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We present a theory of the photonic band structure of three-dimensional arrays of quantum dots (QDs). A system
of Maxwell and material equations is solved and the dispersion equation for exciton polaritons is derived making
allowance for a nonlocal dielectric response of quasi-zero-dimensional excitons confined in QDs. The reflection and
transmission coefficients are calculated for a single plane, a pair of planes and a stack of equidistant planes of QDs.
Two different approaches are proposed to perform the calculation. One of them is based on recurrent equations
relating the reflection coefficients for N + 1 and N planes, and in other approach the Bloch solutions for an infinite
QD lattice are used.
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I. Introduction

In bulk crystals, a photon and an exciton mix in the
dispersion-crossover region, losing their identity in a com-
bined quasi-particle called the exciton polariton. Exciton
polaritons were intensively studied in the 60’s and 70’s, their
manifestation in various optical phenomena, including light
reflection and transmission, photoluminescence and resonant
light scattering, are well-established and documented (see
e. g. the contributed volume [1] and references therein).
Renewed interest and recent important developments in this
field [2–7] were stimulated by technological achievements
in fabrication of high-quality multi-layered heterostructures,
multiple quantum wells (MQWs) and superlattices (SLs).
Moreover, the concept of exciton polariton has undergone
a substantial modification, in particular with respect to
long-period MQW structures containing a finite number of
wells [8–18]. The present paper outlines the framework
for similar studies of structures containing regular arrays of
quantum dots (QDs). The shift from long-period MQWs
to 3D lattices of quantum dots allows to bridge the gap
between multilayered structures and photonic crystals. The
latter are defined as periodic dielectric structures with the
period being comparable to the wavelength of the visible-
range electromagnetic waves. In the simplest realization,
a photonic crystal is thought of as a periodic lattice of
dielectric spheres of dielectric constant εa embedded in
a uniform dielectric background εb (see reviews [19,20]).
Other potential realizations are a three-dimensional (3D)
lattice of resonant two-level atoms [21] or semiconductor
microcrystals embedded into the pores of periodic porous
materials [22] (see also [23]).

Here we study the photonic (or more precisely, exciton-
polaritonic) band structure of 3D periodic arrays of QDs
or simply QD lattices and the light reflection from a
finite number of QD planes. The excitonic states in a
single QD are quasi-zero-dimensional due to the quantum-

confinement effect and we consider a narrow frequency
region near a particular exciton size-quantization level. In
the resonant frequency region the dielectric response to an
electromagnetic wave is nonlocal and the main goal of the
work is to develop a theory which makes allowance for such
kind of nonlocality.

In Sect. II we derive the dispersion equation for exciton
polaritons in a 3D QD lattice. The reflection from and
transmission through a single plane containing quadratic
QD lattice are considered in Sect. III. The relation between
the exciton-polariton dispersion equation and single-plane
reflection and transmission coefficients is established in
Sect. IV. The reflection from a pair of QD planes and from
a stack of QD planes is considered respectively in Sects. V
and VI. The derived theory can be used as well for the
description of nuclear resonant scattering of γ quanta by
artificial nuclear multilayers (see [24–26]).

II. Bloch solutions in three-dimensional
quantum-dot lattices

We start from the Maxwell equations

∆E− grad div E = −
(ω

c

)2
D,

div D = 0 (1)

for the electric field E and the displacement vector D. The
nonlocal material equation relating D and E is taken in the
form (see [27])

D(r) = εbE(r) + 4πPexc(r), (2)

4πPexc(r) = T(ω)
∑

a

Φa(r)
∫

Φa(r′)E(r′)dr′. (3)

Here a are the lattice translation vectors enumerating quan-
tum dots, Φa(r) = Φ0(r − a) is the envelope function
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Ψexc(re−a, rh−a) of an exciton excited in the ath QD at co-
inciding electron and hole coordinates: Φa(r) = Ψexc,a(r, r).
The other notations are

T(ω) = 2π
εbωLTω0a3

B

ω2
0 − ω

2
≈
εbωLTπa3

B

ω0 − ω
, (4)

ωLT and aB are the exciton longitudinal-transverse splitting
and Bohr radius in the corresponding bulk semiconductor,
ω0 is the QD-exciton resonance frequency, εb is the back-
ground dielectric constant which is assumed to coincide
with the dielectric constant of the barrier material. In
the following we neglect the overlap of exciton envelope
functions Ψa and Ψa′ with a 6= a′ so that excitons excited
in different dots are assumed to be coupled only via
electromagnetic field.

