Межатомные корреляции в сплаве Ni-11.8 at.% Мо

© В.Г. Порошин, Н.П. Кулиш, П.В. Петренко, Н.А. Мельникова

Киевский государственный университет им. Т. Шевченко, 252017 Киев, Украина E-mail: kulish@radphys.ups.kiev.ua

(Поступила в окончательном виде 17 июня 1999 г.)

Модернизированным методом резделения компонент диффузного рассеяния Коэна-Мацубари-Георгопоулуса с учетом поправок на факторы поглощения получено распределение интенсивности в обратном пространстве от ближнего порядка в сплаве Ni-11.8 at.% Мо. Показано, что в широком интервале концентраций максимум интенсивности ближнего порядка локализован в стационарной точке типа {11/2 0}, что следует из полученных в работе экстремальных сумм при экспериментальных параметрах ближнего порядка.

Обычно концентрационные флуктуации, обусловленные межатомными корреляциями атомов в сплавах, определяются первыми членами разложения свободной энергии по концентрации [1-3]. Для ряда упорядочивающихся сплавов, равновесие в которых достигается за счет ангармонических составляющих свободной энергии, спинодальное упорядочение, которое описывается статическими концентрационными волнами с волновыми векторами Лифшица, k₀, максирует фазовый переход первого рода [3,4]. К таким сплавам относятся Au-Mn, Au-V, Au-Cr, Au-Fe и Ni-Mo. Их особенностью является присутствие в твердых растворах, а также в закаленных образцах стехиометрического состава Ni₄Mo диффузных пиков типа {1 1/2 0}, а при длительных отжигах последних сверхструктурных отражений типа 1/5{420}, соответствующих структуре $D1_a$.

Представления о строении ближнего порядка, описываемом отражениями $\{1 \ 1/2 \ 0\}$, противоречивые. Обычно они строятся на микродоменной модели при наличии неконсервативных антифазных границ [5–7] или модели волнового пакета концентрационных волн [8–11], атомным аналогом которой считается кластерная модель [4,10–12]. Попытки совместить эти модели [7] оказались несостоятельными. При этом следует заметить, что обширные электронно-микроскопические исследования сплавов с точками типа $\{1 \ 1/2 \ 0\}$ [5–12] ограничиваются лишь качественным рассмотрением распределения интенсивности и поэтому не могут дать количественное описание ближнего порядка.

В данной работе для изучения строения ближнего порядка в сплавах Ni–Mo был использован метод диффузного рассеяния рентгеновских лучей для монокристаллов [1,2]. Для исследования был выбран сплав с 11.8 at.% молибдена, т.е. сплав вблизи границы существования фазы $D1_a$ с целью выяснения роли ангармонических вкладов свободной энергии, которые могли бы внести особенности в строение ближнего порядка.

Более ранние исследования ближнего порядка с использованием рентгеновских лучей в сплавах никеля с 10.7 и 20.0 at.% молибдена [13] были выполнены в рамках устаревшей дифракционной теории УорренаАвербаха, что не позволило достаточно полно проанализировать строение ближнего порядка и описать эффекты, обусловленные статическими и динамическими искажениями.

Более полно строение ближнего порядка было изучено для закаленного сплава Ni₄Mo [14] с использованием метода разделения Бори–Спаркса. Однако приближения, заложенные в этом методе, не являются корректными для данного сплава в связи с заметным отличием отношения функций атомного рассеяния компонентов для различных точек обратного пространства [15,16], что может заметно исказить интерпретацию экспериментальных данных.

1. Методика эксперимента

Сплав Ni–11.8 at.% Мо был выплавлен в индукционной печи в алундовом тигле в атмосфере аргона. Монокристаллы выращивались в алундовых тиглях с конической затравочной частью в атмосфере аргона. Кристаллы разрезались по направлениям высокой симметрии. Для исследуемого сплава внешняя грань образца совпадала с плоскостью (100). Состояние ближнего порядка получено отжигом в течение 2 часов при 1000°С с последующим медленным охлаждением до комнатной температуры.

Диффузное рассеяние, из распределения которого определялись параметры ближнего порядка [17], измерялось при использовании жесткого K_{α} -Мо-излучения, что позволяло выбором режима работы установки отделить из спектра лучей, монохроматизированных одномерно-изогнутым кристаллом LiF, высокие гармоники $\lambda/2, \lambda/3, \ldots$, а также флюоресцентную составляющую.

