Локальные магнитные моменты и сверхтонкие магнитные поля в сплавах Fe–M (M = Si,Sn) при малых концентрациях атомов металлоида

© А.К. Аржников, Л.В. Добышева, Ф. Брауерс*

Физико-технический институт Уральского отделения Российской академии наук, 426001 Ижевск, Россия *Льежский университет, Институт физики, 4000 Льеж, Бельгия E-mail: ARG@OTF.FTI.UDMURTIA.SU

(Поступила в Редакцию 1 февраля 1999 г. В окончательной редакции 13 мая 1999 г.)

На основе "первопринципных" расчетов проанализированы закономерности формирования локальных магнитных моментов и сверхтонкого магнитного поля на ядрах Fe (СТМП) в сплавах Fe–Sn, Fe–Si при низких концентрациях атомов металлоида. Проводится сравнение с экспериментальными данными. Доказано, что основные различия в этих сплавах связаны с различной величиной параметров решетки. Показано, что в особенности формирования СТМП существенный вклад вносят орбитальный магнитный момент и поляризация Рудермана–Киттеля–Касуя–Иосиды, которые зависят от концентрации и расстояния до примеси.

К настоящему времени накоплены многочисленные экспериментальные данные по неупорядоченным бинарным сплавам железа с *sp*-элементами (Si, Sn, Al, ...) [1–10]. Широкий концентрационный интервал существования атомно-разупорядоченного состояния в этих сплавах делает их хорошими модельными объектами для изучения фундаментальных закономерностей формирования магнитных свойств. Общие концентрационные магнитные закономерности для разных атомов металлоида в свое время позволили выделить ограниченное число факторов, их определяющих. Используя этот факт, авторам [6,11,12] удалось на основе модельных гамильтонианов получить качественное, а в некоторых случаях и количественное, описание концентрационных и температурных закономерностей формирования локальных магнитных моментов, полного магнитного момента и температуры Кюри. Однако уже в этих работах указывалось на необходимость обоснования используемых моделей и описания некоторых отличий поведения магнитных характеристик различных сплавов на основе микроскопических расчетов "из первых принципов".

В данной работе мы сосредоточили внимание на низкоконцентрационных зависимостях локальных магнитных моментов и сверхтонких магнитных полей (СТМП) на ядрах Fe для наиболее типичных представителей сплавов металл-металлоид Fe_{1-x}Si_x, Fe_{1-x}Sn_x. На рис. 1–3 приведены экспериментальные данные, которые демонстрируют различия параметров ОЦК структуры (ОЦК структура в этих сплавах сохраняется вплоть до 30 at.% [1,5]), средних магнитных моментов и СТМП (H_0 — СТМП на ядре железа, в ближайшем окружении которого нет ни одного атома металлоида и H_1 — СТМП на атоме, в ближайшем окружении которого находится липь 1 атом металлоида). Аппроксимируя линейно концентрационные зависимости H_0 и M, получим $\Delta H_0/\Delta M \approx -120 \text{ kG}/\mu_B$. Эта величина близка к коэффициенту ферми-контактного вклада в СТМП Fe, поэтому естественно предположить, что изменения H_0 связаны в основном с увеличением локальных магнитных моментов. Отметим, что это не является тривиальным фактом, как это может показаться с первого взгляда, так как значительный вклад в СТМП вносит орбитальный магнитный момент и поляризация Рудермана–Киттеля–Касуя–Иосиды (РККИ). Однако коэффициент орбитального вклада СТМП железа положителен ($\approx 313 \text{ kG}/\mu_b$ [13]), а осциллирующий коэффициент поляризации РККИ от удаленных атомов не превышает по модулю $8 \text{ kG}/\mu_B$, как это будет показано далее.

С целью изучения пространственного распределения магнитного момента и его взаимосвязи с СТМП на

Рис. 1. Концентрационная зависимость параметра ОЦК решетки неупорядоченных сплавов Fe–Si [3–5] (1) и Fe–Sn [6] (2).

ядрах железа мы провели "первопринципные" расчеты для упорядоченных сплавов замещения Fe₁₅Sn и Fe₁₅Si, решетки которых образованы замещением одного атома Fe атомом Sn в расширенной ячейке ОЦК структуры, состоящей из 16 атомов. Элементарная ячейка содержит 4 неэквивалентных позиции атомов железа, расположенных на различных расстояниях от атома металлоида (см. рис. 4). Самосогласованные расчеты зонной структуры проводились с использованием полнопотенциального метода линеаризованных присоединенных

Рис. 2. Концентрационная зависимость среднего магнитного момента на атом Fe в разупорядоченных сплавах Fe–Si [7–9] (1) и Fe–Sn [6,7] (2). 3 — расчет данной работы.

