось по формуле, аналогичной (4), с помощью равенства $I_{4c} = I_{1c}$ и $H_{\text{eff4}} = H_{\text{eff1}}$. Тогда

$$H_{\text{TRAP}}^{j} \cong H_4 - H_1, \tag{5}$$

где H_4 — поле, в котором находился образец при измерении I_{4c} . Изменение H^j_{TRAP} при увеличении H, рассчитанное по (5), дано на рис. 4.

2.2. Оценка захваченных H_{TRAP}^{j} и остаточных H_{REM}^{g} магнитных полей в гранулах. Величина поля обратно пропорциональна площадям, через которые проникает магнитный поток. Принимая, что число гранул N в поперечных сечениях по всей длине образца примерно одинаково и записываемая площадь поперечного сечения образца как $S = N(S_g + S_j)$, получаем

$$H_{\text{TRAP}}^j/H_{\text{TRAP}}^g = H_{\text{REM}}^j/H_{\text{REM}}^g = 2.7V_g/V_j, \qquad (6)$$

где S_g — площадь поперечного сечения гранулы, а S_j — площадь поперечного сечения окружающего ее межгранульного пространства в расчете на одну гранулу, V_g — объемная фракция гранул в образце, а $V_j = 1 - V_g$ — объемная фракция межгранульных связей. Расчет сделан в предположении, что гранулы имеют форму шара и среднее расстояние между ними одинаковое, поэтому $S_g/S_j = 2.7V_g/V_j$. Отношение V_g/V_j получали из измерений реальной части магнитной восприимчивости $\chi' = V_g \chi'_g + V_j \chi'_j$ [2], где $V_g \chi'_g$ — величина сигнала от гранул, а $V_j \chi'_j$ — от межгранульных связей. У иттриевого образца № 1 отношение $S_g/S_j \cong 0.7$, поэтому $H^g_{\text{TRAP}} = 1.43H^j_{\text{TRAP}}$ и $H^g_{\text{REM}} = 1.43H^j_{\text{REM}}$.

Для определения степени захвата магнитного потока в гранулах при FC-режиме был введен коэффициент захвата потока $k_{\text{TRAP}} = H_{\text{TRAP}}^g/H$, подобный рассмотренному в [6]. Он показывает, какая часть приложенного поля остается в гранулах. Для определения части магнитного потока, остающейся в гранулах при выключении внешнего поля, введен коэффициент остаточной намагниченности $K_{\text{REM}} = H_{\text{REM}}^g / H_{\text{TRAP}}^g$. Зависимости $K_{\text{TRAP}}(H)$ и *k*_{REM}(*H*) для образца № 1 даны на рис. 5. Видно, что с ростом поля $K_{\text{TRAP}}(H)$ увеличивается, а $K_{\text{REM}}(H)$ уменьшается. Это происходит из-за того, что сила F(x), которая действует на вихри, изменяется с изменением величины *H*. На рис. 5 приведены значения $K_{\text{TRAP}}(H)$ и $K_{\text{REM}}(H)$, полученные из графиков зависимости $F(x/\lambda_L, H)$ при $\lambda_L = 2.3 \cdot 10^{-7}$ m и $F_p = 1.5 \cdot 10^{-4}$ H/m. Для этих значений λ_L и F_p рассчитанные величины $K_{\text{TRAP}}(H)$ и $K_{\text{REM}}(H)$

Рис. 5. Экспериментальные (1, 3) и расчетные (2, 4) зависимости коэффициентов захвата потока K_{TRAP} (1, 2) и коэффициента остаточной намагниченности K_{REM} (3, 4) от величины внешнего магнитного поля H.

лучше всего соответствовали экспериментальным. Сила F(x) определялась по формуле F(x) = -dE(x,H)/dx, где E — линейная энергия вихря на единицу его длины [5]. Предполагалось, что гранулы имеют форму шара радиусом $R \sim 10^{-7}$ m, и все вихри, захваченные при $T \leq T_c$ во время охлаждения образца в режиме FC, остаются в гранулах. Выражение для силы F, которая действует на первый ряд вихрей, с использованием термодинамического потенциала Гиббса дано в [7].

Отметим, что свойства керамического ВТСП образца $Bi_{1.6}Pb_{0.4}Sr_2Ca_2Cu_3O_x$ (№ 4) были аналогичны.

3. Спиральные магнитные поля

Внешнее магнитное поле *H*, приложенное параллельно оси цилиндра, не влияет на условия проникновения в образец вихревого кольца, которое создается собственным полем транспортного тока. Точно так же и транспортный ток не уменьшает критическое поле вхождения линейного вихря, параллельного оси цилиндра [8]. В этом случае реализуются бессиловые конфигурации и в образце существуют независимо друг от друга линейные и круговые вихри. Но могут быть и другие конфигурации — геликоидальные вихри [9], когда поле *H* влияет на критический ток. Условия, при которых происходит переход от одного случая к другому, рассмотрены в данном разделе.

