Влияние межатомных корреляционных эффектов на ближний порядок в поликристаллических ГПУ-сплавах

© В.М. Силонов, Е.В. Евлюхина*, О.В. Крисько*, А.Б. Евлюхин*

Московский государственный университет им. М.В. Ломоносова, 119899 Москва, Россия *Владимирский государственный университет, 600026 Владимир, Россия E-mail: evl-m2@vpti.vladimir.su

(Поступила в Редакцию 21 декабря 1998 г. В окончательной редакции 12 апреля 1999 г.)

Впервые на основе теории диффузного рассеяния рентгеновских лучей монокристаллическими сплавами с гексагональной плотноупакованной (ГПУ) решеткой, предложенной М.А. Кривоглазом, разработана рентгенографическая методика исследования ближнего порядка в поликристаллических сплавах с ГПУ-решеткой. Эта методика позволила учесть особенность кристаллической структуры ГПУ-решетки, а именно наличие двух атомов в элементарной ячейке и близкие радиусы отдельных координационных сфер. Экспериментально на примере ГПУ-сплавов Mg–Dy, Mg–Tb продемонстрирована ее реалистичность. Впервые в рамках новой методики рассчитаны модулирующие функции линейного и квадратичного размерных эффектов для сплавов Mg–Dy, Mg–Tb. Показано, что для координационных сфер с близкими радиусами модулирующие функции размерных эффектов имеют разный характер, их учет в диффузном рассеянии позволяет решить проблему расчета параметров ближнего порядка на этих сферах.

В настоящее время удовлетворительно изучено атомное упорядочение в сплавах с ОШК- и ГШК-структурами. Однако до сих пор отсутствовали корректные экспериментальные методы исследования ближнего порядка поликристаллических гексагональных плотноупакованных (ГПУ) сплавов. Основной причиной этого являлась сложность вычислений, к которым приводил факт наличия двух атомов в элементарной ячейке, что серьезно препятствовало применению теории рассеяния кристаллами с ГПУ-решеткой, построенной М.А. Кривоглазом еще в 60-х годах [1], к экспериментальным исследованиям поликристаллов. Ранее для исследования ближнего порядка в поликристаллических сплавах с ГПУ-решеткой пользовались стандартной методикой, разработанной для сплавов с одним атомом в элементарной ячейке [2-5]. При этом не учитывалось то, что ГПУ-решетка не является решеткой Браве и ее элементарная ячейка содержит два атома. В поликристаллических сплавах с ГПУ-решеткой отдельные координационные сферы имеют близкие радиусы, что создает дополнительные трудности при определении параметров ближнего порядка на этих сферах. В стандартной методике такие сферы объединяли и находили для них эффективные параметры ближнего порядка [2-6]. Однако такой подход может привести к некорректным результатам.

Как известно (см., например, [1,2]), при рассеянии рентгеновских лучей твердыми растворами распределение интенсивности определяется как факторами, характеризующими особенности внутренней структуры сплава, так и факторами, связанными с общими явлениями рассеяния рентгеновских лучей кристаллическими структурами. К факторам, учитывающим внутреннюю структуру, относятся ближний порядок, статические искажения решетки, концентрация и атомные факторы компонент сплава и др. Особенности, вносимые разностью атомных факторов компонент и статическими искажениями решетки в рассеяние рентгеновских лучей, называются размерными эффектами. Они могут быть как линейными, так и квадратичными.

Цель настоящей работы — разработка рентгенографической методики исследования ближнего порядка в поликристаллических ГПУ-сплавах с учетом особенностей кристаллической решетки, а также апробация ее на сплавах магния, легированного редкоземельными металлами. Предлагаемая методика позволяет учесть наличие двух атомов в элементарной ячейке сплавов с ГПУ-структурой при исследовании ближнего порядка, а также влияние межатомных корреляционных (размерных) эффектов на ближний порядок.

1. Методика исследования ближнего порядка в поликристаллических сплавах с ГПУ-решеткой

В [1] было получено выражение интенсивности диффузного рассеяния рентгеновских лучей (ДРРЛ) монокристаллом, имеющим ГПУ-решетку, которую авторы рассматривали в виде двух вставленных друг в друга примитивных решеток (рис. 1). Вследствие эквивалентности подрешеток γ и $\gamma'(\gamma, \gamma' = 1, 2)$ для векторов $\rho_{\gamma\gamma'}$, соединяющих узлы подрешеток, а также для параметров корреляции $\varepsilon(\rho_{\gamma\gamma'})$ справедливы соотношения

$$\boldsymbol{\rho}_{11} = \boldsymbol{\rho}_{22}, \quad \boldsymbol{\rho}_{12} = -\boldsymbol{\rho}_{21},$$
$$(\boldsymbol{\rho}_{12}) = \varepsilon(\boldsymbol{\rho}_{21}), \quad \varepsilon(\boldsymbol{\rho}_{11}) = \varepsilon(\boldsymbol{\rho}_{22}). \tag{1}$$