It follows from Eq. (2) that div E = −(4π/εb) div Pexc

which allows to rewrite the first Eq. (1) as

∆E(r) + k2E(r) = −4πk2
0

(
1 + k−2 grad div

)
Pexc(r), (5)

where k0 = ω/c, k = k0nb = ωnb/c and nb =
√
εb.

We seek for Bloch-like solutions of Eq. (8) satisfying the
translational symmetry

Eq(r + a) = exp(iqa)Eq(r),

Pexc,q(r + a) = exp(iqa)Pexc,q(r), (6)

where the wave vector q is defined within the first Brillouin
zone. The exciton-polariton dispersion ω(q) can be shown
to satisfy the equation

Det ‖δαβ − Rαβ(ω, q)‖ = 0, (7)

where α, β = x, y, z, δαβ is the Kronecker symbol and, for
QD lattices,

Rαβ(ω, q) =
k2

0T(ω)

v0

∑
g

I2
q+gSαβ(q + g)

(q + g)2 − k2
, (8)

IQ =

∫
Φ0(r)eiQrdr, Sαβ = δαβ −

QαQβ

k2
, (9)

g are the reciprocal lattice vectors and v0 is the volume of
the lattice primitive cell.

Eqs. (7), (8) can be derived by using the two equivalent
approaches: (a) to express the exciton dielectric polarization
Φ0(r) in terms of the electric field, E(r), and find solutions
of the wave equation for E(r); (b) by using Green’s
function of the wave equation, to express the electric field
in terms of the exciton polarization and write a system
of self-consistent equations describing electric-field-mediated
coupling between the excitons excited in different quantum
dots. In the first approach, we substitute Eq. (3) into Eq. (5)
and expand the vector function Eq(r) in the Fourier series
as follows:

Eq(r) =
∑

g

ei(q+g)r Eq+g. (10)

The integral in Eq. (2) can be transformed into∫
Φa(r) E(r)dr = eiqa

∑
g

Iq+g Eq+g ≡ eiqaΛ. (11)

The sum
∑

a Φa(r)eiqa satisfies the translational symmetry
similar to Eq. (6) and can be presented as∑

a

Φa(r) eiqa =
∑

g

ei(q+g)r I∗q+g

v0
. (12)

The system of linear equations for the space harmonics Eq+g

can be written in the form[
(q + g)2 − k2

]
Eq+g = T(ω) k2

0

I∗q+g

v0
Ŝ(q + g)Λ, (13)

where the vector Λ is introduced in Eq. (11) and Ŝ(Q)Λ
is a vector with the components Sαβ(Q)Λβ . Dividing both
parts of Eq. (13) by (q + g)2 − k2, multiplying them by
Iq+g and summing over g we arrive at the vector equation
Λ = R̂(ω, q)Λ, where the matrix R̂ is defined by Eq. (8),
and hence at the dispersion equation (7).

In the second approach, we use Green’s function

G(r− r′) =
exp
(
ik|r− r′|

)
4π|r− r′|

=
1
V

∑
Q

exp
[
iQ(r− r′)

]
Q2 − k2

, (14)

satisfying the differential equation

(∆ + k2)G(r− r′) = −δ(r− r′). (15)

Here V is the lattice volume. Green’s function allows to
express E(r) via the polarization as

E(r) = 4πk2
0T(ω)

∫
dr′G(r− r′)

(
1 + k−2 grad div

)
Pexc(r′).

(16)
Now Eq. (3) is presented in the form

4πPexc(r) =
∑

a

paΦa(r), (17)

where

pa = T(ω)

∫
Φa(r′) E(r′) dr′. (18)

For the Bloch solutions (6) one has pa = eiqap0. Taking
a = 0 in Eq. (18) and using Eqs. (16), (17) we obtain

p0 = T(ω)

∫
dr′Φ0(r′)

∫
dr G(r′ − r)

(
1 + k−2 grad div

)
×
∑

a′

p0 Φa′(r) eiqa′ . (19)

If we now use Eqs. (9), (12) and the integral presenta-
tion of Green’s function we finally come to the equation
p0 = R̂(ω, q)p0 and re-derive Eq. (7).
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Dispersion equations written in terms of Rαβ for different K points in the Brillouin zone of a face-centered-cubic QD lattice

