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Grain size, stress and creep in polycrystalline solids
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If a stress σ is applied to a polycrystal of grain size L, the mode of creep deformation depends on the answers
to the following questions: (I) does σ exceed the Peierls stress σp; (II) does L exceed the dislocation spacing in a
Taylor lattice stabilized by σp; (III) does Lσ exceed the value required for a Frank–Read or Bardeen–Herring source
to operate within the grain; (IV) does L1/2σ exceed the Hall–Petch value required for slip to propagate across a
grain boundary? The (L, σ) plane is thus partitioned into regions in which different modes of creep predominate.

1. Diffusional Creep and Harper–Dorn
Creep

In diffusional creep, transport of matter occurs by the
migration of vacancies from grain boundaries roughly nor-
mal to a tensile stress to boundaries roughly parallel to
this stress. The migration occurs either through the body
of the grain [1,2] or along the grain boundaries [3]. In
Harper–Dorn creep, vacancies migrate from edge disloca-
tions with their Burgers vectors roughly parallel to the tensile
axis to edge dislocations with their Burgers vectors roughly
perpendicular to the tensile axis. The spacing l between
adjacent dislocations, which are modelled as forming a
Taylor lattice, reaches an equilibrium value such that the
stress each dislocation exerts on its neighbour is of the order
of the Peierls stress σp [4,5]. Thus

bµ/2πl ≈ σp, l ≈ bµ/2πσp (1)

and Harper–Dorn creep is possible only if l < L, i. e.

L > bµ/2πσp. (2)

When this condition is satisfied, the diffusion paths for
Harper–Dorn creep are shorter than these for diffusional
creep, and Harper–Dorn creep will be faster than Nabarro–
Herring creep provided that [6]

L/b> 7µ/σp. (3)

Different modes of creep will operate when the product
Lσ is or is not large enough for Bardeen–Herring climb
sources to operate within or on the surface of the grain. If
the line tension of a dislocation is Γ, sources can operate
freely if

bσ > 4Γ/L. (4)

With Γ ≈ b2µ/2, where µ is the shear modulus, this
becomes

Lσ > 2bµ. (5)

Authors of Refs. [7,8] interpret a formula of this kind in the
following way. As diffusional creep occurs, edge dislocations

climb along the grain boundaries. The inequality (5) repre-
sents the condition, that if these dislocations are removed,
they can be replaced by new dislocations generated by
Bardeen–Herring sources in the grain boundaries. This
interpretation seems to be incorrect on two grounds. Firstly,
a typical large-angle boundary contains edge dislocations all
of the same sign separated by distances of order b/3. If
these dislocations all climbed out of the boundary and were
not replaced, the total deformation would be of order 30%,
larger than that normally observed in diffusional creep. In
fact the dislocations will not disappear, but will, statistically,
continue to climb in adjacent grain boundaries. Secondly,
it is not clear why Bardeen–Herring sources should operate
preferentially in grain boundaries. When the inequality (5) is
satisfied, sources can operate within the grains, and probably
more freely than in the grain boundaries.

The inequality (5) should rather be interpreted in the fol-
lowing way. The equilibrium spacing l of eq. (1) is achieved
by a balance between the multiplication of dislocations by
the operation of Bardeen–Herring sources within the grain
and the annihilation of dislocation pairs under their mutual
attraction. This process occurs, and Harper–Dorn creep is
possible, if the inequality (4) is satisfied. If the inequality
is not satisfied, dislocations climb into the grain boundaries
and are absorbed, and, after a possible transient, diffusional
creep rather than Harper–Dorn creep occurs.

2. Stresses above the Peierls Stress

When the applied stress σ exceeds the Peierls stress σp,

σ > σp, (6)

dislocations can move freely by glide.
If, in addition, the inequality (5) is satisfied, dislocations

will multiply by glide within the cell much more rapidly than
they can annihilate by climb. Harper–Dorn creep gives way
to power-law creep [9]. If the product L1/2σ is less than the
Hall–Petch stress-intensity factor kHP

L1/2σ < kHP, (7)

glide cannot percolate from one grain to its neighbour.
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A possible mode of deformation is then that considered
by Spingarn and Nix [10] which may be outlined as follows.
The reduced stress is large enough to support glide on only
one system in each grain. Coherence between the grains is
maintained largely by sliding on the grain boundaries. This
sliding is impeded by the ledges formed on the boundaries
by pile-ups of dislocations. The rate-controlling process is
the smoothing of these ledges by the diffusion of vacancies
between adjacent ledges. The distance λ between adjacent
slip planes in a grain is likely to be of the order of the
dislocation passing distance, given by

bσ = b2µ/2πλ

or
λ = bµ/2πσ. (8)

Allowing for the piling-up of dislocations, the work done
by the external stress when a vacancy is transferred from the
head of a pile-up is easily seen to be of order

W = Lb2σ2/2µ. (9)

On average a vacancy travels a distance λ/4 to relieve the
local strain, and so the thermodynamic driving force on a
vacancy is

4W/λ = 4πLbσ3/µ2. (10)

If the effective diffusion constant is De, the flux φ of
vacancy is De/kT times the thermodynamic force, or

φ = 4πLbσ3De/µ
2kT. (11)

At high temperatures, diffusion will occur through the
bulk, De will be the bulk coefficient of diffusion D, and
the flow of vacancies at each step will occur through an
area of order Lλ/2 = Lbµ/4πσ . The volume V of matter
transported at each step in unit time is then

V = Lbµφ/4πσ = L2b2σ2D/µkT. (12)

The time t taken to remove a step is

t = bλL/8V = µ2kT/16πLσ3D. (13)

The shear strain is b/λ, and so the strain rate ε̇ is given by

ε̇ = b/λt = 32π2Lσ4D/µ3kT. (14)

At low temperatures, D is replaced by the grain-boundary
diffusion coefficient Db, and the flux of vacancies occurs
over an area of order Lb. The strain rate is then

ε̇ = 128π3Lσ5Db/µ
4kT. (15)

Both processes occur within the normal range of power-
law creep.