ε

Принимая во внимание (1), выражение интенсивности ДРРЛ [1] разложим на две части

$$I(\mathbf{q}) = I_0(\mathbf{q}) + I_1(\mathbf{q}),$$
 (2)

где $I_0(\mathbf{q})$ — член, не связанный с параметрами корреляции,

$$I_{0}(\mathbf{q}) = 2Nc(1-c) \left[f^{2} \left\{ (\mathbf{qA}_{\mathbf{Q11}})(\mathbf{qA}_{\mathbf{Q11}}^{*}) + (\mathbf{qA}_{\mathbf{Q21}})(\mathbf{qA}_{\mathbf{Q21}}^{*}) + 2 \operatorname{Re}\left((\mathbf{qA}_{\mathbf{Q11}})(\mathbf{qA}_{\mathbf{Q21}}^{*}) \exp[i\mathbf{G}(\mathbf{R}_{1} - \mathbf{R}_{2})] \right) \right\}$$

$$- f \Delta f \left\{ \operatorname{Re}\left(\mathbf{qA}_{\mathbf{Q11}} \exp[i\mathbf{GR}_{1}] \right) + \operatorname{Re}\left(\mathbf{qA}_{\mathbf{Q21}} \exp[i\mathbf{GR}_{2}] \right) + \operatorname{Re}\left(\mathbf{qA}_{\mathbf{Q12}} \exp[i\mathbf{GR}_{1}] \right) + \operatorname{Re}\left(\mathbf{qA}_{\mathbf{Q22}} \exp[i\mathbf{GR}_{2}] \right) \right\}$$

и $I_1(\mathbf{q})$ член, связанный с параметрами корреляции,

$$I_{1}(\mathbf{q}) = N \left[2 \sum_{\rho_{11}} \varepsilon(\rho_{11}) \exp(i\mathbf{Q}\rho_{11}) \right]$$

$$\times \left(f^{2} \left\{ (\mathbf{q}\mathbf{A}_{\mathbf{Q}\mathbf{11}}) (\mathbf{q}\mathbf{A}_{\mathbf{Q}\mathbf{11}}^{*}) + (\mathbf{q}\mathbf{A}_{\mathbf{Q}\mathbf{21}}) (\mathbf{q}\mathbf{A}_{\mathbf{Q}\mathbf{21}}^{*}) \right\}$$

$$+ 2 \operatorname{Re} \left((\mathbf{q}\mathbf{A}_{\mathbf{Q}\mathbf{11}}) (\mathbf{q}\mathbf{A}_{\mathbf{Q}\mathbf{21}}^{*}) \exp[i\mathbf{G}(\mathbf{R}_{1} - \mathbf{R}_{2})] \right) \right\}$$

$$- f \Delta f \left\{ 2 \operatorname{Re} \left((\mathbf{q}\mathbf{A}_{\mathbf{Q}\mathbf{11}}) \exp[i\mathbf{G}\mathbf{R}_{1}] \right) \right\}$$

$$+ 2 \operatorname{Re} \left((\mathbf{q}\mathbf{A}_{\mathbf{Q}\mathbf{21}}) \exp[i\mathbf{G}\mathbf{R}_{2}] \right) \right\} + \Delta f^{2} \right)$$

$$+ 2 \sum_{\rho_{12}} \varepsilon(\rho_{12}) \cos(\mathbf{Q}\rho_{12}) \left(f^{2} \left\{ 2 \operatorname{Re} \left((\mathbf{q}\mathbf{A}_{\mathbf{Q}\mathbf{11}}) (\mathbf{q}\mathbf{A}_{\mathbf{Q}\mathbf{12}}^{*}) \right) \right\}$$

$$+ \operatorname{Re} \left((\mathbf{q}\mathbf{A}_{\mathbf{Q}\mathbf{11}})^{2} \exp[i\mathbf{G}(\mathbf{R}_{1} - \mathbf{R}_{2})] \right]$$

$$+ \left(\mathbf{q}\mathbf{A}_{\mathbf{Q}\mathbf{21}}^{*} \right)^{2} \exp[i\mathbf{G}(\mathbf{R}_{2} - \mathbf{R}_{1})] \right) \right\}$$

$$- f \Delta f \left\{ \operatorname{Re} \left((\mathbf{q}\mathbf{A}_{\mathbf{Q}\mathbf{11}}) [\exp[i\mathbf{G}\mathbf{R}_{1}] + \exp[-i\mathbf{G}\mathbf{R}_{2}] \right]$$

$$+ \left(\mathbf{q}\mathbf{A}_{\mathbf{Q}\mathbf{21}} \right) [\exp[i\mathbf{G}\mathbf{R}_{2}] + \exp[-i\mathbf{G}\mathbf{R}_{1}] \right] \right\} + \Delta f^{2} \right) \right\}. \quad (4)$$