K (2π/a) Nonzero components of Rαβ Dispersion equations

Γ (0, 0, 0) Rxx = Ryy = Rzz Rxx = 1
X (0, 0, 1) Rxx = Ryy, Rzz Rxx = 1, Rzz = 1
L (1/2, 1/2, 1/2) Rαα = Rxx, Rαβ = Rxy(α 6= β) Rxx− Rxy = 1, Rxx + 2Rxy = 1
W (1/2, 0, 1) Rxx, Ryy = Rzz Rxx = 1, Ryy = 1
K (3/4, 0, 3/4) Rxx = Rzz, Ryy, Rxz = Rzx Rxx± Rxz = 1, Ryy = 1
U (1/4, 1/4, 1) Rxx = Ryy, Rzz, Rxy = Ryx Rxx± Rxy = 1, Rzz = 1

The numerical calculation is performed for spherical QDs
with the radius R exceeding the Bohr radius aB in which
case we have

IQ = π

(
2R
aB

)3/2 sin QR

QR
[
π2 − (QR)2

] . (20)

Then Eq. (8) can be transformed into

Rαβ(Ω,K) = ξ
Ω2

Ω2 − 1
σαβ(Ω,K), (21)

σαβ(Ω,K) =
∑

b

f
(
|K + b|R

)
Sαβ(K + b)

Ω2 −Ω2(K + b)
, (22)

Ω =
ω

ω0
, ξ =

64
π

ωLT

ω0

(
R
a

)3

,

f (x) =

[
π2 sin x

x(π2 − x2)

]2

, (23)

Ω(Q) = cQ/ω0nb. Eq. (7) is equivalent to the three
separate equations Rj(Ω,K) = 1 where Rj ( j = 1, 2, 3)

Figure 1. Exciton-polariton dispersion near the exciton resonance frequency ω0 in a face–centered–cubic lattice of spherical QDs
characterized by the following set of parameters: P = 1.1, R/a = 1/4 and ωLT/ω0 = 5 × 10−4. The dashed lines show the photon
dispersion in the empty lattice, i. e. for ωLT = 0, the dotted horizontal line indicates the value ω = ω0.

are eigenvalues of the matrix Rαβ . The further simplification
follows taking into account a small value of the parameter
ξ in Eq. (21) since, in semiconductors, the ratio ωLT/ω0

typically lies between 10−4 and 10−3. Then one can change
the factor Ω/(Ω + 1) in Eq. (21) by 1/2.

Figure 1 shows the photonic band structure for the
face-centered-cubic QD lattices with the radius R = a/4,
ωLT/ω0 = 5× 10−4 and P = (π

√
3c/aω0nb)

3 = 1.1.
Note that in this case the lattice constant a and the unit-

cell volume v0 are related by v0 = a3/4. For high-symmetry
points of the Brillouin zone, the symmetry imposes certain
relations between the Rαβ components and the eigenvalues
Rj can be readily expressed via these components as
illustrated in the Table 1 for the points Γ, X, L,W,K
and U . According to Fig. 1 the dispersion on the Λ line is
characterized by a giant anticrossing between the branches
of bare transverse photon and exciton modes. At the X
point, the gap is determined by the separation between the
longitudinal and lower transverse branches, it is still remark-
able and exceeds 0.5ωLT . However near the points U and
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W the exciton-polariton branches converge and the gap
almost disappears. Note that the anticrossing can be
described with a high accuracy by retaining in the sum over b
in Eq. (22) the two terms due to b = 0, −(4π/a)(0, 0, 1)
for the ∆ points and b = 0, −(2π/a)(1, 1, 1) for the Λ
points.

III. Reflection from and transmission
through a planar array of quantum dots

We start the analysis of the resonant light reflection from
an array of dots regularly packed in one plane. For simplicity
we consider here a quadratic lattice of spherical or cubic
quantum dots and normal incidence of the light. In this case
the integral (9) can be reduced to

IQ =

∫
Φ0(r) cos Qrdr

=

∫
Φ0(r) cos Qxxcos Qyycos Qzz dr (24)

and is real if Q is a purely real or imaginary vector. First
we consider the normal incidence of the light on the planar
array of quantum dots. The electric field can be written in
the form

E(r) =
∑

b

Eb(z) exp (i bρ), (25)

where b = lb1 + mb2 are the two-dimensional reciprocal-
lattice vectors.