В то же время применение жесткого излучения потребовало ввести поправки на угловую зависимость в поглощении [18,19] для интенсивности диффузного рассеяния от образца и от плавленого кварца, используемого в качестве эталона для перевода интенсивности в абсолютные электронные единицы. С учетом этих поправок выражение для перевода интенсивностей диффузного рассеяния от образца в электронные единицы $I_{sp}(\theta)$ с помощью измеряемой интенсивности от эталона на угле θ_0 имеет вид [19]

$$I_{sp}(\theta) = I_{st}(\theta_0) \frac{I_{sp}(\theta)}{I_{st}(\theta_0)} \frac{(n/2\mu L)_{sp}}{(n/2\mu L)_{st}} \\ \times \frac{1 + \gamma' \cos^2 2\theta_M \cos^2 2\theta_0}{1 + \gamma' \cos^2 2\theta_M \cos^2 2\theta}.$$
 (1)

Здесь $I_{st}(\theta_0)$ — интенсивность рассеяния от плавленого кварца, которая рассчитывалась с учетом поправок на аномальную дисперсию и составила при $\theta_0 = 45^\circ$ для молибденового излучения 37.27 е.u.; L_{st} , L_{sp} — поправки к фактору поглощения μ для эталона и образца соответственно, которые в общем случае сложным образом зависят от геометрии установки образца, коллимации пучков и поглощения рентгеновских лучей. Например, при излучении K_{α} -Мо значение поправки $L_{st}(45^\circ) = 0.8944$ е.u., что заметно влияет на интенсивность рассеяния эталоном. Параметр γ' учитывает степень несовершенства кристалла монохроматора, который для используемого кристалла LiF оказался близким к единице.

Модуляции диффузного рассеяния в сплавах можно представить через компоненты, обусловленные ближним порядком, статическими и динамическими смещениями [1,2,15]. В данной работе разделение этих компонент выполнено с использованием модернизированного метода Коэна–Мацубари–Георгопоулуса [20–23], который как и метод Бори–Спаркса [15], основан на различии в симметрии модуляции диффузного фона в обратном пространстве указанными компонентами рассеяния.

Полная интенсивность когерентного рассеяния рентгеновских лучей в электронных единицах для всех пар атомов *m* и *n*, попадающих в рассеивающий объем, может быть представлена через вектора статических δ_m , δ_n и динамических \mathbf{u}_m , \mathbf{u}_n смещений атомов следующим образом [23]:

$$I_{n}\left(\frac{\mathbf{s}}{\lambda}\right) = \sum_{m}^{N} \sum_{n}^{N} f_{m} f_{n}^{*} \exp\left\{2\pi i \frac{\mathbf{s}}{\lambda} \left[\left(\mathbf{r}_{m} - \mathbf{r}_{n}\right) + \left(\boldsymbol{\delta}_{m} - \boldsymbol{\delta}_{n}\right) + \left(\mathbf{u}_{m} - \mathbf{u}_{n}\right)\right]\right\}.$$
(2)

Здесь f_m и f_n функции атомного рассеяния атомов; \mathbf{r}_m , \mathbf{r}_n — радиус-векторы, определяющие положения узлов решетки; $\mathbf{s}/\lambda = h_1\mathbf{b}_1 + h_2\mathbf{b}_2 + h_3\mathbf{b}_3$ — дифракционный вектор произвольной точки обратного пространства с координатами h_1, h_2, h_3 ; $\mathbf{b}_1, \mathbf{b}_2, \mathbf{b}_3$ орт-векторы обратного пространства, удовлетворяющие условию $|\mathbf{b}_1| = |\mathbf{b}_2| = |\mathbf{b}_3| = 1/a$ для кубических кристаллов, где a — параметр решетки; N — число атомов в облучаемом объеме.

Затем разложим $\exp\left(2\pi i\frac{s}{\lambda}\mathbf{u}_{mn}\right)$ до членов первого порядка малости с последующим усреднением по времени, а exp $(2\pi i \frac{s}{\lambda} \delta_{mn})$ разложим до членов второго порядка малости и усреднением по пространству. После перехода от суммирования по т и п к тройной сумме по координатам *l*, *m*, *n* узлов прямой решетки, радиус-вектор которых $\mathbf{r}_m - \mathbf{r}_n = \mathbf{r}_{lmn} = l\frac{\mathbf{a}_1}{2} + m\frac{\mathbf{a}_2}{2} + n\frac{\mathbf{a}_3}{2}$, где $\mathbf{a}_1, \mathbf{a}_2, \mathbf{a}_3$ орт-векторы ГЦК-структуры ($|\mathbf{a}_1| = |\mathbf{a}_2| = |\mathbf{a}_3| = a$), получим выражение для интенсивности диффузного рассеяния, в котором вклады от статических и динамических искажений представляются раздельно. Выражение для интенсивности диффузного рассеяния в данной точке обратного пространства (h_1, h_2, h_3) при этом можно представить через 25 компонент. Их нахождение предполагает составление системы уравнений с использованием интенсивностей диффузного рассеяния в *i*-х объемах обратного пространства с такими координатами точек $h_1^i, h_2^i, h_3^i, \, для$ которых в силу симметрии их положения относительно плоскостей типа (001) и (011) по отношению к исходным точкам базового объема с координатами (h_1, h_2, h_3) величины всех 25 компонент остаются одинаковыми. Знаки перед этими компонентами изменяются в зависимости от выбора координат і-го объема. Для учета знаков выразим координаты точки *i*-го объема (h_1^i, h_2^i, h_3^i) через координаты точки базового объема (h_1, h_2, h_3) следующим законом преобразования координат:

