Синергетика мартенситных структур в кристаллах с памятью формы

© Г.А. Малыгин

Физико-технический институт им. А.Ф. Иоффе Российской академии наук, 194021 Санкт-Петербург, Россия E-mail: malygin.ga@pop.ioffe.rssi.ru

(Поступила в Редакцию 20 января 2000 г.)

Теоретически обсуждается кинетический механизм образования пространственно-неоднородных мартенситных структур в сплавах с памятью формы. С синергетической точки зрения формирование таких структур есть результат процесса самоорганизации элементарных объемов превращения, связанных с движением дислокаций превращения вдоль межфазных границ. В отличие от чисто термодинамического подхода, основанного на теории фазовых превращений Гинзбурга–Ландау, кинетический подход позволяет установить правильный физический масштаб явления и влияние на параметры перехода структурных факторов.

Как показывают многочисленные опыты [1–5], в процессе термоупругого структурного превращения в сплавах с памятью формы образуется регулярная пространственно-неоднородная мартенситная структура, состоящая из мартенситных пластинок-ламелей. По мере снижения температуры число и размеры пластинок изменяются, пока весь кристалл не перейдет в мартенситное состояние.

К настоящему времени предпринято несколько попыток описать формирование пространственнонеоднородных мартенситных структур на основе теории фазовых переходов Гинзбурга–Ландау (Г–Л) [6–10]. Так, в [6] рассматривалось образование предмартенситных ("твидовых") структур. Формированию мартенситных структур посвящены работы [7–10].

Образование "твидовых" структур при температурах выше критической (когда в кристалле формируется полномасштабная мартенситная структура) связано с возникновением зародышей мартенсита в результате гетерофазных флуктуаций. На это указывает малый масштаб пространственных модуляций деформации решетки (порядка 5–20 nm [11]) и достаточно хорошее соответствие результатов расчета [6], основанного на теории Г–Л, опыту.

Попытки применить теорию Г–Л для анализа формирования пространственно-неоднородных мартенситных структур при полномасштабном мартенситном превращении пока нельзя считать успешными. Как размеры (толщина) формирующихся мартенситных пластинок порядка $1-10\,\mu$ m, так и гетерогенный механизм их образования, а также сильное влияние на параметры перехода различных структурных факторов не получили объяснения в рамках чисто термодинамического подхода к вопросу.

Причина неэффективности такого подхода для анализа мартенситных структур состоит в том, что они представляют собой неравновесные гетерофазные образования — продукт перехода решетки из одного структурного состояния в другое. Такой переход осуществляется неоднородно по объему кристалла с образованием большого числа межфазных границ, взаимодействующих с различными дефектами в кристалле, ограничивающими подвижность границ и вызывающими размытие перехода по температуре [12,13]. Формирующиеся мартенситные структуры являются кинетическими образованиями, находящимися в квазистатическом равновесии с действующей на межфазные границы термодинамической силой и силой взаимодействия границ с дефектами решетки. На неклассический механизм образования мартенситных структур при термоупругих мартенситных превращениях обращалось внимание в [14].

В настоящей работе развита кинетическая теория формирования мартенситных структур в реальных кристаллах. В первом разделе сформулировано кинетическое уравнение для объемной доли мартенситной фазы. Во втором разделе с помощью этого уравнения проанализирована эволюция пространственно-неоднородных мартенситных структур по мере снижения температуры в процессе перехода. В третьем разделе проведено количественное сопоставление кинетического механизма с результатами опытов. Рассмотрение не претендует на решение всех связанных с формированием мартенситных структур вопросов. Цель его состоит в том, чтобы обозначить существующие здесь проблемы и их возможное решение.

1. Кинетическое уравнение

Согласно кинетическому подходу формирование мартенситных структур — это процесс самоорганизации элементарных объемов превращения. Поскольку превращение осуществляется за счет движения дислокаций превращения (мартенситных ступенек атомных размеров на межфазных границах [15,16]), то можно написать следующее выражение для относительного объема мартенситной фазы: $\varphi = h\rho\lambda$, где ρ — плотность дислокаций превращения, пересекающих единицу площади, h — высота ступеньки, λ — свободный пробег дислокации превращения между препятствиями. Таким образом, элементарный объем превращения, приходящийся на единицу длины дислокации, равен $ah\lambda$, где a — параметр решетки.