Рис. 3. Концентрационная зависимость сверхтонких магнитных полей H_0 и H_1 на ядрах Fe разупорядоченных сплавов Fe–Si [9] (1) и Fe–Sn [10] (2). 3 — H_0 (в ближайшем окружении атома железа нет немагнитных примесей), 4 — H_1 (в ближайшем окружении атома железа есть один атом немагнитной примеси).

Рис. 4. Неэквивалентные позиции атомов железа в элементарной ячейке упорядоченного сплава Fe₁₅M.

плоских волн (FLAPW) с помощью пакета программ WIEN97 [14,15]. Вычисления проведены с аппроксимацией обменно-корреляционного вклада в виде обобщенного градиентного приближения [16]. Полученные результаты приведены в табл. 1–3.

1. Решетка

Исходя из экспериментальных данных, можно считать, что в неупорядоченных сплавах при низких концентрациях реализуется сплав замещения с ОЦК структурой. В расчетах использовались экспериментальные значения для постоянных решеток, взятых при концентрациях примесей 6.25 at.% (рис. 1) и экстраполированных на нулевую температуру (для Fe₁₅Sn a = 10.9924 a.u., для Fe₁₅Si a = 10.7926 a.u.). Дополнительно для иллюстрации влияния параметров решетки на численные результаты мы провели расчеты $Fe_{15}Sn$ с a = 10.8114 a.u., что соответствует экспериментальной решетке чистого Fe, и также для решетки с a = 10.9924 a.u. провели частичную релаксацию, сдвинув атомы железа, ближайшие соседи атома олова, на расстояние $\delta r = 0.038$ a.u. по большой диагонали куба. Необходимо отметить, что полная энергия решетки с частичной релаксацией ($E = -50542.2470 \, \text{Ry}$) ниже, чем соответствующая величина нерелаксированной решетки $(E = -50542.2329 \,\mathrm{Ry}).$ Это указывает на то, что в действительности должна реализовываться несколько искаженная ОЦК структура. Однако полученные результаты для магнитных моментов и СТМП (табл. 1) мало отличаются в случаях с учетом и без учета релаксации, и поэтому эффекты релаксации в этой работе не рассматриваются. В дальнейшем сравнение и обсуждение результатов будет проводиться для расчетов Fe15Sn с a = 10.9924 а.u. и Fe₁₅Si с a = 10.7926 а.u. без упоминания этих параметров, если только они не будут специально оговариваться.

Величина	Параметр эл. ячейки	Позиция атома Fe по отношению к Sn				14
		Ι	II	III	IV	M _{tot}
H_{cor}	$\frac{10.8114^1}{10.9924^2}\\10.9924^3$	-281.9 -295.5 -299.4	-291.7 -304.0 -308.3	-304.4 -317.9 -321.7	-316.3 -317.7 -317.5	
H_{val}	$\frac{10.8114^1}{10.9924^2}\\10.9924^3$	-17.4 -18.4 -22.5	-24.6 -32.2 -35.3	17.4 11.7 8.0	-7.1 -14.2 -17.8	
H _{tot}	$\frac{10.8114^1}{10.9924^2}\\10.9924^3$	-299.3 -313.8 -321.9	-316.3 -336.2 -343.6	-287.0 -306.2 -313.1	-323.3 -331.9 -335.3	
M_d	$10.8114^{1} \\ 10.9924^{2} \\ 10.9924^{3}$	2.303 2.418 2.433	2.371 2.489 2.503	2.472 2.624 2.606	2.552 2.614 2.565	2.269 2.374 2.377

Таблица 1. Расчетные значения сверхтонких полей (kG) и магнитных моментов (μ_B) в системе Fe₁₅Sn

Примечание. ¹ Параметр элементарной ячейки (а.и.) соответствует удвоенному параметру чистого железа.

² Параметр элементарной ячейки соответствует удвоенному параметру решетки неупорядоченного сплава $Fe_{1-x}Sn_x$, x = 0.0625.