$$h_1^i = \pm h_{p1} \pm L_i;$$
 $h_2^i = \pm h_{p2} \pm M_i;$
 $h_3^i = \pm h_{p3} \pm N_i,$ (3)

где L_i, M_i, N_i — целые числа, причем для ГЦК кристаллов все они либо четные, либо нечетные; индексы p_1, p_2, p_3 — принимают любую из шести комбинаций с числами $\{1, 2, 3\}$.

Перемещение *i*-го объема относительно плоскостей симметрии типа (100) и (110), проходящих через начало координат, не изменяет значения интенсивности в точках с координатами (h_1^i, h_2^i, h_3^i) . Можно показать, что с точки зрения вкладов в диффузную интенсивность это будет обозначать взаимно однозначный переход компонентов одинаковой симметрии друг в друга. Формально же это эквивалентно простой перестановке координат точки *i*-го объема и приведению к виду $h_1^i(h_1), h_2^i(h_2), h_3^i(h_3)$.

Тогда интенсивность диффузного рассеяния на атом в произвольной точке (h_1^i, h_2^i, h_3^i) для *i*-го объема обратного пространства, включая базисный объем, может быть записана через компоненты точек (h_1, h_2, h_3) базисного объема следующим образом:

$$\begin{split} I_{D}(h_{1}^{i}, h_{2}^{i}, h_{3}^{i}) &= \frac{I_{ALL}(\mathbf{s}_{i}/\lambda) - I_{BR}(\mathbf{s}_{i}/\lambda)}{N} = C_{A}C_{B}(f_{A,i}^{i} - f_{B,i}^{i}) \\ &\times \left\{ I_{SRO} + \eta_{i}h_{1}^{i}S[h_{1}(h_{1}^{i})]Q_{x}^{AA}(h_{1}, h_{2}, h_{3}) \\ &+ \varepsilon_{i}h_{1}^{i}S[h_{1}(h_{1}^{i})]Q_{x}^{BB}(h_{1}, h_{2}, h_{3}) + \eta_{i}h_{2}^{i}S \right] \\ &\times [h_{2}(h_{2}^{i})]Q_{y}^{AA}(h_{1}, h_{2}, h_{3}) + \varepsilon_{i}h_{2}^{i}S[h_{2}(h_{2}^{i})] \\ &\times Q_{y}^{BB}(h_{1}, h_{2}, h_{3}) + \eta_{i}h_{3}^{i}S[h_{3}(h_{3}^{i})] \\ &\times Q_{z}^{BB}(h_{1}, h_{2}, h_{3}) + \eta_{i}h_{3}^{i}S[h_{3}(h_{3}^{i})] \\ &\times Q_{z}^{BB}(h_{1}, h_{2}, h_{3}) + \eta_{i}^{2}(h_{1}^{i})^{2}R_{x}^{AA}(h_{1}, h_{2}, h_{3}) \\ &+ 2\eta_{1}\varepsilon_{i}(h_{1}^{i})^{2}R_{x}^{AB}(h_{1}, h_{2}, h_{3}) + \varepsilon_{i}^{2}(h_{1}^{i})^{2} \\ &\times R_{x}^{BB}(h_{1}, h_{2}, h_{3}) + \eta_{i}^{2}(h_{2}^{i})^{2}R_{y}^{AA}(h_{1}, h_{2}, h_{3}) \\ &+ 2\eta_{i}\varepsilon_{i}(h_{2}^{i})^{2}R_{y}^{AB}(h_{1}, h_{2}, h_{3}) + \varepsilon_{i}^{2}(h_{2}^{i})^{2} \\ &\times R_{y}^{BB}(h_{1}, h_{2}, h_{3}) + \eta_{i}^{2}(h_{2}^{i})^{2}R_{z}^{AA}(h_{1}, h_{2}, h_{3}) \\ &+ 2\eta_{i}\varepsilon_{i}(h_{3}^{i})^{2}R_{z}^{AB}(h_{1}, h_{2}, h_{3}) + \varepsilon_{i}^{2}(h_{3}^{i})^{2} \\ &\times R_{y}^{BB}(h_{1}, h_{2}, h_{3}) + \eta_{i}^{2}h_{1}^{i}h_{2}^{i}S[h_{1}(h_{1}^{i})h_{2}(h_{2}^{i})] \\ &\times S_{xy}^{AB}(h_{1}, h_{2}, h_{3}) + 2\eta_{i}\varepsilon_{i}h_{1}^{i}h_{2}^{i}S[h_{1}(h_{1}^{i})h_{2}(h_{2}^{i})] \\ &\times S_{xy}^{AB}(h_{1}, h_{2}, h_{3}) + 2\eta_{i}\varepsilon_{i}h_{1}^{i}h_{2}^{i}S[h_{2}(h_{2}^{i})h_{3}(h_{3}^{i})] \\ &\times S_{xy}^{AB}(h_{1}, h_{2}, h_{3}) + 2\eta_{i}\varepsilon_{i}h_{3}^{i}h_{3}^{i}S[h_{2}(h_{2}^{i})h_{3}(h_{3}^{i})] \\ &\times S_{yz}^{AB}(h_{1}, h_{2}, h_{3}) + 2\eta_{i}\varepsilon_{i}h_{3}^{i}h_{3}^{i}S[h_{2}(h_{2}^{i})h_{3}(h_{3}^{i})] \\ &\times S_{yz}^{AB}(h_{1}, h_{2}, h_{3}) + \varepsilon_{i}^{2}h_{3}^{i}h_{3}^{i}S[h_{2}(h_{2}^{i})h_{3}(h_{3}^{i})] \\ &\times S_{yz}^{AB}(h_{1}, h_{2}, h_{3}) + \varepsilon_{i}^{2}h_{3}h_{3}^{i}S[h_{2}(h_{2}^{i})h_{3}(h_{3}^{i})] \\ &\times S_{yy}^{AB}(h_{1}, h_{2}, h_{3}) + \varepsilon_{i}^{2}h_{3}h_{3}^{i}S[h_{2}(h_{2}^{i})h_{3}(h_{3}^{i})] \\ &\times S_{yz}^{AB}(h_{1}, h_{2}, h_{3}) + \varepsilon_{i}^{2}h_{3}h_{3}^{i}S[h_{2}(h_{2}^{i})h_{3}(h_{3}^{i})] \\ &\times S_{yz}^{AB}(h_{1}, h$$