Здесь *N* — число элементарных ячеек; **q** — вектор рассеяния; **G** — вектор обратной решетки; **Q** — вектор рассеяния, приведенный к первой зоне Бриллюэна (**Q** = **q** – **G**); *c* — концентрация; $\Delta f = f_A - f_B$, $f = c_A f_A + c_B f_B$, где c_A , c_B и f_A , f_B — концентрация и атомные факторы компонент; **A**_Q $\gamma\gamma'$ — коэффициенты пропорциональности между компонентами Фурье статических смещений и концентраций; **R**₁ и **R**₂ — радиус-векторы атомов в элементарной ячейке (первый из которых удобно поместить в начало декартовой системы координат **R**₁ = (0, 0, 0), тогда с учетом базисных векторов **a**₁ = $\left(\frac{\alpha}{2}, \frac{\sqrt{3}\alpha}{2}, 0\right)$, **a**₂ = $\left(\frac{\alpha}{2}, -\frac{\sqrt{3}\alpha}{2}, 0\right)$, **a**₃ = (0, 0, *c*) координаты второго атома **R**₂ = $\left(0, \frac{\alpha}{\sqrt{3}}, \frac{c}{2}\right)$. Здесь α и *c* — постоянные решетки.

Рис. 1. Решетка с ГПУ-структурой. \mathbf{r}_1 и \mathbf{r}_2 — радиус-векторы первой и второй координационных сфер.

Интенсивность $I_1(\mathbf{q})$ в выражении (4) можно разбить на шесть членов

$$I_{1}(\mathbf{q}) = I_{\alpha}^{(1)}(\mathbf{q}) + I_{L}^{(1)}(\mathbf{q}) + I_{sq}^{(1)}(\mathbf{q}) + I_{\alpha}^{(2)}(\mathbf{q}) + I_{L}^{(2)}(\mathbf{q}) + I_{sq}^{(2)}(\mathbf{q}).$$
(5)

Для сравнения выражение интенсивности диффузного рассеяния (I_D) , в котором учитывается только один атом в элементарной ячейке [6], имеет вид

$$I_D = I_\alpha + I_L + I_{\rm sq}.$$

Здесь I_{α} , I_L , I_{sq} — интенсивности, обусловленные соответственно ближним порядком, линейным и квадратичным размерными эффектами [2].

Верхний индекс (1) при интенсивностях в (5) указывает на то, что в выражениях $I_{\alpha}^{(1)}(\mathbf{q}), I_{L}^{(1)}(\mathbf{q}), I_{\mathrm{sq}}^{(1)}(\mathbf{q})$ учитываются корреляции между атомами внутри подрешеток. Верхний индекс (2) указывает на то, что в выражениях интенсивностей $I_{\alpha}^{(2)}(\mathbf{q}), I_{L}^{(2)}(\mathbf{q}), I_{\mathrm{sq}}^{(2)}(\mathbf{q})$ учитываются корреляции между атомами разных подрешеток.

Итак, учитывая взаимодействия внутри подрешеток и связь между параметрами корреляции и ближнего порядка $(\sum_{\rho_{\gamma\gamma'}} \varepsilon(\rho_{\gamma\gamma'}) = c(1-c) \sum_{\rho_{\gamma\gamma'}} \alpha(\rho_{\gamma\gamma'}))$, имеем

$$I_{\alpha}^{(1)}(\mathbf{q}) = 2Nc(1-c)\Delta f^2 \sum_{\boldsymbol{\rho}_{11}} \alpha(\boldsymbol{\rho}_{11}) \exp(i\mathbf{Q}\boldsymbol{\rho}_{11}), \quad (6)$$

$$I_{L}^{(1)}(\mathbf{q}) = -4Nc(1-c)f\Delta f \sum_{\boldsymbol{\rho}_{11}} \alpha(\boldsymbol{\rho}_{11}) \exp(i\mathbf{Q}\boldsymbol{\rho}_{11})$$
$$\times \left[\operatorname{Re}\left(\mathbf{q}\mathbf{A}_{\mathbf{Q}\mathbf{1}\mathbf{1}}\right) + \operatorname{Re}\left(\mathbf{q}\mathbf{A}_{\mathbf{Q}\mathbf{2}\mathbf{1}} \exp[i\mathbf{G}\mathbf{R}_{2}]\right)\right], \quad (7)$$