³ Атомы железа, ближайшие соседи атомов олова, сдвинуты на δr = 0.038 a.u. вдоль большой диагонали куба (частично релаксированная решетка).

Таблица 2. Расчетные значения сверхтонких полей (kG) и магнитных моментов (μ_B) в системе Fe₁₅Si. Параметр элементарной ячейки (a.u.) соответствует удвоенному параметру решетки неупорядоченного сплава Fe_{1-x}Si_x, x = 0.0625.

Величина	Параметр	Позиция атома Fe по отношению к Si				М
	эл. ячейки	Ι	II	III	IV	M _{tot}
H_{cor}	10.7926	-277.8	-290.7	-297.1	-311.7	
H_{val}	10.7926	-27.8	-20.0	4.1	-11.5	
H_{tot}	10.7926	-305.5	-310.7	-293.0	-323.2	
M_d	10.7926	2.264	2.360	2.418	2.518	2.228

Средние и локальные магнитные моменты

Экспериментальные измерения намагниченности (рис. 2) определяют средний магнитный момент, приходящийся на атом Fe. В расчетах этой величине соответствует значение магнитного момента элементарной ячейки, отнесенное к количеству магнитных атомов в ячейке M_{tot} . Под локальным магнитным моментом здесь и далее подразумевается суммарная спиновая плотность *d*-подобных электронов внутри muffin-tin сферы.

Полученные величины средних магнитных моментов на магнитный атом для Fe₁₅Sn, $M_{tot} = 2.380 \,\mu_B$ и для Fe₁₅Si, $M_{tot} = 2.228 \,\mu_B$ превышают экспериментальные данные для соответствующих разупорядоченных сплавов. Однако их разница $\Delta M = 0.146 \,\mu_B$ в пределах ошибки совпадает с экспериментально наблюдаемой (рис. 2). Принимая во внимание также то, что разупорядочение приводит к уменьшению значений магнитного момента при концентрации 6.25 at.% на 1.5–2% от первоначальной величины [6], мы можем говорить о правомерности использования наших расчетов для анализа различий формирования магнитных моментов в сплавах с примесями Sn и Si.

На рис. 5 показаны значения локального магнитного момента на атоме Fe в зависимости от расстояния до атома металлоида в упорядоченных сплавах $Fe_{15}M$, M = Sn, Si. Как мы и предполагали ранее [11], величина локального магнитного момента определяется несколькими взаимно противоположными по действию факторами. Первый связан с эффективным перекрытием *d*-подобных волновых функций, которые уменьшаются при увеличении числа примесей или при увеличении расстояния между атомами. Второй фактор связан с

Таблица 3. Расчет магнитного момента (μ_B) в чистом железе

а	10.7926 ¹	10.8114 ²	10.9924 ³
M_d	2.321	2.327	2.439
M_{tot}	2.214	2.219	2.319

Примечание. ¹Параметр элементарной ячейки соответствует удвоенному параметру решетки неупорядоченного сплава $Fe_{1-x}Si_x$, x = 0.0625.

²Параметр элементарной ячейки соответствует удвоенному параметру чистого железа.

 $^{^3}$ Параметр элементарной ячейки соответствует удвоенному параметру решетки неупорядоченного сплава Fe $_{1-x} {\rm Sn}_x, x=0.0625.$

Рис. 5. Локальные магнитные моменты на атоме Fe в четырех неэквивалентных позициях, $1 - \text{Fe}_{15}\text{Si}$, $2 - \text{Fe}_{15}\text{Sn}$.

уплощением d-зоны при увеличении s-d гибридизации на узле железа из-за искажения потенциала внедренной примесью. Локальность s-d гибридизации приводит к сильной зависимости этого воздействия от расстояния. На рис. 6 демонстрируется различное влияние этих факторов на ширину распределения d-состояний для атомов железа в разных позициях. Сужение этого распределения на атоме Fe типа IV приводит к увеличению магнитного момента по сравнению с атомом в позиции I. Отличия по величине локальных магнитных моментов в эквивалентных позициях в сплавах с Si и Sn связаны лишь с различиями в расстояниях между атомами. Для доказательства этого утверждения мы провели расчеты сплава Fe₁₅Sn с параметром элементарной ячейки a = 10.8114 a.u. (табл. 1) и для ОЦК железа с параметрами 2a = 10.7926 a.u., 2a = 10.8114 a.u., 2a = 10.9924 a.u. (табл. 3) (2a = 10.8114 — экспериментально наблюдаемый параметр для Fe). Из полученных разультатов видно, что значения локальных магнитных моментов в сплавах с Si и Sn близки друг к другу (табл. 1,2), если близки параметры решетки, и магнитный момент растет при увеличении параметра решетки (табл. 3).