Здесь I_{ALL} — полная интенсивность, I_{BR} — интенсивность структурного отражения, $f_{A,i}$, $f_{B,i}$ — функции атомного рассеяния компонент A и B сплава в точке с координатами (h_1^i, h_2^i, h_3^i) для *i*-го объема обратного пространства, определяемых вектором \mathbf{s}_i/λ ; $f'_{A,i} = f_{A,i}e^{-M_A}$, $f'_{B,i} = f_{B,i}e^{-M_B}$; C_A и C_B , M_A и M_B — концентрации компонент и константы Дебая-Валлера сплава соответственно; $\eta_i = f'_{A,i}/(f'_{A,i} - f'_{B,i})$, $\varepsilon_i = f'_{B,i}/(f'_{A,i} - f'_{B,i})$; $S[h_k(h_k^i)]$ — знак координаты h_k , взятый из закона преобразования (3); $S[h_j(h_j^i)h_k(h_k^i)]$ — знак произведения координаты h_j на h_k из законов преобразования координат (3); $I^2_{TDS}(\mathbf{s}_i/\lambda)$ и $I^{3+4+\dots}_{TDS}(\mathbf{s}_i/\lambda)$ — представляют

вклады от двухфононного и многофононного теплового диффузного рассеяния в точке с координатой (h_1^i, h_2^i, h_3^i) . Последний член в (4) обусловлен модуляцией лауэвского фона при учете динамических смещений в $f'_{A,i}$ и $f'_{B,i}$ [23]. Названные вклады вычитаются из полной интенсивности вне брэгговских отражений, которые локально ограничены в обратном пространстве.

Компоненты интенсивности Q_j^{AA} и Q_j^{BB} описывают рассеяние в единицах Лауэ на линейных статических искажениях; R_j^{AA} , R_j^{AB} , R_j^{BB} — на квадратичных статических и динамических искажениях, S_{jk}^{AA} , S_{jk}^{AB} , S_{jk}^{BB} — на корреляциях динамических и статических смещений; $I_{SRO}(h_1, h_2, h_3)$ — интенсивность от ближнего порядка [20–23].

Предложенная процедура записи выражения для диффузной интенсивности через компоненты в точке базового объема не требует их спициального поиска для точек каждого *i*-го объема.