The integral in Eq. (3) can be transformed into∫
Φa(r)E(r) dr =

∑
b

eiba
∫

Eb(z)Φ(ρ, z)exp(i bρ)dρdz

=
∑

b

∫
ϕb(z)Eb(z)dz≡ Λ1, (26)

where

ϕb(z) =

∫
Φ(ρ, z) exp(i bρ)dρ (27)

and we used the identity exp (iba) = 1. We will also use
the expansion∑

a

Φa(r) =
1
a2

∑
b

ϕb(z) exp (i bρ), (28)

where a2 is the unit cell area.
The function Eb(z) satisfies the equation(
d2

dz2
+k2

b

)
Eb(z)=−

k2
0

a2
T(ω)

(
1+k−2 grad div

)
b
ϕb(z)Λ1,

(29)
where

kb =
√

k2 − b2,

(
∂2

∂rα∂rβ

)
b

= −KαKβ,

Kx = bx, Ky = by, Kz = −i
∂

∂z
. (30)

The solution can be presented as

Eb(z) = E(0)eikzδb,0 +
ik2

0

2kba2
T(ω)

×

∫
dz′eikb|z−z′|

(
1 + k−2 grad div

)
b
ϕb(z′)Λ1, (31)

where E(0) is the amplitude of the initial wave. Multiplying
the both parts of Eq. (31) by ϕb(z) and integrating over z
we obtain

Λ1 = Λ0
1 +

∑
b

ik2
0

2kba2
T(ω)

∫
dz dz′eikb|z−z′|ϕb(z)

×
(
1 + k−2 grad div

)
b
ϕb(z′)Λ1, (32)

where

Λ0
1 = E(0)

∫
ϕ0(z)e

ikzdz= E(0)

∫
ϕ0(z) cos kz dz. (33)

Let us denote by β the star of the vector b. If
b = lb1 + mb2, the star β contains the vectors
±lb1±mb2, ±mb1±lb2 of equal moduli. For l 6= m 6= 0 the
star consists of eight vectors, otherwise it has four vectors
(l = m 6= 0 or l = 0, m 6= 0 or l 6= 0, m = 0) and one
vector in the particular case l = m = 0. Then the second
term in the right-hand side of Eq. (32) can be rewritten

T(ω)
∑
β

ik2
0nβ

2kβa2

∫∫
dz dz′eikβ |z−z′|ϕβ(z)

×

[(
1−

β2

2k2

)
Λ1,‖ +

(
1−

1
k2

∂2

∂z′2

)
Λ1,⊥

]
ϕβ(z′),

where Λ1,‖, Λ1,⊥ are vectors with the components
(Λ1,x, Λ1,y, 0) and (0, 0, Λ1,z) respectively, nβ is the num-
ber of vectors in the star β and β2 = |b|2. Taking into
account that Λ0

1 = (Λ0
1,x, Λ0

1,y, 0) we obtain

Λ1 = Λ0
1

[
1− T(ω)

∑
β

ik2
0nβ

2kβa2

(
1−

β2

2k2

)

×

∫
dz dz′eikβ |z−z′|ϕβ(z)ϕβ(z′)

]−1

= Λ0
1

ω0 − ω − iΓ
ω̃0 − ω − i(Γ + Γ0)

. (34)

Here ω̃0 is the normalized exciton resonant frequency, the
difference between ω̃0 and ω0 consists of two terms

δω1 = ωLT
k2πa3

B

2a2

∑
β∈B1

nβ
kβ

(
1−

β2

2k2

)
×

∫
dz dz′ sin kβ |z− z′|ϕβ(z)ϕβ(z′),

δω2 = −ωLT
k2πa3

B

2a2

∑
β∈B2

nβ
κβ

(
1−

β2

2k2

)
×

∫
dz dz′e−κβ |z−z′| ϕβ(z)ϕβ(z′), (35)

B1 and B2 represent stars β with real and imaginary kβ
respectively, κβ = Im kβ . The exciton radiative damping
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rate is given by

Γ0 = ωLT
k2πa3

B

2a2

∑
β∈B1

nβ
kβ

(
1−

β2

2k2

)
λ2
β, (36)

λβ =

∫
ϕβ(z) cos kβ z dz

=

∫
Φ0(r) cos(bρ + kβz) dr. (37)

The reflected and transmitted light waves are written as∑
b

E(r)
b exp

[
i(bρ − kbz)

]
and

∑
b

E(t)
b exp

[
i(bρ + kbz)

]
.