Физика твердого тела, 1999, том 41, вып. 12

$$I_{sq}^{(1)}(\mathbf{q}) = 2Nc(1-c)f^{2}\sum_{\rho_{11}}\alpha(\rho_{11})\exp(i\mathbf{Q}\rho_{11})$$

× {(qAq11)(qA_{q11}^{*}) + (qAq21)(qA_{q21}^{*})
+ 2 Re ((qAq11)(qA_{q21}^{*})\exp[-i\mathbf{G}R_{2}])}. (8)

Учитывая взаимодействия между атомами разных подрешеток, получим

$$I_{\alpha}^{(2)}(\mathbf{q}) = 2Nc(1-c)\Delta f^{2} \sum_{\boldsymbol{\rho}_{12}} \alpha(\boldsymbol{\rho}_{12}) \cos(\mathbf{Q}\boldsymbol{\rho}_{12}), \quad (9)$$

$$I_{L}^{(2)}(\mathbf{q}) = -2Nc(1-c)f\Delta f \sum_{\boldsymbol{\rho}_{12}} \alpha(\boldsymbol{\rho}_{12}) \cos(\mathbf{Q}\boldsymbol{\rho}_{12}) \times \left[\operatorname{Re}\left((\mathbf{q}\mathbf{A}_{\mathbf{Q}\mathbf{1}\mathbf{1}})(1+\exp[-i\mathbf{G}\mathbf{R}_{2}])\right)\right] \quad (10)$$

+ Re
$$(\mathbf{q}\mathbf{A}_{\mathbf{Q12}}(\mathbf{1} + \exp[i\mathbf{G}\mathbf{R}_{2}]))],$$
 (10)
 $I_{\mathrm{sq}}^{(2)}(\mathbf{q}) = 2Nc(1-c)f^{2}\sum_{\boldsymbol{\rho}_{12}}\alpha(\boldsymbol{\rho}_{12})\cos(\mathbf{Q}\boldsymbol{\rho}_{12})$
 $\times \left\{2\operatorname{Re}\left((\mathbf{q}\mathbf{A}_{\mathbf{Q11}})(\mathbf{q}\mathbf{A}_{\mathbf{Q12}}^{*})\right) + \operatorname{Re}\left((\mathbf{q}\mathbf{A}_{\mathbf{Q11}})^{2}\right)\right\}$

 $\times \exp[-i\mathbf{G}\mathbf{R}_2] + (\mathbf{q}\mathbf{A}^*_{\mathbf{Q}\mathbf{2}\mathbf{1}})^2 \exp[i\mathbf{G}\mathbf{R}_2]) \}.$ (11)

Несмотря на то что наиболее точные значения ближнего порядка можно получить из измерений интенсивности диффузного рассеяния монокристаллом, на практике мы имеем дело, как правило, с поликристаллическими объектами. Поэтому необходимо осуществить переход от выражений для интенсивности рассеяния монокристаллов $I_{\alpha}^{(j)}, I_{L}^{(j)}, I_{sq}^{(j)}$ к выражениям для поликристаллов $I_{\alpha,p}^{(j)}, I_{L,p}^{(j)}, I_{sq,p}^{(j)}$. Для этого выражения (6)–(11) необходимо усреднить по всем ориентировкам вектора рассеяния.

Аналитически это можно сделать лишь для (6) и (9)

$$I_{\alpha,p}^{(j)}(q) = 2Nc(1-c)\Delta f^2 \sum_{i} \alpha_i C_i \frac{\sin(qR_i)}{(qR_i)}, \qquad (12)$$

где $j = 1, 2, C_i$ — координационное число, α_i — параметр ближнего порядка для *i*-й координационной сферы, R_i — радиус *i*-й координационной сферы.

Остальные члены можно усреднить численно, интегрируя в сферических координатах по углам γ и ϕ . Поскольку первая зона Бриллюэна обладает трансляционной симметрией, интегрирование можно вести в пределах неприводимой части, которая занимает 1/24 объема первой зоны. В результате усреднение проводится по углу ϕ в пределах от 0 до $\pi/6$, а по углу γ — от 0 до $\pi/2$.