Дислокации превращения, как и обычные решеточные дислокации [17,18], могут генерироваться источниками внутри или на поверхности кристалла. Они способны размножаться, аннигилировать и диффундировать. Не рассматривая эти процессы на микроскопическом уровне, запишем уравнение эволюции для плотности дислокаций превращения в виде следующего феноменологического уравнения:

$$\frac{\partial \rho_1}{\partial t} = n_0 wv + \frac{v}{\lambda_m} \rho_1 - h_a v \rho_1 \rho_2 + \lambda_D^2 v \frac{\partial^2 \rho_1}{\partial x^2}, \quad (1)$$

где v — скорость дислокаций, n_0 — объемная плотность источников (стоков) дислокаций превращения, h_a , λ_m и λ_D — характерные расстояния соответственно аннигиляции мартенситных и аустенитных ступенек, размножения дислокаций и диффузии дислокаций при их взаимодействии с дефектами решетки, t — время, x — координата в направлении, перпендикулярном габитусной плоскости мартенсита, ρ_1 и ρ_2 — соответственно плотности мартенситных и аустенитных дислокаций (ступенек) превращения на межфазных границах.

Термодинамическая вероятность (интенсивность процессов генерации дислокаций $n_0 > 0$) или их исчезновения на стоках ($n_0 < 0$) определяются выражением [12,13]

$$w(T) = [1 + \exp(\Delta U_{12}/kT)]^{-1},$$
 (2a)

где $\Delta U_{12} = \omega \Delta u, \ \omega = h\lambda^2$ — элементарный объем превращения, T — температура,

$$\Delta u = q \frac{T - T_c}{T_c} - \xi \sigma \tag{2b}$$

— изменение внутренней энергии единицы объема кристалла при структурном переходе, q — теплота перехода, ξ — спонтанная сдвиговая деформация решетки, связанная с превращением, σ — касательное напряжение при одноосном нагружении кристалла, k — постоянная Больцмана.

Подставляя в уравнение (1) $\varphi_1 = \varphi = h\rho_1\lambda$, $\varphi_2 = 1 - \varphi = h\rho_2\lambda$, получим после преобразований кинетическое уравнение для объемной плотности мартенситной фазы

$$\tau \frac{\partial \varphi}{\partial t} = k_0 w + k_m \varphi - k_a \varphi (1 - \varphi) + \lambda_D^2 \frac{\partial^2 \varphi}{\partial x^2}, \quad (3)$$

где $k_0 = h\lambda^2 n_0$, $k_m = \lambda/\lambda_m$, $k_a = h_a/h$ — коэффициенты, определяющие интенсивность соответствующих процессов, $\tau = \lambda/v$ — характерное время.

Интерес представляет анализ статических $(\partial \varphi / \partial t = 0)$ решений уравнения (3). Для этого удобнее записать его в безразмерном виде

$$2\frac{d^2\varphi}{dX^2} = -(\psi_0 + 2\psi_m\varphi + 3\varphi^2), \qquad (4a)$$

где введены обозначения

$$X = \frac{x}{\Lambda_0}, \quad \Lambda_0 = \left(\frac{3\lambda_D^2}{2k_a}\right)^{1/2},$$

$$\psi_0(T) = \frac{3k_0}{k_a}w(T), \quad \psi_m = \frac{3}{2}\left(\frac{k_m}{k_a} - 1\right). \tag{4b}$$

Интегрируя (4a) при граничном условии для протяженного кристалла

$$\left. \frac{d\varphi}{dX} \right|_{\varphi=1} = 0,\tag{5}$$

предполагающем однородную мартенситную структуру при завершении перехода, получим уравнение

$$\left(\frac{d\varphi}{dX}\right)^2 = \Phi(\varphi) = (1 - \varphi)$$
$$\times \left[(1 + \psi_0 + \psi_m) + (1 + \psi_m)\varphi + \varphi^2 \right]. \quad (6)$$

Его решения определяют вид формирующихся в процессе перехода мартенситных структур.

2. Мартенситные структуры

Общим решением уравнения (6) является эллиптический интеграл первого рода

$$\mu^{-1}\mathbf{F}(\theta,k) = \int_{\varphi}^{\varphi_n} \frac{d\varphi}{\sqrt{\Phi(\varphi)}} = \frac{x}{\Lambda_0}.$$
 (7)

Форма частных решений интеграла (7) зависит от величины и соотношения параметров ψ_0 и ψ_m (4b), определяющих величину коэффициента μ и модуль k эллиптического интеграла, а также величину и знак корней φ_n кубического уравнения $\Phi(\varphi) = 0$,

$$\varphi_1 = 1,$$

$$\varphi_{2,3} = \frac{1}{2} \Big[-(1+\psi_m) \pm \sqrt{(1-\psi_m)^2 - 4(1+\psi_0)} \Big]. \quad (8)$$

Согласно обозначениям (4b), величина параметров ψ_0 и ψ_m зависит от величины и соотношения коэффициентов k_0, k_m и k_a и температуры.