Сверхтонкие магнитные поля на ядрах железа

В сверхтонких взаимодействиях ядерного магнитного момента и электронной подсистемы мы учитываем только ферми-контактный вклад. Другие вклады в СТМП или изменения, связанные с ними, считаются малыми в силу кубической симметрии кристаллической решетки. Эти дополнительные вклады могут быть существенны, и один из случаев мы обсудим далее. Вычисление ферми-контактного вклада в СТМП проводились по стандартной процедуре интегрирования спиновой плотности электронов с учетом релятивистских эффектов [17]. Этот вклад определяется двумя слагаемыми: поляризацией электронов внутренних уровней ("остовных" электронов) в области ядра H_{cor} и валентных электронов несколько различны.

Рис. 6. Спин-поляризованная плотность состояний *d*-электронов на атомах железа. Верхняя часть рисунка — спин "вверх", нижняя — спин "вниз".

Физика твердого тела, 2000, том 42, вып. 1

Рис. 7. Вклад от поляризации валентных электронов в сверхтонкие магнитные поля на ядрах атомов железа в четырех неэквивалентных позициях, $1 - \text{Fe}_{15}\text{Si}$, $2 - \text{Fe}_{15}\text{Sn}$.

Анализируя СТМП, прежде всего следует обратить внимание на два обстоятельства. Первое — поляризация остовных электронов с большой точностью удовлетворяет соотношению $H_{cor} = \gamma M_d$, где M_d — спиновая поляризация *d*-электронов в muffin-tin сфере, $\gamma = -123 \text{ kG}/\mu_B$.

И второе — зависимость H_{val} от расстояния до примеси носит осцилляционный характер (рис. 7) и напоминает вид РККИ поляризации. Исходя из простых соотношений для свободных электронов между K_F и числом приходящихся на ячейку *s*-электронов N_s (в нашем случае $N_s \approx 11-15$), легко оценить период осцилляций РККИ [18]

$$T = a \sqrt{\frac{\pi}{3N_s}} \approx 4.3 - 4.8 \,\mathrm{a.u.}$$
 (1)

Эта величина соответствует периоду осцилляций на рис. 7, что подтверждает природу возникновения периодических изменений H_{val} . В простейшей модели поляризации свободных электронов локализованным магнитным моментом, выражение для спиновой плотности имеет вид $\cos(2K_F r)/(K_F r)^3$ [18]. Используя это, запишем вклад валентных электронов в СТМП на узле r_i в виде

$$H_{val}(r_i) = A + B \sum_{j \in Fe, j \neq i}^{r_{i-j} = r^{\max}} \frac{\sin[2\pi \left(\frac{r_{i-j}}{T} + \phi\right)]}{r_{i-j}^3}.$$
 (2)

Имея 4 значения $H_{val}(r_i)$ в неэквивалентных позициях атомов Fe в Fe₁₅Sn и H_{val} для чистого железа, мы решили систему (2) методом наименьших квадратов (суммирование было ограничено по атомам, лежащим в сфере $r^{\max} \approx 70$ a.u.) и получили A = -121.24 kG, B = 917 kG · a.u.³, T = 4.850 a.u., $\phi = 0.128$. График РККИ-поляризации одним атомом железа, соответствующий второму слагаемому в (2), приведен на рис. 8. Используя это решение и выражение (2) мы вычислили значения *Hval* для системы Fe₁₅Si и получилил значительные расхождения с результатами "первопринципных" расчетов (табл. 2). Это указывает на условность выбора простой функциональной зависимости типа $\cos(2K_F r)/r^3$, которая не учитывает пространственного распределения s-d обменного взаимодействия и неоднородности распределения плотности s-электронов. Однако для оценки поляризации валентных электронов атомами железа, хаотически расположенными в решетке, т.е. для средних величин, выражение (2), по-видимому, вполне приемлемо, так как отражает основные чарты РККИ-поляризации: период, амплитуду и фазу. На рис. 9 приведены средние \overline{H}_{val} вклады в СТМП вследствие РККИ-поляризации. Усреднение проводилось по неупорядоченному расположению атомов Fe, находящихся внутри сферы $r^{\rm max}\approx 70\,{\rm a.u.}$ При учете затухания вклад РККИ-поляризации умножался на $\exp(-r_{i-i}/l_0)$ [19]. l_0 — длина свободного пробега электрона — соответствовала среднему расстоянию между примесями и изменялась от ≈ 220 до ≈ 20 a.u. при изменении концентрации металлоида от 0 до 6.25 at.%.