(38)

The amplitudes E(r)
b , E(t)

b are given by

E(r)
b = i

k2πa3
B

2kba2

ωLTλbλ0

ω̃0 − ω − i(Γ + Γ0)

(
1−

Kr̂ Kr

k2

)
E(0),

E(t)
b =

[
δb,0 + i

k2πa3
B

2kba2

ωLTλbλ0

ω̃0−ω−i(Γ+Γ0)

(
1−

Kt̂Kt

k2

)]
E(0),

(39)
where (KˆKE)i = KiΣ jKjEj , Kr = (bx, by,−kb),
Kt = (bx, by, kb). While deriving Eq. (39) we took into

account that Λ
(0)
z = 0 and∫

eikbz(−id/dz)ϕb(z) dz= −kb

∫
eikbzϕb(z) dz= −kbλb.

One can check that (39) satisfies the energy-flux conser-
vation law. Really, for zero dissipation, i. e. for Γ = 0, we
have ∑

b∈B1

kb

[
|E(r)

b |
2 + |E(t)

b |
2
]

= k|E(0)|2. (40)

Equations (35)–(39) are original, previously analytical re-
sults for the reflectivity of a planar QD array were obtained
only for particular limiting cases [27].

Note that

E(r,t)
β =

∑
b∈β

E(r,t)
b ‖ E(0) ⊥ z.

It follows then that, in a more general case E(0)
b 6= 0 for

b 6= 0 but

E(0)
β =

∑
b∈β

E(0)
b ‖ E(0) ≡ E(0)

0 ,

a value of
Λ0

1 =
∑
β

λβE(0)
β (41)

is oriented along E(0) and Eq. (34) is valid as well. As a
result, we obtain

E(r)
β =

∑
β′

rββ′E
(0)
β′ , E(t)

β =
∑
β′

tββ′E
(0)
β′ (42)

with

rββ′ = i
k2πa3

Bnβ
2kβa2

ωLTλβλβ′

ω̃0 − ω − i(Γ + Γ0)

(
1−

β2

2k2

)
,

tββ′ = δββ′ + rββ′ . (43)

Since E(0)
β , E(r)

β , E(0)
β are parallel to E(0) one can omit the

vector symbols for these quantities.
In the following it is convenient to have the reflection

and transmission referred to the planes shifted by some
distance d/2 to the left and to the right with respect to the
quantum-dot plane, i. e. the field on the left-hand side is writ-
ten as Eβ,+ exp [ikβ(z+ d/2)] + Eβ,− exp [−ikβ(z+ d/2)]
and the field on the right-hand side is written as
E′β,+ exp [ikβ(z− d/2)] + E′β,− exp [−ikβ(z− d/2)]. The
corresponding reflection and transmission coefficients are
related with (43) by

r̃ββ′ = sβsβ′ rββ′ , t̃ββ′ = sβsβ′tββ′ ,

sβ = exp (ikβd/2). (44)

IV. Exciton-polariton dispersion in terms
of r̃ββ′ and t̃ββ′

We show here that the dispersion equation (7) for
exciton-polaritons with q = (0, 0, q) can be independently
derived by using the reflection and transmission coeffi-
cients for a single plane of quantum dots. Taking into
account that, for the polaritons in an infinite primitive cubic
(PC) lattice, the amplitudes Eβ,± and E′β,± at the planes
z = −a/2 and z = a/2 are related by the Bloch condition
E′β,± = exp (iqa)Eβ,± and using the definition of r̃ββ′ , t̃ββ′
for d = a we can write

Eβ,− = r̃ββ′Eβ′,+ +
(

s2
βδββ′ + r̃ββ′

)
eiqaEβ′,− ,

eiqaEβ,+ =
(

s2
βδββ′ + r̃ββ′

)
Eβ′,+ + r̃ββ′e

iqaEβ′,− . (45)

The latter equations can be rewritten as(
1−eiqas2

β

)
Eβ,− =

(
eiqa−s2

β

)
Eβ,+ = r̃ββ′

(
Eβ′,++eiqaEβ′,−

)
or

Eβ,+ + eiqaEβ,− = ηβ r̃ββ′
(
Eβ′,+ + eiqaEβ′,−

)
, (46)

where

ηβ =
1

eiqa − s2
β

+
1

e−iqa− s2
β

.