На рис. 1 показаны области параметров *A*, *B*, *C* существования различных решений интеграла (7). Анализ показывает, что при $(1 - \psi_m)^2 < 4(1 + \psi_0)$ (кривая *I-I*) уравнение $\Phi(\varphi) = 0$ имеет один корень $\varphi_1 = 1$. Интеграл (7) описывает в этом случае пространственно-периодическую мартенситную структуру

$$\frac{x}{\Lambda} = \frac{1}{4} \frac{\mathcal{F}(\theta, k)}{\mathcal{F}(\pi/2, k)}, \quad \Lambda = 4\mu^{-1} \mathcal{F}\left(\frac{\pi}{2}, k\right) \Lambda_0$$
(9a)

с периодом Λ и шириной мартенситных пластинок (рис. 2, *a*)

$$\Delta \Lambda_M = \frac{\Lambda}{2} \frac{\mathcal{F}(\theta_M, k)}{\mathcal{F}(\pi/2, k)},\tag{9b}$$

где $\cos \theta_M = \cos \theta|_{\varphi=0}$,

$$\cos \theta = \frac{\mu^2 - 1 + \varphi}{\mu^2 + 1 - \varphi}, \quad k^2 = \frac{1}{2} + \frac{1}{4} \frac{3 + \psi_m}{\mu^2},$$
$$\mu^2 = (3 + 2\psi_m + \psi_0)^{1/2}. \tag{9c}$$

Рис. 1. Области A, B, C параметров ψ_0 и ψ_m существования различных видов мартенситных структур.

Рис. 2. Виды мартенситных структур при температурах T/T_c . 1.022 (*a*), 1.008 (*b*), 1.004 (*c*), 0.992 (*d*) и 0.96 (*e*) — зависимость объемной плотности мартенситной фазы от температуры (*f*).

В области параметров, обозначенной буквой A (рис. 1), ширина мартенситных пластинок изменяется от 0 до $\Lambda/2$.

Вне области A уравнение $\Phi(\varphi) = 0$ имеет три действительных корня $\psi_3 < \psi_2 < \psi_1$. Интеграл (7) определяет в этом случае мартенситную структуру

$$\frac{x}{\Lambda} = \frac{1}{2} \frac{F(\theta, k)}{F(\pi/2, k)}, \quad \Lambda = \frac{4\Lambda_0}{\sqrt{1 - \varphi_3}} F\left(\frac{\pi}{2}, k\right),$$
$$\sin \theta = \left(\frac{1 - \varphi}{1 - \varphi_2}\right)^{1/2}, \quad k = \left(\frac{1 - \varphi_2}{1 - \varphi_3}\right)^{1/2}. \quad (10a)$$

Физика твердого тела, 2000, том 42, вып. 8

При выполнении условия $\psi_m > -(1 + \psi_0)$ (прямая 2 на рис. 1) оба корня ϕ_2 и φ_3 отрицательны. Прямая 2 ограничивает область параметров *B*, в пределах которой ширина мартенситных пластинок

$$\Delta \Lambda_M = \Lambda \frac{F(\theta_M, k)}{F(\pi/2, k)}, \quad \sin \theta_M = \frac{1}{\sqrt{\varphi_2}}$$
(10b)

изменяется от $\Lambda/2$ до Λ (рис.2, *b*). Точке *d* пересечения пунктирной горизонтальной линии (см. далее) с прямой *2* соответствует гетерофазная структура, состоящая наполовину из мартенсита, наполовину из аустенита (рис. 2, *c*). Наконец, при условии $\psi_m > -(3 + \psi_0)/2$ (прямая *3* на рис. 1) имеется область параметров *C*, когда мартенситная структура становится почти однородной (рис. 2, *d*). При параметрах, соответствующих прямой *3*, мартенситная структура приобретает гомогенный характер (рис. 2, *e*).

Пунктирная прямая на рис. 1 демонстрирует траекторию изменения параметров ψ_0 и ψ_m (4b) при $k_0/k_a = -3$ и $k_m/k_a = 5/3$. Стрелки указывают направление их изменения по мере снижения температуры. Буквами a, b, c, d, e отмечены точки на траектории, соответствующие мартенситным структурам на рис. 2, a-e. Объемная доля мартенсита $\varphi(T)$ в каждой структуре равна отношению заштрихованной площади к полной площади одного периода структуры, $\varphi(T) = \Delta \Lambda_M(T)/2\Lambda(T)$. Кривая на рис. 2, f демонстрирует температурную зависимость $w(T) \equiv \varphi(T)$ при $\sigma = 0$ согласно теории размытых мартенситных переходов (2). Отдельными точками показаны значения $\varphi(T)$ для мартенситных структур на рис. 2, a-e. Видно, что они хорошо укладываются на кривую.