2. Результаты эксперимента и их обсуждение

Для исследования строения ближнего порядка в монокристаллическом образце Ni–11.8 at.% Мо в соответствии с уравнением (4) было проведено отделение I_{SRO} в точках обратного пространства исходного базового объема *ODC'C* с координатами (1/2 3/2 3/2), (011), (022), (012), равновеликого объему неприводимой части первой зоны Бриллюэна *ODB'ACB*, фрагмент которой приведен на рис. 1. Измерения в исходном объеме проводились с дискретностью $\Delta K_j = 0.0625$, а число точек *j* для базового объема равнялось 512. Двухфононное и многофононное тепловое диффузное рассеяние определялось в соответствии с работами [24,25]. Для разделения всех компонент диффузного рассеяния было выбрано 44 объема, координаты точек которых связаны

Рис. 1. Изображение базового объема *OBC'C* на фоне эквивалентной по объему части зоны Бриллюэна *OBB'ACB*. Кружками отмечены области максимумов диффузного рассеяния.

с координатами исходного объема правилами преобразований (3) относительно плоскостей симметрии типа (001) и (011). Следует отметить, что эти области занимают большой объем обратного пространства и поэтому для получения правильных значений интенсивностей диффузного рассеяния необходимо, как предложено в уравнении (1), вводить поправки.

Для уменьшения погрешности в определении компонент рассеяния из-за экспериментальных ошибок при таком большом числе неизвестных, которые входят в систему уравнений (4), был использован метод регуляризации экспериментальных данных в пределах их ошибок [26]. Решение системы линейных уравнений относительно компонент рассеяния было проведено при минимизации функционала регуляризации методом наименьших квадратов.

Рис. 2. Распределение интенсивности диффузного рассеяния (*a*) и изоинтенсивные кривые (*b*) для точек $h_1k_1l_1$ плоскости обратного пространства (001)* исходного базисного объема.

Номер координа-	Координаты Параметры ближнего поряд								
ционной сферы, <i>і</i>	узлов, lmn	$lpha_{lmn}^{ m exp}$	α_{D1_a}	$\alpha_{DO_{22}}$	$\alpha_{N_2M_2}$				
0	000	1.0058							
1	011	-0.1281	-1/4	-1/3	-1/3				
2	002	0.1243	1/6	5/9	1/3				
3	112	0.0400	1/6	1/9	1/3				
4	022	-0.0530	-1/4	1/9	-1/3				
5	013	-0.0203	-1/24	-1/3	-1/3				
6	222	-0.0733	-1/4	-1/3	-1				
7	123	0.0194	1/6	1/9	1/3				
8	004	0.0841	1/6	1	1				
9	033	-0.0094	-1/4	-1/3	-1/3				
10	114	-0.0155	-1/4	-1/3	-1/3				
11	024	0.0098	-1/24	5/9	1/3				
12	233	-0.0065	-1/4	1/9	1/3				
13	224	-0.0058	1/6	1/9	-1/3				
14	015	0.0115	1/6	-1/3	-1/3				
15	134	0.0028	1/6	-1/3	-1/3				
16	125	0.0033	-1/24	1/9	1/3				
17	044	0.0149	-1/4	1	1				
18	035	-0.0001	1/6	-1/3	-1/3				
19	334	-0.0017	1/6	-1/3	-1/3				
20	006	0.0003	1/6	5/9	1/3				
21	244	0.0068	1/6	5/9	1/3				
22	116	-0.0075	-1/4	1/9	1/3				
23	235	-0.0075	-1/4	1/9	1/3				
24	026	-0.0130	-1/24	1/9	-1/3				
25	145	-0.0043	-1/4	-1/3	-1/3				
26	226	-0.0066	1/6	-1/3	-1				
27	136	0.0055	1/6	1/9	1/3				
28	444	-0.0002	-1/4	1	1				

Таблица 1. Экспериментальные параметры ближнего порядка для сплава Ni–11.8 at.% Мо и предельные параметры ближнего порядка для ряда сверхструктур

Видно, что распределение диффузного рассеяния от ближнего порядка (рис. 2) характеризуется наличием диффузных максимумов в положениях {1 1/2 0}. Диффузные пики I_{SRO} достаточно симметричны, хотя можно заметить возле них присутствие тяжей, вытянутых в сторону сверхструктурных положений 1/5 {420}, которые могли бы свидетельствовать о существовании переходных процессов.