Note that the β′-dependence of r̃ββ′ is governed by the
product λβ′sβ′ and one can present this amplitude coefficient
in the form

r̃ββ′ = Uβλβ′sβ′ , (47)

where Uβ is β′-independent. Now we multiply Eq. (46) by
λβsβ , sum over β and eventually come to the equation(

1−
∑
β

Uβηβλβsβ

)∑
β′

λβ′sβ′
(
Eβ′,+ + eiqaEβ′,−

)
= 0
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which can be reduced to

ω̃0−ω− i(Γ+Γ0) = i
k2ωLTπa3

B

2a2

∑
β

nβλ2
β

kβ

(
1−

β2

2k2

)
s2
βηβ.

(48)
The equivalence between Eqs. (7) and (48) follows imme-
diately if we observe that

s2
βηβ =

cos qa− eikβa

cos kβa− cos qa
= −1−

i sin kβa
cos kβa− cos qa

(49)

and, for a PC lattice and for q ‖ [001],

∑
g

I2
q+gSxx(q + g)

(q + g)2 − k2
=

∫∫
drdr′Φ0(r)Φ0(r′)

×
∑

g

ei(q+g)(r−r′)

(q + g)2 − k2 Sxx(q + g) =
∑
β

nβ

(
1−

β2

2k2

)

×

∫∫
dz dz′ϕβ(z)ϕβ(z′)F(z− z′, q, kβ), (50)

where

F(ζ , q,K) =
a

2K

[
− sin K|ζ |+

sin Ka
cos Ka− cos qa

×

(
cos Kζ + i

sin qa
sin Ka

sin Kζ

)]
. (51)

V. Optical reflection from a pair of (001)
quantum-dot planes

For two d-spaced quantum-dot planes (001), the normal-
incidence reflection coefficient can be expanded as follows:

r̃(2)
β′β = r̃β′β + t̃β′β2 r̃β2β1 t̃β1β + t̃β′β4 r̃β4β3 r̃β3β2 r̃β2β1 t̃β1β + . . .

(52)
Taking into account the representation (47) we obtain

r̃β4β3 r̃β3β2 r̃β2β1 = Uβ4λβ3sβ3Uβ3λβ2 sβ2Uβ2λβ1 sβ1

=

(∑
β3

r̃β3β3

)2

r̃β4β1 .

It follows then that

r̃(2)
β′β = r̃β′β +

t̃β′β2 r̃β2β1 t̃β1β

1− (Σβ3 r̃β3β3)
2
. (53)

In a similar way one can show that

t̃β′β2 r̃β2β1 t̃β1β =
(
eikβ′dδβ′β2 + r̃β′β2

)
r̃β2β1

(
eikβdδβ1β + r̃β1β

)
=eikβdeikβ′dr̃β′β+

(
eikβ′d+eikβd

)
r̃β′β1 r̃β1β+ r̃β′β2 r̃β2β1 r̃β1β

= ei(kβ+kβ′ )dr̃β′β +
(
eikβ′d + eikβd

)
r̃β′βV + r̃β′βV

2, (54)

where V = Σβ r̃ββ . Thus, we finally obtain

r̃(2)
β′β = r̃β′β

[
1 +

(eikβd + V)(eikβ′d + V)

1−V2

]
. (55)

In particular it follows then that

r̃(2)
00 = r̃00

[
1 +

(eikd + V)2

1−V2

]
,

r̃00 = eikd iΓ0

ω̃0 − ω − i(Γ + Γ0)
. (56)

Hereafter we use the parameter aBr defined by the resonant
Bragg condition

π

aBr
=
ω0

c
nb. (57)

According to (43), (44), for a< 2aBr, we have

V =
iΓ0eikd + A

ω̃0 − ω − i(Γ + Γ0)
, (58)

where

A =
k2ωLTπa3

B

2a2

∑
β 6=0

nβλ2
β

κβ

(
1−

β2

2k2

)
e−κβd

and κβ =
√
β2 − k2. From Eqs. (56), (58) we obtain

r̃(2)
00 = eikd2iΓ0

(ω − ω̃0 + iΓ) cos kd + Γ0 sin kd− A[
ω − ω̃0 + i(Γ + Γ0)

]2
− (iΓ0eikd + A)2

.