В заключение раздела приведем оценку размеров мартенситных пластинок $\Delta \Lambda_M$ и средних расстояний между ними Λ . Согласно обозначениям (4b), эти размеры определяются характерным масштабом $\Lambda_0 \approx \lambda_D$, где $\lambda_D \approx (h\lambda)^{1/2}$ — среднее расстояние диффузии мартенситных ступенек высотой h при их пробеге λ между препятствиями вдоль межфазной границы. При h = 10 nm и $\lambda = 100 \,\mu$ m имеем $\lambda_D = 1 \,\mu$ m, $\Delta \Lambda_M \approx \Lambda \approx 1{-}10 \,\mu$ m, т.е. значения, близкие к экспериментально наблюдаемым.

3. Сравнение с экспериментом

Очевидно, что при размытом мартенситном переходе (2) [12,13] характеристическая температура T_c соответствует моменту перехода, когда гетерофазная структура наполовину состоит из мартенсита, а наполовину из аустенита, т. е. при $\Delta u = 0$. Такая ситуация имеет место, когда второй корень уравнения $\Phi(\varphi) = 0$ обращается в нуль, т. е. когда прямая 2 (рис. 1) пересекает пунктирную линию. Точке пересечения соответствует равенство $|\psi_0(T_c(s))| = 1 + \psi_m(s)$, где $T_c(s)$ — зависящая от структурного фактора *s* характеристическая температура перехода. Принимая во внимание обозначения (4b) и

выражение для температурной зависимости w(T) (2) при $\sigma = 0$, где T_{c0} — критическая температура в отсутствии влияния структурного фактора, получаем для характеристической температуры выражение

$$T_{c}(s) = T_{c0} \left[1 + B^{-1} \ln \left(\frac{3|k_{0}|}{(1 + \psi_{m}(s))k_{a}} - 1 \right) \right],$$
$$B = \frac{\omega q}{kT_{c}}.$$
(11)

В качестве структурного фактора рассмотрим влияние размера зерен в поликристаллических образцах на *T_c*. В [19] найдено, что при малых размерах зерен характеристическая температура приблизительно логарифмически возрастает с ростом размера зерна. При достаточно больших размерах зерен зависимость достигает насыщения.

Влияние зерен на характеристическую температуру превращения может быть связано с тем, что границы зерен являются барьерами для дислокаций превращения, ограничивающими длину их свободного пробега, в результате чего величина параметра ψ_m (4b) становится зависящей от величины зерна d,

$$\psi_m(d) = \frac{3}{2} \left(\frac{\lambda}{\lambda_m} + \frac{\lambda}{d} - \frac{1}{3} k_a \right).$$
(12)

Подставляя это выражение в формулу (11), получаем зависимость характеристической температуры от размера зерна, подобную наблюдаемой на сплаве Fe–31Ni [19]

$$T_{c}(d) = T_{c0} \left[1 + B^{-1} \ln \left(\frac{A}{1 + d_{m}/d} - 1 \right) \right],$$
$$A = \frac{6|k_{0}|}{3\lambda/\lambda_{m} - k_{a}}, \quad d_{m} = \frac{3\lambda}{3\lambda/\lambda_{m} - k_{a}}.$$
 (13)

Для количественного сопоставления формулы (13) с экспериментом [19] удобнее рассмотреть относительное изменение характеристической температуры с ростом величины зерна

$$\frac{T_{c0} - T_c(d)}{T_{c0}} = -B^{-1} \ln\left(\frac{1}{A - 1}\left(\frac{A}{1 + d_m/d} - 1\right)\right)$$
$$\approx B^{-1}\left(\ln\frac{A - 1}{A} - \ln\frac{d}{d_m}\right).$$
(14)

Второе соотношение (14) получено в предположении $Ad_m/d \gg 1$. Из рис. 3 видно, что экспериментальные точки для исследованного в [19] сплава согласуются с этим соотношением, что позволяет определить неизвестные параметры $B \approx 20$, $d_m \approx 47 \, \mu$ m, $A \approx 20$.