В табл. 1 приведены экспериментальные параметры ближнего порядка Уоррена–Каули α_{lmn}^{exp} для сплава Ni–11.8 at.% Мо, а также предельные параметры сверхструктур $D1_a$, DO_{22} и гипотетической структуры N_2M_2 , кластеры которой могут быть порождены усиленной концентрационной волной {1 1/2 0} [11,12]. Эти сверхструктуры часто использовались в моделях, претендовавших на объяснение природы ближнего порядка в сплавах, характеризуемых максимумами диффузной интенсивности в точках типа {1 1/2 0}. Параметры α_{lmn}^{exp} [15,17] рассчитывались как оптимизацией по методу наименьших квадратов, так и фурье-преобразованием [22] в

Координаты стационарных точек	Экстремальные суммы \sum_{I} и \sum_{II}	Интенсивность $I_{SRO}(h_1, h_2, h_3)$
000	$\sum_{I} = \sum_{i} lpha_{i} c_{i} R_{i0}$	$\sum_i lpha_i c_i$
001	$\sum_{I} = \frac{1}{2} \sum_{i} \alpha_{i} c_{i} (R_{i0} C_{i1} - R_{i1})$ $\sum_{II} = \sum_{i} \alpha_{i} c_{i} R_{i1}$	$rac{1}{3}\sum_i lpha_i c_i C_{i1}$
$\frac{1}{2}\frac{1}{2}\frac{1}{2}$	$\sum_{I} = \sum_{i} lpha_{i} c_{i} (R_{i0} C_{i2}^{0} + R_{i2}^{0} C_{i1}^{0}) \ \sum_{II} = \sum_{i} lpha_{i} c_{i} (R_{i0} C_{i2}^{0} - 2 R_{i2}^{0} C_{i1}^{0})$	$\sum_i lpha_i c_i C_{i2}^0$
$1\frac{1}{2}0$	$\sum_{I} = \frac{1}{2} \sum_{i} \alpha_{i} c_{i} (R_{i0} C_{i1}^{0} - R_{i1}^{0}) \frac{(C_{i1} - 1)}{2}$ $\sum_{II} = \sum_{i} \alpha_{i} c_{i} R_{i1}^{0} \frac{(C_{i1} - 1)}{2}$	$\frac{1}{3}\sum_{i}\alpha_{i}c_{i}C_{i1}^{0}\frac{(C_{i1}-1)}{2}$

Таблица 2. Экстремальные суммы $\sum_{I,II}$ и интенсивность диффузного рассеяния от ближнего порядка $I_{SRO}(h_1, h_2, h_3)$ в единицах Лауэ для различных стационарных точек обратного пространства ГЦК-решетки (сумма по *i*-м сферам)

соответствии с выражением

$$I_{SRO}(h_1, h_2, h_3) = \sum_{l,m,n} \alpha_{lmn}^{\exp} \cos \pi (lh_1 + mh_2 + nh_3).$$
(5)

Результаты хорошо согласуются между собой. В табл. 1 приведены для анализа параметры ближнего порядка лишь для 28 координационных сфер, хотя значения α_{lmn}^{exp} рассчитывались до i = 150. Синтезированная интенсивность ближнего порядка по 28 экспериментальным параметрам в пределах ошибок совпалает с экспериментальной интенсивностью ближнего порядка. С ростом номера координационной сферы параметры ближнего порядка заметно уменьшаются. Знаки параметров α_{lmn}^{\exp} согласуются до i = 12 со знаками, полученными для отожженных непродолжительное время закаленных сплавов Ni₄Mo [14]. В то же время заметно и отличие в соотношении между величинами параметров для разных координационных сфер. Кроме того, для сплава Ni₄Mo α_0 получилось существенно отличным от 1, что указывает на наличие не учтенных в этом исследовании дополнительных факторов рассеяния.

Детальный анализ знаков и соотношений между величинами параметров ближнего порядка показывает, что корреляция параметров α_{lmn}^{exp} как для исследуемого сплава с 11.8 at.% Мо, так и для отожженного Ni₄Mo [14] с предельными значениями $\alpha_{DO_{22}}$ слабая, в большей мере параметры для обоих сплавов согласуются в той или иной степени со значениями сверхструктур $D1_a$ и N_2M_2 .

Возможность существования в сплавах Ni₄Mo на начальных стадиях образования равновесной сверхструктуры D_1_a гипотетической структуры N_2M_2 с чередованием атомов NiNi MoMo в плоскости {420}, генерирующих отражение {1 1/2 0}, отмечалась в электронномикроскопических исследованиях при электронном облучении образцов [10–12]. По мнению авторов, на самых ранних стадиях процесса упорядочения, когда отражения {1 1/2 0} обособлены, данную структуру можно

каждый из которых характеризуется низкоамплитудной волной концентрации определенного варианта $\{1\ 1/2\ 0\}$. Волны, соответствующие различным вариантам, могут усиливаться в пределах области в несколько межатомных расстояний. В последующем возможно наложение волновых пакетов с различными вариантами $\{1\ 1/2\ 0\}$, которые приведут к образованию кластеров, содержащих структурные элементы других типов. Кроме того, возможна интерференция волновых пакетов $\{1\ 1/2\ 0\}$ с волновыми пакетами других концентрационных волн, что приводит в конечном итоге к равновесному состоянию упорядочения.