Пользуясь модельными предположениями, оценим возможный вклад усредненной РККИ-поляризации из эксперимента. Для этого предположим, что в исследуемых неупорядоченных сплавах FeSn изменения магнитного момента описываются ступенчатой функцией

$$M = \begin{cases} M_1 = M_{
m Fe}, &
m если атом — ближайший сосед \ \kappa примеси; \ M_0 =
m const, &
m в противном случае. \end{cases}$$

Эта функциональня зависимость находится в согласии с рассчитанными нами значениями локального магнитного момента (рис. 5). Из функционального вида (3) и экспериментальных данных рис. 2 вычислим изменения с концентрацией магнитного момента $\Delta M_0(c)$

Рис. 8. РККИ-поляризация одним атомом железа. I, II, III, IV — положения четырех неэквивалентных позиций в решетке.

Рис. 9. Концентрационная зависимость среднего валентного вклада в СТМП в разупорядоченном сплаве Fe–Sn. 1 — поле H_0 , 2 — поле H_1 , 3 — с учетом затухания, 4 — оценка этого вклада в поле H_0 по экспериментальным данным.

на атоме Fe, в ближайшем окружении которого нет атомов металлоида ($\Delta M_0(c = 3 \text{ at.}\%) = 0.05 \,\mu_B$, $\Delta M_0(c = 6.25 \text{ at.}\%) = 0.17 \,\mu_B$). Используя коэффициент $\alpha = -151.8 \, \mathrm{kG}/\mu_B$, связывающий экспериментальные значения магнитного момента и СТМП $(H = \alpha M)$ в чистом железе, получим изменения $\Delta H_0 = \alpha \Delta M, \quad \Delta H_0(c = 3 \text{ at.}\%) = -8.1 \text{ kG},$ $\Delta H_0(c = 6.25 \, \text{at.\%}) = -22.8 \, \text{kG}$. И в том и с другом случае это значительно превышает экспериментально наблюдаемые изменения Н₀ (рис. 3). Учитывая, что в наших расчетах получена почти точная пропорциональня зависимость поляризации коровских электронов от локального магнитного момента, мы может утверждать, что разница вычисленных ΔH_0 и экспериментальных изменений равна усредненному вкладу РККИ-поляризации. Отсюда следует, что $\Delta H_{0 \exp}^{val}(c = 3 \text{ at.}\%) = 6.1 \text{ kG}$ и $\Delta H_{0 \exp}^{val}(c = 6.25 \text{ at.}\%) = 13.8 \text{ kG}$. Это неплохо согласуется с концентрационной зависимостью $\Delta H_{0 \ calc}^{val}$, полученной при усреднении (2), рис. 9.

Поведение среднеквадратичных флуктуаций также совпадает с экспериментально наблюдаемым уширением распределения СТМП на ядрах Fe с концентрацией, из чего можно заключить, что флуктуации РККИполяризации дают один из основных вкладов в уширение распределения СТМП.

После операции усреднения вклада остовных электронов в СТМП (табл. 1) и с учетом изменения среднего значения вклада валентных электронов (рис. 8) получим

$$\frac{\overline{H}_{0}^{(\text{Fe}_{15}\text{Sn})}}{H^{(\text{Fe})}} = 1.041, \quad \frac{\overline{H}_{1}^{(\text{Fe}_{15}\text{Sn})}}{H^{(\text{Fe})}} = 1.019.$$

Как и в случае магнитного момента, $\overline{H}_{0}^{(\text{Fe}_{15}\text{Sn})}$ несколько выше экспериментальных данных. Поскольку увеличе-

ние $\overline{H}_0^{(Fe_{15}Sn)}$ в основном связано с ростом локального магнитного момента, расхождение с экспериментом объясняется влиянием разупорядочения (уменьшение на 1.5-2% магнитного момента за счет разупорядочения приведет в соответствие экспериментальные и теоретические данные).