В [20] обнаружено существование размерного эффекта при термоупругом мартенситном превращении в сплаве TiNi. Уменьшение толщины фольги D из никелида титана вызвало повышение характеристической температуры. Влияние поперечного размера кристалла на T_c может быть обусловлено двумя обстоятельствами. В тонком кристалле длина свободного пробега дислокаций превращения $\lambda = D$. Согласно (1а), параметр $\psi_m \sim D$

Рис. 3. Относительное изменение характеристической температуры мартенситного перехода в сплаве Fe–31Ni в зависимости от величины зерна [17].

будет при этом уменьшаться, что приведет к снижению характеристической температуры (11).

Вторая возможная причина влияния поперечного размера (толщины) кристалла на T_c связана с усилением роли поверхности кристалла как стока для дислокаций превращения по мере уменьшения его поперечного сечения. Эффективность поверхности как стока для решеточных дислокаций определяется соотношением $k_0 \sim D^{-1}$ [18]. Очевидно, что это соотношение должно быть справедливо и для дислокаций превращения, и тогда, согласно формуле (11), уменьшение поперечного размера кристалла будет вызывать рост характеристической температуры.

В работе [21] наблюдалось влияние толщины образцов и размера зерен в поликристаллическом сплаве Cu–Zn–Sn на мартенситный предел упругости σ_M . По мере увеличения отношения d/D мартенситный предел упругости снижался и при $d/D \ge 1$ становился независимым от этого отношения.

Из уравнения (2b) при $\Delta u = 0$ следует соотношение Клаузиуса–Клайперона, согласно которому мартенситный предел упругости при температуре *T*

$$\sigma_M = \sigma_m \left(\frac{T}{T_c} - 1 \right) \sim T_c^{-1}, \quad \sigma_m = \frac{q}{\xi}.$$
 (15)

Он меняется обратно пропорционально критической температуре. Поскольку, согласно сказанному выше,

$$T_c \approx T_{c0} \left(1 + B^{-1} \ln \frac{d}{D} \right), \tag{16}$$

увеличение отношения d/D вызывает увеличение критической температуры и, следовательно, снижает мартенситный предел упругости.

Таким образом, синергетический подход к проблеме формирования мартенситных структур позволяет понять их морфологические особенности и установить правильный физический масштаб явления. Он позволяет также объяснить такие необычные с термодинамической точки зрения факты, как влияние размера зерна на критическую температуру перехода.

Список литературы

- [1] T.A. Schroeder, C.M. Wayman. Acta Met. 27, 3, 405 (1979).
- [2] Л.Г. Хандрос, И.А. Арбузова. Металлы, электроны, решетка. Наук. думка, Киев (1979). С. 109.
- [3] К. Шимизу, К. Оцука. Эффекты памяти формы в сплавах. Наука, М. (1979). С. 60.
- [4] J.W. Cristian. Met. Trans. A13, 4, 509 (1982).
- [5] H. Inagaki. Z. Metall. 83, 2, 97 (1992).
- [6] G.R. Barsch, J.A. Krumhansl. Met. Trans. 19A, 4, 761 (1988).
- [7] F. Falk. J. de Phys. 43, C-4, 3 and 203 (1982).
- [8] F. Falk. Zs. Phys. 51B, 2, 177 (1983).
- [9] S.K. Chan. Proc. ICOMAT-89. Mater. Sci. Forum 56/58, 101 (1990).
- [10] S. Dorfman, D. Fuks, A. Gordon. Proc. ICOMAT-95. J. de Phys. IV 6, C1, 35 (1996).
- [11] R. Oshima, M. Sugiyama, F.E. Fujita. Met. Trans. 19A, 803 (1988).
- [12] Г.А. Малыгин. ФТТ 36, 5, 1489 (1994).
- [13] Г.А. Малыгин. ЖТФ **66**, *11*, 112 (1996).
- [14] G.B. Olson, M. Cohen. J. de Phys. 43, C-4, 75 (1982).
- [15] G.B. Olson. Acta Met. 29, 8, 1475 (1981).
- [16] D. Schrivers. J. de Phys. IV 7, C-5, 109 (1997).
- [17] Г.А. Малыгин. ФТТ **35**, *1*, 3 (1993).
- [18] Г.А. Малыгин. УФН **169**, *9*, 979 (1999).
- [19] M. Unemoto, W.S. Owen. Met. Trans. 5, 9, 2041 (1974).
- [20] T. Kuninori, E. Sukeda, H. Hashimoto. Mater, Trans. JIM 37, 1, 1404 (1996).
- [21] I. Dworak, E.B. Hawbolt. Met. Trans. 6A, 1, 95 (1975).