описать через волновые пакеты концентрационных волн,

Математический анализ функции (5) в обратном пространстве с целью выявления локализации ее экстремумов для ГЦК решетки, показывает, что они возможны только в четырех типах стационарных точек, а именно {000}, {100}, {1/2 1/2 1/2}, {1 1/2 0}. Локализация положений экстремумов не зависит от значений параметров α_{lmn} , поскольку первая производная функции (5) по координатам обратного пространства равна нулю из-за равенства нулю на каждой сфере тригонометрического члена. Поэтому для получения экстремума в одной из стационарных точек, в том числе и в стационарной точке типа $\{1 \ 1/2 \ 0\}$, не требуется вводить концентрационные волны и рассматривать условие их усиления. Из анализа вторых производных функции интенсивности (5) по координатам обратного пространства h_1, h_2, h_3 удалось сформулировать условия возникновения экстремумов в каждой из четырех стационарных точек. Эти условия сформулированы в табл. 2 в виде некоторых экстремальных сумм по і-м сферам, начиная с первой, для различных стационарных точек ГЦК решетки, приведенных во второй колонке. При положительных значениях сумм I и II в каждой из стационарных точек наблюдаются максимумы интенсивности ближнего порядка; если значения сумм I и II будут отрицательными, в точках типа {1 1/2 0} наблюдаются минимумы интенсивности.

2	1	26
7	I	20

	Сплав, at % Мо		Кол-во	Экст	Экстремальные суммы $\sum_{I,II}$ и интенсивности I_{SRO} для стационарных точек							Литера-			
N₂		Обработка	парамет-	00	000 001			1/2 1/2 1/2		1 1/2 0			турные		
	ut.70 1010		ров і	\sum_{I}	I _{SRO}	\sum_{I}	\sum_{II}	I _{SRO}	\sum_{I}	\sum_{II}	I _{SRO}	\sum_{I}	\sum_{II}	I _{SRO}	источники
1	10.7	Закалка 1000°С	10	-3.55	-0.284	-7.92	-1.15	1.028	-0.31	-0.96	0.004	18.74	17.90	3.180	[13]
2	20.0	Та же	31	44.57	1.810	-5.23	3.340	0.738	7.28	-0.60	0.021	46.28	102.2	7.706	[13]
7	11.8	Отжиг 2h	149	-65.95	-0.578	-50.46	9.349	0.819	11.14	8.034	0.438	89.78	127.7	5.278	Настоящая
		1000°C													работа
		Охлаждение	60	-46.33	-0.407	-50.70	8.507	0.817	12.18	10.15	0.447	89.07	126.5	5.270	_
		$2^{\circ}/\min$	51	-37.79	-0.291	-49.35	15.95	0.870	-16.22	-20.21	0.074	63.38	96.50	4.920	

Таблица 3. Значения экстремальных сумм $\sum_{I,II}$ и интенсивность ближнего порядка I_{SRO} для стационарных точек в сплавах Ni–Mo

В табл. 2 приведены следующие сокращения:

$$R_{i0} = l^{2} + m^{2} + n^{2}, \quad R_{i1} = l^{2} \cos \pi l + m^{2} \cos \pi m + n^{2} \cos \pi n,$$

$$R_{i1}^{0} = l^{2} \cos \frac{\pi}{2} l + m^{2} \cos \frac{\pi}{2} m + n^{2} \cos \frac{\pi}{2} n,$$

$$R_{i2}^{0} = lm \sin \frac{\pi}{2} l \sin \frac{\pi}{2} m + nl \sin \frac{\pi}{2} l \sin \frac{\pi}{2} n + mn \sin \frac{\pi}{2} m \sin \frac{\pi}{2} n,$$

$$C_{i1} = \cos \pi l + \cos \pi m + \cos \pi n,$$

$$C_{i1}^{0} = \cos \frac{\pi}{2} l + \cos \frac{\pi}{2} m + \cos \frac{\pi}{2} n,$$

$$C_{i2}^{0} = \cos \frac{\pi}{2} l \cos \frac{\pi}{2} m \cos \frac{\pi}{2} n.$$
(6)

Параметры ближнего порядка для каждого из узлов (lmn) на *i*-сфере одинаковы и равны α_i . Координационное число *i*-сферы — c_i . В третьей колонке табл. 2 приведена интенсивность ближнего порядка в единицах Лауэ $I_{SRO}(h_1, h_2, h_3)$ для каждого типа стационарной точки с учетом нулевой сферы, которая дополнительно помогает определить тип упорядочения по экспериментальным параметрам ближнего порядка.