Выражение для $I_0(\mathbf{q})$ удобнее разбить на две части, одна из которых учитывает линейные эффекты, вторая — квадратичные

$$I_{L,p}(q) = \frac{6}{\pi} \int_{0}^{\frac{\pi}{6}} d\phi \int_{0}^{\frac{\pi}{2}} \{ \operatorname{Re}\left(\mathbf{q}\mathbf{A}_{\mathbf{Q11}}\right) + \operatorname{Re}\left(\mathbf{q}\mathbf{A}_{\mathbf{Q12}}\right) \\ + \operatorname{Re}\left(\mathbf{q}\mathbf{A}_{\mathbf{Q21}}\exp[i\mathbf{G}\mathbf{R}_{2}]\right) \\ + \operatorname{Re}\left(\mathbf{q}\mathbf{A}_{\mathbf{Q22}}\exp[i\mathbf{G}\mathbf{R}_{2}]\right) \}\sin\gamma d\gamma,$$
(13)

$$U_{\text{sq},p}(q) = \frac{6}{\pi} \int_{0}^{\frac{\pi}{6}} d\phi \int_{0}^{\frac{\pi}{2}} \{ (\mathbf{qA_{Q11}})(\mathbf{qA_{Q11}^*}) + (\mathbf{qA_{Q21}})(\mathbf{qA_{Q21}^*}) \}$$

+2 Re
$$((\mathbf{qA_{Q11}})(\mathbf{qA_{Q21}^*}) \exp[-i\mathbf{GR_2}])$$
 sin $\gamma d\gamma$. (14)

Интенсивности, обусловленные размерными эффектами, учитывающие взаимодействия внутри подрешеток, можно представить как

$$I_{L,p}^{(1)}(q) = \frac{6}{\pi} \int_{0}^{\frac{\pi}{6}} d\phi \int_{0}^{\frac{\pi}{2}} \sum_{\rho_{11}} \alpha(\rho_{11}) \exp(iq\rho_{11}) [2 \operatorname{Re}(qA_{Q11}) + 2 \operatorname{Re}(qA_{Q21}\exp[iGR_2])] \sin\gamma d\gamma, \quad (15)$$

$$I_{\mathrm{sq},p}^{(1)}(q) = \frac{6}{\pi} \int_{0}^{\frac{\pi}{6}} d\phi \int_{0}^{\frac{\pi}{2}} \sum_{\rho_{11}} \alpha(\rho_{11}) \exp(i\mathbf{q}\rho_{11})$$
$$\times \{ (\mathbf{qA}_{\mathbf{Q11}})(\mathbf{qA}_{\mathbf{Q11}}^{*}) + (\mathbf{qA}_{\mathbf{Q21}})(\mathbf{qA}_{\mathbf{Q21}}^{*}) \}$$

$$+2 \operatorname{Re}\left((\mathbf{qA}_{\mathbf{Q11}})(\mathbf{qA}_{\mathbf{Q21}}^*) \exp[-i\mathbf{GR}_2]\right)\right) \sin \gamma d\gamma.$$
 (16)
Аналогичные выражения можно записать с учетом

Аналогичные выражения можно записать с учетом взаимодействий между подрешетками

$$I_{L,p}^{(2)}(q) = \frac{6}{\pi} \int_{0}^{\frac{\pi}{6}} d\phi \int_{0}^{\frac{\pi}{2}} \sum_{\boldsymbol{\rho}_{12}} \alpha(\boldsymbol{\rho}_{12}) \cos(\mathbf{q}\boldsymbol{\rho}_{12})$$
$$\times \left[\operatorname{Re} \left(\mathbf{q} \mathbf{A}_{\mathbf{Q11}} (1 + \exp[-i\mathbf{G}\mathbf{R}_{2}]) \right) + \operatorname{Re} \left(\mathbf{q} \mathbf{A}_{\mathbf{Q21}} (1 + \exp[i\mathbf{G}\mathbf{R}_{2}]) \right) \right] \sin \gamma d\gamma, \quad (17)$$

$$I_{\operatorname{sq},p}^{2}(q) = \frac{6}{\pi} \int_{0}^{\overline{5}} d\phi \int_{0}^{\overline{2}} \sum_{\rho_{12}} \alpha(\rho_{12}) \cos(q\rho_{12})$$
$$\times \left\{ 2\operatorname{Re}\left((qA_{Q11})(qA_{Q12}^{*})\right) + \operatorname{Re}\left((qA_{Q11})^{2}\right) \\\times \exp[-iGR_{2}] + (qA_{Q21}^{*})^{2} \exp[iGR_{2}] \right\} \sin \gamma d\gamma. \quad (18)$$

Представим в явном виде суммы $\sum_{\rho_{11}} \alpha(\rho_{11}) \exp(i q \rho_{11})$ и $\sum_{\rho_{12}} \alpha(\rho_{12}) \cos(q \rho_{12})$ для первых шести координационных сфер.