Иначе обстоит дело с полем \overline{H}_1 , относительная величина которого довольно сильно отличается от экспериментального (рис. 3). В рамках сделанных нами расчетов это отличие можно объяснить лишь дополнительным вкладом, связанным с орбитальным магнитным моментом. До сих пор мы не обсуждали этого вклада в намагниченность и СТМП. В чистом железе эта величина, обусловленная нарушением кубической симметрии гамильтониана релятивистскими поправками, составляет $\approx 0,08 \,\mu_B$. В то же время при внедрении примеси металлоида нарушается кубическая симметрия кристаллического потенциала, что должно приводить к дополнительному размораживанию орбитального магнитного момента, а его увеличение — к уменьшению модуля СТМП на ядрах. Отметим, что уменьшение абсолютной величины СТМП на 20 kG будет вызвано незначительным ростом орбитального магнитного момента примерно на $0.06 \mu_B$ [20]. Максимальное изменение кристаллического потенциала происходит вблизи атома металлоида, т.е. в первой координационной сфере, где и происходят основные изменения, связанные с вкладом от орбитального магнитного момента. Подтверждением этого служит почти одинаковая разница $H_0 - H_1 \approx 20 \, \mathrm{kG}$ как для $Fe_{100-c}Sn_c$, так и для $Fe_{100-c}Si_c$.

Авторы считают своим долгом выразить благодарность Международному центру теоретической физики (Италия, г. Триест) за предоставленную возможность участия в семинаре "The Physics of the Electronic Behaviour in the Core Region: All–Electron LAPW Electronic Structure Calculations" 22 июня–4 июля 1998 г.

Работа поддержана Российским фондом фундаментальных исследований (грант № 97-02-16270).

Список литературы

- E.P. Yelsukov, E.V. Voronina, V.A. Barinov, J. Magn. Magn. Mater. 115, 271 (1992).
- [2] A. Taylor, R.M. Jones. J. Phys. Chem. Solids 6, 16 (1958).
- [3] M.C.M. Farquhar, H. Lipson, A.R. Weil. J. Iron Steel Inst. 152, 457 (1945).
- [4] F. Richter, W. Pepperhoff. Arch. Eisenhuttenw. 45, 107 (1974).
- [5] Е.П. Елсуков, В.А. Баринов, Г.Н. Коныгин. ФММ 62, 719 (1986).
- [6] А.К. Аржаников, Л.В. Добышева, Е.П. Елсуков, А.В. Загайнов. ЖЭТФ 110, 1127 (1996).
- [7] M. Fallot. Ann. Phys. 6, 305 (1936).
- [8] D. Parsons, W. Sucksmith, J.E. Thompson. Phil. Mag. 3, 1174 (1958).
- [9] E.P. Elsukov, G.N. Konygin, V.A. Barinov, E.V. Voronina. J. Phys.: Condens Matter. 4, 7597 (1992).

- [10] Е.П. Елсуков, Е.В. Воронина, Ф.М. Фомин, Г.Н. Коныгин. ФММ 85, 89 (1998).
- [11] A.K. Arzhnikov, L.V. Dobysheva. J. Magn. Magn. Mater. 117, 87 (1992).
- [12] A.K. Arzhnikov, L.V. Dobysheva. Phys. Lett. A195, 2, 176 (1994).
- [13] H. Ebert, H. Akai. Hyperfine Interac. 78, 361 (1993).
- [14] P. Blaha, K. Schwarz, J. Luitz. WIEN97. Vienna University of Technology (1997).
- [15] P. Blaha, K. Schwarz, P. Sorantin, S.B. Trickey. Comput. Phys. Commun. 59, 399 (1990).
- [16] J.P. Perdew, S. Burke, M. Ernzerhof. Phys. Rev. Let. 77, 3865 (1996).
- [17] H. Akai, M. Akai, S. Blugel, B. Drittler, H. Ebert, K. Terakura, R. Zeller, P.H. Dederichs. Progr. of Theor. Phys. Suppl. 101, 11 (1990).
- [18] Н. Ашкрофт, Н. Мермин. Физика твердого тела. Т. 2. Мир, М. (1979). 400 с.
- [19] Сверхтонкие взаимодействия в твердых телах. Мир, М. (1970). 368 с.
- [20] M. Battocletti, H. Ebert, H. Akai. Phys. Rev. B53, 15, 9776 (1996).