Результаты непосредственной подстановки параметров ближнего порядка в экстремальные суммы для различных состояний ближнего порядка в сплавах Ni-Mo приведены в табл. 3. Как следует из анализа данных табл. 3, упорядочение в исследуемых сплавах Ni-Mo осуществляется по типу стационарной точки {1 1/2 0} при широком интервале значений параметров ближнего порядка.

Таким образом, как в области существования твердого раствора (сплав Ni–10.7 at.% Mo), так и вблизи его границы (сплав Ni–11.8 at.% Mo), а также при стехиометрическом составе для закаленного сплава Ni–20 at.% Мо сохраняется упорядочение по типу стационарной точки $\{1 \ 1/2 \ 0\}$.

Список литературы

- М.А. Кривоглаз. Теория рассеяния рентгеновских лучей и тепловых нейтронов реальными кристаллами. М. (1967). 336 с.
- [2] М.А. Кривоглаз. Дифракция рентгеновских лучей и нейтронов в неидеальных кристаллах. Киев (1983). 407 с.

- [3] А.Г. Хачатурян. Теория фазовых превращений и структура твердых растворов. М. (1974). 384 с.
- [4] D.De Fontaine. Acta Met. 23, 5, 553 (1975).
- [5] P.R. Okamoto, I. Thomas. Acta Met. 19, 8, 825 (1971).
- [6] S.K. Das, P.R. Okamoto, P.M.I. Fisher, I. Tomas. Acta Met. 21, 7, 913 (1973).
- [7] G. Van Tendeloo, S. Amelinck. Acta Cryst. B41, 5, 281 (1985).
- [8] J.-P.A.A. Chevalier, W.M. Stobbs. Acta Met. 27, 11, 1197 (1979).
- [9] S. Banerjee, K. Urban, M. Wilkens. Acta Met. 32, 3, 299 (1984).
- [10] U.D. Kulkarni, S. Banerjee. Acta Met. 36, 2, 413 (1988).
- [11] S. Banerjee, U.D. Kulkarni, K. Urban. Acta Met. 37, 1, 35 (1989).
- [12] U.D. Kulkarni, S. Muralidhar, S. Banerjee. Phys. Stat. Sol. A110, 3, 331 (1988).
- [13] J.E. Spruiel, E.E. Stansbury. J. Phys. Chem. Solids 26, 5, 811 (1965).
- [14] B. Chakravarti, E.A. Starke, C.J. Sporker, R.O. Williams. J. Phys. Chem. Solids 35, 9, 1317 (1974).
- [15] C.J. Sparks, B. Borie. Local atomic arrangements studied by X-ray diffraction / Ed. by J.B. Cohen, J.E. Millard. AIME conference. N. Y. 36, 5, 5 (1966).
- [16] B. Borie, C.J. Sparks. Acta Cryst. A27, 1, 198 (1971).
- [17] В.И. Иверонова, А.А. Кацнельсон. Ближний порядок в твердых растворах. М. (1977). 255 с.
- [18] Н.П. Кулиш, Н.А. Мельникова, П.В. Петренко, В.Г. Порошин. В сб.: Упорядочение атомов и его влияние на свойства сплавов. Свердловск (1983). 145 с.
- [19] Н.П. Кулиш, П.В. Петренко, В.Г. Порошин. Особенности перевода коротковолнового рентгеновского излучения в абсолютные электронные единицы. Деп. в ВИНИТИ 09.09.83, рег. № 5160-83; Металлофизика 6, *I*, 119 (1984).
- [20] P. Georgopoulos, J.B. Cohen. J. Physique 38, 12, 7191 (1977).
- [21] P. Georgopoulos, J.B. Cohen. Modulated Structures 1979 AIP Conf. Proc. N. Y. 53, 21 (1979).
- [22] S. Hashimoto. Sci. Rep. RITU A30, 1, 44 (1981).
- [23] J.B. Cohen. Solid Stat. Phys. 39, 131 (1986).
- [24] Н.П. Кулиш, Н.А. Мельникова, П.В. Петренко, В.Г. Порошин, Н.Л. Цыганов. Изв. вузов. Физика 32, 2, 82 (1989).
- [25] А.Л. Грицкевич, Н.П. Кулиш, Н.А. Мельникова, П.В. Петренко, В.Г. Порошин, Н.Л. Цыганов. В сб.: Прикладная рентгенография металлов. Л. (1986). С. 108.
- [26] В.А. Морозов. Регулярные методы решения некорректно поставленных задач. Наука, Физматтиз, М. (1987). 240 с.