At higher stresses, several glide systems operate in each
grain, and dislocation cells are formed having widths w given
approximately by

w = 10.5bµ/σ. (16)

Under these conditions, power-law creep with an exponent
4–5 is observed. As the discussion in Ref. [11] shows, simple
mechanisms of creep in this structure lead to the ”natural”

exponent of 3. An exponent of 5 can be obtained by
assuming that diffusion occurs along the cores of dislocations
which are present with a density proportional to σ2, but such
a process would have an activation energy only about half
the observed value, which is close to that for lattice self-
diffusion. Other models of power-law creep [12,13], which
take into account the formation of dislocation cells within
the grains, involve rather arbitrary assumptions.

3. Power-law breakdown

When the inequality (7) is not satisfied, slip in one grain
can transfer to a neighbouring grain. While there is still
some thermal activation of the slip process, as is shown by
the slow decrease of flow stress with increasing temperature,
the rate of deformation is no longer controlled by diffusion,
but is a rapidly increasing function of stress. This is the
domain of power-law breakdown.

4. Numerical Values

The quantities entering this analysis are b and µ, which
are well determined, σp and k. Both theoretical and
experimental values of the Peierls stress σp fall into two
classes, one class being some hundred times greater than
the other. There are reasons to believe that in problems
of progressive plastic deformation it is the values of the
lower class which are relevant [14], and we use these.
There are no satisfactory theoretical estimates of the Hall–
Petch coefficient k, and we use values from the review by
Hansen [15].

For aluminium, the relevant parameters are b = 2.86
× 10−10 m, µ = 26 · 109 Pa, σp = 2.5 · 10−5µ,
kHP = 0.53 · 105 Nm−3/2, and the relevant map is shown
in Fig. 1.

Figure 1. The plane of grain size L and applied stress σ is divided
into domains of different creep models in aluminium by four
boundaries: the Peierls stress σp, the grain size at which Harper–
Dorn creep becomes possible (or becomes faster than diffusional
creep), the product Lσ above which Bardeen–Herring (or Frank–
Read) sources can operate within the grain, and the Hall–Petch
product L1/2σ above which glide can percolate between grains.
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Figure 2. A creep-mode map for copper similar to that of Fig. 1
for aluminium. There is a new domain in which σ < σp. Lσ
exceeds the Bardeen–Herring limit, but L1/2σ is below the value
at which Harper–Dorn creep is faster than diffusional creep.

Figure 3. The map for aluminium augmented by the line w(σ)
determining the dislocation cell size. Where w < L, power-law
breakdown occurs at a stress independent of grain size.

The present analysis does not apply very high stresses,
where the lettice may break down, or at high stresses and
very small grain size, where the Hall-Petch criterion may
not apply because a pile-up of several dislocations within
the cell is not possible. The regions where the analysis does
not apply are indicated in the figure.

When Lσ is below the Bardeen–Herring limit, disloca-
tions cannot multiply within the grain even if σ > σp.
Dislocations are swept into the grain boundaries, and only
diffusional creep is possible in the steady state. Above the
Bardeen–Herring limit, Harper–Dorn creep occurs when
σ < σp, and the grain size is not too small, even for
very large grain sizes where L1/2σ is large enough to
allow dislocations to cross the grain boundary. For σ
somewhat below σp, the Bardeen–Herring limit occurs at
about log(L/b) = 6, corresponding to L = 290µm, in
reasonable agreement with the value of 400µm estimated
by Mohamed [16] from experimental data. Power-law creep
occurs in the region bounded by the Bardeen–Herring limit,

the Peierls stress and the Hall–Petch stress line. The region
above both the Bardeen–Herring and the Hall–Petch lines is
that of power-law breakdown.

For copper, b = 2.56 · 10−10 m, µ = 48 · 109 Pa,
σp = 10−5µ, kHP = 1.6 · 105 Nm−3/2, and the resulting
map of the (L, σ) plane is shown in Fig. 2.

The topology of the map is different from that of Fig. 1.
There is a region which lies below the Peierls stress, above
the Bardeen–Herring limit, and at grain sizes so small
that Harper–Dorn creep is either impossible or slower than
diffusional creep. In this new region, diffusional creep will
dominate.

5. Influence of Dislocation Cells

The discussion so far has assumed that the only obstacles
to dislocation motion are the Peierls stress and the grain
boundaries. However, dislocations may also assemble into
cells of width w(σ), where [11]

w(σ) ≈ 10.5bµ/σ (17)

and usually do so provided that w < L. On the rather
drastic assumption that the cell walls are as effective barriers
to dislocation motion as are grain boundaries, L must be
replaced by w(σ) in the preceding discussion. In Fig. 3,
the map for aluminium is augmented by the line w(σ).
At large grain sizes, where the Hall–Petch line lies above
the line w(σ), the effective grain size is w(σ), and power-
law breakdown occurs at a constant stress given by the
intersection of the lines w(σ), and H–P stress. Then, as is
observed, the regimes of Harper–Dorn creep and power-law
breakdown are separated by a regime of power-law creep. It
appears that this regime covers a factor of several hundreds
in stress, in agreement with the observations reported by Wu
and Sherby [17].
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