Пронумеруем радиусы координационных сфер $\mathbf{r}_1, \mathbf{r}_2, \ldots, \mathbf{r}_6$ по степени удаленности от атома, взятого за начало отсчета. Тогда в первой подрешетке окажутся векторы $\mathbf{r}_2, \mathbf{r}_4, \mathbf{r}_6$, а между подрешетками — $\mathbf{r}_1, \mathbf{r}_3, \mathbf{r}_5$ (рис. 1), так что можно записать

$$\sum_{\boldsymbol{\rho}_{11}} \alpha(\boldsymbol{\rho}_{11}) \exp(i\mathbf{q}\boldsymbol{\rho}_{11}) = \alpha_2 \sum_{N=1}^{6} \exp(i\mathbf{q}\mathbf{r}_2) + \alpha_4 \sum_{N=1}^{2} \exp(i\mathbf{q}\mathbf{r}_4) + \alpha_6 \sum_{N=1}^{6} \exp(i\mathbf{q}\mathbf{r}_6), \quad (19)$$

где $\alpha_2 = \alpha(\mathbf{r}_2)$, $\alpha_4 = \alpha(\mathbf{r}_4)$, $\alpha_6 = \alpha(\mathbf{r}_6)$, $\boldsymbol{\rho}_{11}$ — радиусвекторы, соединяющие атом, принятый за начальный, со всеми атомами в первой подрешетке, N — количество атомов на соответствующих координационных сферах. Аналогично для второй суммы

$$\sum_{\rho_{12}} \alpha(\rho_{12}) \cos(\mathbf{q}\rho_{12}) = \alpha_1 \sum_{N=1}^{6} \cos(\mathbf{q}\mathbf{r}_1) + \alpha_3 \sum_{N=1}^{6} \cos(\mathbf{q}\mathbf{r}_3) + \alpha_5 \sum_{N=1}^{12} \cos(\mathbf{q}\mathbf{r}_5), \quad (20)$$

где $\alpha_1 = \alpha(\mathbf{r}_1), \ \alpha_3 = \alpha(\mathbf{r}_3), \ \alpha_5 = \alpha(\mathbf{r}_5), \ \boldsymbol{\rho}_{12}$ — совокупность векторов, соединяющих начальный атом, находящийся в первой подрешетке, с атомами второй подрешетки.

Декартовы координаты атомов, расположенных на соответствующих координационных сферах, несложно рассчитать из геометрии решетки. Координаты вектора **q**: $\frac{2\pi}{\alpha}q_x$, $\frac{2\pi}{\alpha}q_y$, $\frac{2\pi}{c}q_z$.

Проделав вычисления, получим

$$\sum_{\rho_{11}} \alpha(\rho_{11}) \exp(i\mathbf{q}\rho_{11}) = \alpha_2 [2\cos(2\pi q_y) + 2\cos\pi(\sqrt{3}q_x + q_y) + 2\cos\pi(\sqrt{3}q_x - q_y)] + \alpha_4 [2\cos(2\pi q_z)] + \alpha_6 [2\cos(2\pi\sqrt{3}q_x) + 2\cos\pi(\sqrt{3}q_x + 3q_y) + 2\cos\pi(\sqrt{3}q_x - 3q_y)].$$
(21)

Для следующей суммы

$$\sum_{D_{12}} \alpha(\boldsymbol{\rho}_{12}) \cos(\mathbf{q}\boldsymbol{\rho}_{12}) = \alpha_1 \left[2\cos\pi \left(-\frac{2}{\sqrt{3}}q_x + q_z \right) \right] \\ + 2\cos\pi \left(\frac{1}{\sqrt{3}}q_x - q_y - q_z \right) \\ + 2\cos\pi \left(\frac{1}{\sqrt{3}}q_x + q_y + q_z \right) \right] \\ + \alpha_3 \left[2\cos\pi \left(\frac{2}{\sqrt{3}}q_x + 2q_y + q_z \right) \right] \\ + 2\cos\pi \left(\frac{4}{\sqrt{3}}q_x - q_z \right) \\ + 2\cos\pi \left(-\frac{2}{\sqrt{3}}q_x + 2q_y - q_z \right) \right] \\ + \alpha_5 \left[2\cos\pi \left(\sqrt{7}q_x + \frac{\sqrt{7}}{\sqrt{3}}q_y + q_z \right) \right] \\ + 2\cos\pi \left(\sqrt{7}q_x - \frac{\sqrt{7}}{\sqrt{3}}q_y + q_z \right) \\ + 4\cos\pi \left(-\sqrt{7}q_x - \frac{\sqrt{7}}{\sqrt{3}}q_y + q_z \right) \\ + 4\cos\left(2\pi\frac{\sqrt{7}}{\sqrt{3}}q_y \right)\cos\pi q_z \right].$$
(22)

Подставляя выражения (21) в (15) и (16), а (22) в (17) и (18), можно учесть влияние размерных эффектов в интенсивности ДРРЛ вплоть до шестой координационной сферы.