Измерялась величина критического тока $I_c(H)$ в зависимости от значения внешнего магнитного поля H. Перед этим по образцу (№ 1) протекал электрический ток I_{tr} и к нему было приложено внешнее поле H_0 , параллельное току. Образец охлаждался от $T > T_c$ до 77 К. Этим создавалась предпосылка для захвата геликоидальных вихрей, поскольку на образец воздействовало суммарное геликоидальное магнитное поле $H_f = (H_{tr}^2 + H_0^2)^{0.5}$. Здесь H_{tr} — круговое поле, созданное транспортным током. Геликоидальные вихри, встречаясь с неоднородностями, размеры которых больше λ_L , разрывались. Их поля рассеяния были сосредоточены в межгранульном пространстве, создавая захваченное геликоидальное поле, которое влияло на I_c .

После охлаждения образца до 77 К ток I_{tr} выключался. Когда H_0 не выключалось после достижения температуры 77 К и в этом поле проводили измерения, I_c обозначали как $I_{4c\uparrow\uparrow}$ и $I_{4c\uparrow\downarrow}$. Если H_0 выключали и H = 0, то I_c представляли в виде $I_{5c\uparrow\uparrow}$ и $I_{5c\uparrow\downarrow}$. При измерении I_c после выключения H_0 и повторного включения внешнего продольного магнитного поля $H = H_0$, которое было параллельно току и образцу, I_c обозначали как $I_{6c\uparrow\uparrow}$, $I_{6c\uparrow\downarrow}$, $I_{7c\uparrow\uparrow}$ и $I_{7c\uparrow\downarrow}$. Измерения $I_6c\uparrow\uparrow$ и $I_{5c\uparrow\uparrow}$ выполнялись при одинаковых направлениях H_0 и H, а $I_{7c\uparrow\uparrow}$ и $I_{7c\uparrow\downarrow}$ — при противоположных. После каждого измерения образец отогревался до $T > T_c$. Как и прежде, знак $\uparrow\uparrow$ обозначает, что токи I_{tr} и I имели одинаковые направления, а $\uparrow\downarrow$ — различные.

Puc. 6. Экспериментальные зависимости $I_c(H)$, полученные при различных условиях измерений: I_{c1} (1); $I_{4c\uparrow\uparrow}$ (2); $I_{4c\uparrow\downarrow}$ (3); $I_{6c\uparrow\uparrow}$ (4); $I_{6c\uparrow\downarrow}$ (5); $I_{7c\uparrow\uparrow}$ (6); $I_{7c\uparrow\downarrow}$ (7). $I_{tr} = 8$ A.

Поведение зависимостей $I_c(H)$ исследовали при четырех значениях I_{tr} (A): 2, 4, 6 и 8. На рис. 6 представлены кривые, полученные, когда $I_{tr} = 8$ А. На рис. 6 видно, что кривые $I_{4c\uparrow\uparrow}(H)$ и $I_{6c\uparrow\uparrow}(H)$, а также $I_{4c\uparrow\downarrow}(H)$ и $I_{6c\uparrow\downarrow}(H)$ совпадают до $H \cong 75$ Ое. Подобное поведение наблюдалось при воздействии на образец продольных линейных полей. Поэтому считаем, что различие между захваченным H_{TRAP} и остаточным H_{REM} полями появляется в результате влияния барьера Бина-Ливингстона [5]. Обсуждаться будет только воздействие H_{REM} на I_c . На рис. 6 для сравнения приведен график зависимости $I_{1c}(H)$. Видно, что при всех значениях *H* выполняется условие $I_{4c\uparrow\uparrow}$ и $I_{6c\uparrow\uparrow} > I_{1c}$. В то же время $I_{4c\uparrow\downarrow}$, $I_{6c\uparrow\downarrow} > I_{1c}$ при $H > H^*$ и $I_{4c\uparrow\downarrow}, I_{6c\uparrow\downarrow} < I_{1c}$ при $H < H^*$. С возрастанием Itr, т.е. увеличением вклада в значение H_f поперечной составляющей поля H_i , величина H^* возрастала. При $H \ge 150$ Ое кривые зависимостей $I_{7c\uparrow\uparrow}(H)$ и $I_{7c\uparrow\downarrow}(H)$ совпадают с $I_{1c}(H)$. В меньших полях кривая $I_{7c\uparrow\downarrow}(H)$ расположена ниже $I_{1c}(H)$. Кривые $I_{7c\uparrow\uparrow}(H)$ и $I_{1c}(H)$ пересекаются, когда $H = H^{**}$. При $H > H^{**}$ выполняется неравенство $I_{7c\uparrow\uparrow} < I_{1c}$. Поле H^{**} , как и H^* возрастало с увеличением I_{tr} .