(59)

For the resonant Bragg double-plane structure with
d = a = aBr, this equation reduces to

r̃(2)
00 (d = aBr) =

−2iΓ0

ω̃0 − A− ω − i(Γ + 2Γ0)
. (60)

We see that the reflection coefficient r̃(2)
00 (d = aBr) differs

from the single-plane case by replacement of Γ0 into 2Γ0,
similarly to the resonant Bragg double QWs [8], and of ω̃0

into ω̃0 − A.

VI. Optical reflection from a stack
of quantum-dot planes

Here we consider the reflection from a system of N
parallel (001) planes which is nothing more than a layer
of the PC lattice of quantum dots. The first approach
can be based on recurrent equations relating the reflection
coefficients for N + 1 and N planes:

r̃(N+1) = r̃ + t̃P(N)t̃, (61)

where the matrix P(N)
β′β satisfies the equation

P(N) = r̃(N)
(

I + r̃P(N)
)
,

I is the unit matrix: Iβ′β = δβ′β , and for the sake of shortness
we omit the indices β, β′ . The similar equations for a
semiinfinite lattice can be presented in the form

r̃(∞) = r̃+t̃P(∞)t̃, P(∞) = (r̃+t̃P(∞)t̃)
(
I+r̃P(∞)

)
. (62)
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In fact this approach was used in the previous Section to
calculate the reflectivity from two QD planes.

In an alternative approach we divide the space into the
following three parts: (I) z < zL, (II) zL < z < zR

and (III) zR < z, where the planes z = zL = −a/2
and z = zR = Na − a/2 are shifted by the halfperiod
from the leftmost and rightmost quantum dots respectively.
The secondary electric field appearing as a result of the
diffraction from the quantum dot lattice allows the expansion

E(r; z6 zL) = eik(z−zL)E0 +
∑
g−

eig−(r−rL)Eg− ,

E(r; zL 6 z6 zR) =
∑

b

exp (ibρ)Eb(z),

E(r; z> zR) =
∑
g+

eig+(r−rR)Eg+ . (63)

Here E0 is the amplitude of the primary wave,
rL = (0, 0, zL), rR = (0, 0, zR),

g±,x = bx =
2πl
a
, g±,y = by =

2πm
a
,

g±,z = ±kb = ±
√

k2 − b2
x − b2

y.

In the region II the field is a superposition of two Bloch
solutions

E(r; zL 6 z6 zR) = Eq(r) + E−q(r), (64)

where q = (0, 0, q) satisfies the dispersion equation (7).
In the region I in addition to the primary wave, E0, and
specularly reflected wave, Er = Eg− with g− = (0, 0,−k),
there are the space harmonics oscillating in the plane
(x, y). Among the latter those which satisfy the condition
k > (2π/a)

√
l2 + m2 are diffracted waves propagating

in the region I without decay. The harmonics with
k < (2π/a)

√
l2 + m2 decay with increasing distance from

the left-hand side interface. In the region III, in addition to
the transmitted wave Et with g+ = (0, 0, k), there exist free
and decaying diffracted waves with l2 + m2 6= 0. From the
field continuity at z = zL and z = zR we obtain the boundary
conditions

Π0,+Eb=0(zL) = E0, Πb,−Eb(zL) = Eg− ,

Πb,+Eb(zR) = Eg+ , (65)

Πb,+Eb 6=0(zL) = 0, Πb,−Eb(zR) = 0, (66)

where we introduced the projection operators

Πb,± =
1
2

(
1±

1
ikb

d
dz

)
.

Note that Eqs. (66) mean that, under the normal incidence,
there are no incoming waves with b 6= 0.

Figure 2. The reflectance from single (dotted) and double (d = a,
solid) planes containing the quadratic QD lattice with two different
periods, a = 0.96 aBr (a) and a = 1.10 aBr (b). The spectra
are calculated by using Eq. (59) and Eq. (68). For the sake of
convenience the latter are vertically shifted by 0.2.