Общее выражение интенсивности ДРРЛ от поликристалла имеет вид

$$I_{D,p}(q) = AI_{L,p}(q) + BI_{\mathrm{sq},p}(q) + I^{(1)}_{\alpha,p}(q) + AI^{(1)}_{L,p}(q) + BI^{(1)}_{\mathrm{sq},p}(q) + I^{(2)}_{\alpha,p}(q) + AI^{(2)}_{L,p}(q) + BI^{(2)}_{\mathrm{sq},p}(q),$$
(23)

где $A = -2Nc(1-c)f\Delta f$, $B = 2Nc(1-c)f^2$. Традиционно для удобства вычислений вместо выражения (23) вводят функцию

$$K(q) = I_{D,p}(q)/I_{LR},$$
 (24)

(1)

где $I_{L,R} = Nc(1-c)\Delta f^2$ — лауэвское рассеяние. По экспериментально измеренным значениям K(q) можно определить параметры ближнего порядка, например используя метод наименьших квадратов [2].

2. Образцы и методика эксперимента

Для исследования были взяты сплавы Mg — 3.4 at.% Dy, Mg — 2.9 at.% Tb, которые приготавливались в Институте металлургии им. А.А. Байкова. Чистота исходных материалов составила: для магния не менее 99.95%, для редкоземельных металлов не менее 99.82% с основными примесями (0.10–0.13%) других редкоземельных металлов. Сплавы выплавлялись в стальных тиглях под флюсом ВИ2, состоящим из смеси хлористых солей с добавкой CaF₂ [7,8]. После отливки слитки

Рис. 2. Интенсивность ДРРЛ в сплаве Mg–3.4 at.% Dy. Кружки — эксперимент, сплошная линия — синтез. *K_j* — интенсивность ДРРЛ, отнормированная на лауэвское рассеяние.

Рис. 3. Интенсивность ДРРЛ в сплаве Mg–2.9 at.% Tb. Кружки — эксперимент, сплошная линия — синтез. K_j — интенсивность ДРРЛ, отнормированная на лауэвское рассеяние.

Физика твердого тела, 1999, том 41, вып. 12

сплавов подвергались горячему прессованию в прутки диаметром 17 mm со степенью обжатия около 90%. Прутки разрезались на заготовки — пластинки размером $3 \times 17 \times 20$ mm. Образцы далее подвергались шлифовке и полировке на алмазных пастах.

Измерения интенсивности ДРРЛ проводились на рентгеновском дифрактометре типа ДРОН на FeK_{α} -излучении. Монохроматизация проводилась на плоском монокристалле кремния (отражающая плоскость (111)). Рассеянное излучение регистрировалось с помощью сцинцилляционного счетчика БДС-6-05.

Атомные факторы и значения интенсивностей комптоновского рассеяния компонент были взяты из [9], а дисперсионные поправки из [10]. Тепловое рассеяние рассчитывалось по теории [11].

Результаты измерений представлены на рис. 2 и 3. Из рисунков видно, что имеются четкие диффузные максимумы, характерные для ближнего порядка, в районе углов до первого структурного рефлекса, расположенного в области масштабного разрыва по оси $2\Theta - 36-52^{\circ}$. Кривые расположены ниже линии лауэвского фона, что, возможно, связано с меньшей реальной концентрацией редкоземельных металлов в приповерхностном слое. По-видимому, этому могла способствовать технология приготовления образцов.

3. Расчет модулирующих функций размерных эффектов

Как отмечалось выше, для удобства вычислений рассчитывают интенсивность ДРРЛ, отнесенную к интенсивности лауэвского рассеяния (24); при этом входящие в интенсивность ДРРЛ члены, обусловленные размерными эффектами, принято называть модулирующими функциями размерных эффектов. Таким образом, модулирующими функциями размерных эффектов характеризуют особенности структуры, связанные со статическими искажениями решетки, а также разностью атомных факторов компонент сплава, их концентрацией.

На основании выражений (13)–(18) были рассчитаны модулирующие функции линейных и квадратичных размерных эффектов на нулевой и двух первых координационных сферах для поликристаллических сплавов Mg — 3.4 at.% Dy, Mg — 2.9 at.% Tb.

Расчет коэффициентов $A_{Q\gamma\gamma'}$ проводился по методике Кривоглаза и Тю Хао, основанной на упрощенной модели Борна и Бегби и учета симметрии решетки [1].