С целью объяснения поведения полученных кривых был выполнен специальный эксперимент для выяснения, при каких условиях в образцах существуют геликоиды, а когда круговые и линейные вихри. Исследование условий, при которых происходит переход от режима проникновения в сверхпроводник геликоидов к режиму, когда проникают линейные и круговые вихри, проводили на керамическом ВТСП образце $Bi_{1.6}Pb_{0.4}Sr_2Ca_2Cu_3O_x$ (№ 5). В образце было просверлено продольное отверстие, через которое проходил медный провод. Пропуская по нему электрический ток I₀, создавали поперечные круговые поля *H*_{i0}. Одновременно с этим на образец воздействовали внешним магнитным полем Н, параллельным току и оси образца. Чтобы узнать, какие вихри существуют в образце, аналогично работе [9], определялась зависимость критической температуры межгранульных

Рис. 7. Диаграмма состояний существования в образце геликоидов и суперпозиции круговых и продольных линейных вихрей.

связей T_c^j от продольного, кругового магнитных полей и их суперпозиции. Температура T_c^j соответствовала температуре изменения на 50% сигнала реальной части комплексной магнитной восприимчивости $\chi'(T)$ в области сверхпроводящего перехода слабых связей [2]. Под влиянием *H* и H_{i0} кривые зависимостей $\chi'(T)$ сдвигались к низким температурам на величину, равную ΔT . Согласно [8], поле H не влияет на условия вхождения вихревых колец, а поле H_{i0} не понижает критическое поле проникновения линейного вихря. Следовательно, из характера изменения ΔT от H и H_{i0} можно определить границу между значениями (H_{i0}, H) , при которых в образце реализуются резистивные состояния, характеризуемые вхождением геликоидов и круговых и продольных вихрей. На рис. 7 приведена диаграмма таких состояний. Кривые определяют нижнюю и верхнюю границы области существования геликоидов. Вне области, ограниченной этими кривыми, в образце существует суперпозиция круговых и продольных линейных вихрей при значениях H и H_{i0} , в основном примерно на порядок отличающихся друг от друга. Иными словами, можно утверждать, что при соизмеримых значениях магнитных полей H_i и H в образце существуют геликоиды, в противном случае — линейные и круговые вихри.

Возвращаясь к рис. 6, видим, что кривые $I_{4c\uparrow\uparrow}(H)$, $I_{4c\uparrow\downarrow}(H)$, $I_{6c\uparrow\downarrow}(H)$ и $I_{6c\uparrow\uparrow}(H)$ не выходят на насыщение при больших H, а кривые зависимостей $I_{7c\uparrow\uparrow}(H)$ и $I_{7c\uparrow\downarrow}(H)$ совпадают с кривой $I_{1c}(H)$ и имеют особенность. До $H \cong 150$ Ое они монотонно уменьшаются, а затем выходят на насыщение. Предполагаем, что до этого значения магнитного поля в образец проникали геликоиды, а при $H \ge 150$ Ое в него входили независимо друг от друга круговые вихревые кольца и линейные вихри. Этим же, видимо, объясняется и отсутствие различий в значениях I_{1c} , $I_{7c\uparrow\uparrow}$ и $I_{7c\uparrow\downarrow}(H)$, несмотря на то, что продольная составляющая поля при измерения I_{1c} . Аналогичное рассуждение приводит к тому, что монотонное убывание $I_{4c\uparrow\downarrow}(H)$, $I_{4c\uparrow\downarrow}(H)$, $I_{6c\uparrow\downarrow}(H)$, $I_{6c\uparrow\uparrow}(H)$ и отсутствие выхода

их на насыщение в рассматриваемой области полей объясняется вхождением геликоидов, когда продольная составляющая стала меньше, чем при измерении $I_{1c}(H)$.

Список литературы

- [1] J.E. Evetts, B.A. Glowacki. Cryogenics 28, 641 (1988).
- [2] В.Ф. Хирный, В.П. Семиноженко, А.А. Козловский, Ю.А. Гринченко. ФНТ 20, 8, 774 (1994).
- [3] J.R. Clem. Phys. Rev. **B12**, *6*, 1742 (1975).
- [4] А. Бароне, Дж. Патерно. Эффект Джозефсона. Физика и применения. Мир, М. (1984). 742 с.
- 5] C.P. Bean, J.D. Livingston. Phys. Rev. Lett. 12, 1, 14 (1964).
- [6] А.И. Дьяченко, В.В. Чабаненко. Сверхпроводимость: физика, химия, техника 6, 2, 252 (1993).
- [7] К.И. Кугель, Л.Г. Мамсурова, К.С. Пигальский, А.Л. Рахманов. ФНТ 24, 8, 823 (1998).
- [8] Ю.А. Гененко. Письма в ЖТФ 59, 5, 807 (1994).
- [9] В.Ф. Хирный, В.П. Семиноженко, А.А. Козловский. ФТТ 38, 10, 2951 (1996).