We expand Eq(r), E−q(r) in the Fourier series (10) and
take into account the boundary conditions (65), (66) for
b = 0. The latter can be rearranged and written as

E0 + Er =
∑

n

[
Eq+bn ei(q+bn)zL + E−q+bn ei(−q+bn)zL

]
,

E0 − Er =
∑
n,±

±q + bn

k
E±q+bne

i(±q+bn)zL ,

Et =
∑
n,±

E±q+bne
i(±q+bn)zR

=
∑
n,±

±q + bn

k
E±q+bne

i(±q+bn)zR, (67)

where bn = 2πn/a and, for b = 0, one can use the scalar
form for representing the field amplitudes. Solving Eqs. (67)
we come to

r̃(N) =
A+A−(1 − ei2Nqa)

A2
+ − A2

−ei2Nqa
, t̃(N) =

(A2
+ − A2

−)eiNqa

A2
+ − A2

−ei2Nqa
, (68)

where

A± = F

(
−

a
2
, q, k

)
±

1
ik

F ′
(
−

a
2
, q, k

)
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Figure 3. The dispersion of exciton polaritons propagating in the
infinite QD lattice along the [001] direction (upper graph) and the
reflectance from a stack of N QD planes with the spacing d = a
and the period a = 0.96 aBr for N = 1, 3, 5, 7, 9 (lower graph).

Figure 4. The reflectance from a stack of N QD planes with the
spacing d = a and the period a = 1.01 aBr for N = 1, 3, 5, 7, 9.

and the function F(ζ , q, k) is defined by Eq. (51). One can
straightforwardly show that

ikF(−a/2, q, k)

F ′(−a/2, q, k)
= tan

qa
2

cot
ka
2
.

Efficiency of the both approaches is demonstrated in
Fig. 2 which shows reflection spectra from a single plane

Figure 5. The same as Fig. 3 but for the period a = 1.10 aBr .

and double planes containing the quadratic lattice of spher-
ical QDs. In case of the double-plane structures, the
interplane spacing, d, is taken to coincide with the in-
plane period a = 0.96 aBr [Fig. 2, a] and a = 1.10 aBr

[Fig. 2, b]. The chosen values of the QD radius and the
bulk longitudinal-transverse splitting are R = a/4.001 and
ωLT/ω0 = 5 × 10−4, the nonradiative exciton damping is
neglected: Γ = 0. For convenience the spectra calculated
by using Eq. (59) and Eq. (68) are shifted by 0.2 along
the vertical axis. One can see that the two approaches give
identical results. The spectral dips reflect the fact that at the
frequency ω = ω̃0 +A−Γ0 sin kd the numerator in Eq. (59)
vanishes.

Figs. 3, 4 and 5 show the dependence of the reflection
spectra on the number of QD planes, N. The parameters
R and ωLT/ω0 are the same as in Fig. 2, the interface
spacing d equals to the in-plane period a = 0.96 aBr,
1.01 aBr and 1.10 aBr respectively. The upper panels of
Figs. 3 and 5 present the dispersion curves of exciton
polaritons propagating along the [001] principal axis of the
corresponding 3D primitive-cubic QD lattice. Note that
within forbidden gap the polariton wavevector is imaginary,
q1 = 0, q2 6= 0. The period d = a = 1.01 aBr is almost
satisfying the Bragg condition at the exciton resonance
frequency ω0. One can see from Fig. 4 that in this case
the halfwidth of the reflection spectrum is almost linearly
increasing as a function of N, similarly to the enhancement
by a factor of N of the radiative damping of the superradiant
mode in resonant Bragg MQW structures [8].
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VII. Conclusion

In conclusion, we have developed a theory of exci-
ton polaritons in QD regular structures and calculated
the resonant reflection spectra from a stack of N planes
containing quadratic-lattice arrays of spherical QDs. The
theory fills the gap existing between long-period multi-
ple quantum well structures and photonic crystals. It
can be also used to generalize the theory of reso-
nant diffraction of γ-radiation by nuclei from bulk crys-
tals [28] to synthesized multilayers like the nuclear multi-
layer [57Fe(22 Å)/Sc(11 Å)/Fe(22 Å)/Sc(11 Å)]× 25 studied
by Chumakov et al. [26].

The developed theory takes into account a contribution of
only one confined-exciton resonance which is valid if the
separation between the exciton size-quantization levels is
much larger than the bulk value of the exciton longitudinal-
transverse splitting, ωLT . In the opposite limit of extremely
large bulk-exciton translational effective mass one can use
the local material relation D(r) = ε(r, ω)E(r) as it was
done by Sigalas et al. [29] for phonon-polaritons in a two-
dimensional lattice consisting of semiconductor cylinders.
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D’Aubigné, T. Dietl. Phys. Rev. B 56, 1664 (1997).

[16] C. Ell, J. Prineas, T.R. Nelson, Jr., S. Park, H.M. Gibbs,
G. Khitrova, S.W. Koch. Phys. Rev. Lett. 80, 4795 (1998).
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