Поскольку функции, представленные в (13)–(18), являются нормированными, необходимо домножить их на характеристики сплава и разделить на лауэвское рассеяние *I*_{LR}. Тогда

$$L_i^{(j)}(q) = -2Nc(1-c)f\Delta f I_{L,p}^{(j)}/I_{LR},$$
(25)

$$Q_i^{(j)}(q) = 2Nc(1-c)f^2 I_{\mathrm{sq},p}^{(j)}/I_{LR},$$
(26)

где $L_i^{(j)}$, $Q_i^{(j)}$ — соответственно модулирующие функции линейного и квадратичного эффектов, i = 0, 1, 2 —

Рис. 4. Модулирующие функции линейных $L_0(q)$ (кружки) и квадратичных $Q_0(q)$ (точки) размерных эффектов на нулевой координационной сфере для сплава Mg–3.4 at.% Dy.

Рис. 5. Модулирующие функции линейного размерного эффекта на первой $L_1^{(2)}$ и второй $L_2^{(1)}$ координационных сферах для сплава Mg–3.4 at.% Dy. Точки — $L_1^{(2)}$, кружки — $L_2^{(1)}$.

номера координационных сфер, j = 1, 2 — взаимодействия внутри подрешеток (1) и между подрешетками (2). На первой сфере находятся атомы разных подрешеток: $L_1^{(2)}(q), Q_1^{(2)}(q),$ а на второй сфере — атомы одной подрешетки $L_2^{(1)}(q), Q_2^{(1)}(q)$.

На рис. 4 представлены кривые модулирующих функций размерных эффектов на нулевой координационной сфере для сплава Mg–Dy. Аналогичный вид имеют кривые, рассчитанные для сплава Mg–Tb. Это связано с тем, что характеристики сплавов, на которые домножаются нормированные функции, различаются незначительно, поскольку элементы тербий и диспозий имеют близкие атомные номера (66, 65). Из рисунка видно, что в первом интервале углов основной вклад в интенсивность ДРРЛ вносят модулирующие функции линейных размерных эффектов, в то время как значения квадратичных размерных эффектов в районе углов от 10 до 32° практически близки к нулю, и лишь в интервалах со второго по последний отличны от нуля и имеют тенденцию к слабому росту с увеличением угла рассеяния.

На рис. 5 изображены кривые модулирующих функций линейных размерных эффектов, рассчитанные с использованием выражения (25) для сплава Mg–Dy. Для вто-

Рис. 6. Модулирующие функции квадратичного размерного эффекта на первой $Q_1^{(2)}$ и второй $Q_2^{(1)}$ координационных сферах для сплава Mg–3.4 at.% Dy. Точки — $Q_1^{(2)}$, кружки — $Q_2^{(1)}$.

рого сплава характер модуляций сходен. В то же время графики функций на первой координационной сфере и на второй для каждого отдельного сплава имеют разный вид.

На рис. 6 изображены кривые модулирующих функций квадратичных размерных эффектов, рассчитанные по формуле (26) для сплава Mg–Dy. Как и в случае функций линейных размерных эффектов, для обоих исследуемых сплавов характер модуляций сходен. Из рисунка видно, что их вклад в общую интенсивность невелик по сравнению со вкладом функций линейных размерных эффектов.

Из рисунков видно, что функции квадратичных размерных эффектов, рассчитанные для сплавов Mg-Dy, Мg-Тb, имеющих ГПУ-решетку, существенно отличаются от аналогичных функций для сплавов с ГЦК- и ОЦК-структурами. Для последних функций квадратичных размерных эффектов осциллируют вокруг кривой, медленно возрастающей с углом рассеяния по закону $(1 - e^{-2M})$, где 2M — температурный множитель [2], причем осцилляции функций напоминают кривую теплового диффузного рассеяния. Для сплавов магния с редкоземельными металлами вид функций квадратичных размерных эффектов иной. Так, если с ростом угла рассеяния на нулевой сфере и имеется незначительное возрастание значений функций, то на первой и второй координационных сферах такой тенденции не наблюдается. Кроме того, по величине функции, рассчитанные по формуле (24) для сплавов Mg–Dy, Mg–Tb, оказались малыми. Это в определенной степени связано с тем, что разность атомных факторов (Δf) магния и редкоземельных диспрозия и тербия значительна (54, 53), а средний атомный фактор ($f = c_A f_A + c_B f_B$) из-за небольшой концентрации вторых компонент приблизительно равен атомному фактору магния ($c_A f_A \approx f_A = 12$). Bce это приводит к тому, что множитель $f^2/\Delta f^2$ в (24) получается равным порядка 10⁻², функции квадратичных размерных эффектов, домноженные на него, оказываются малыми и их вклад в общую интенсивность становится незначительным. Напротив, в сплавах с близкими атомными факторами компонент квадратичный размерный эффект существенно влияет на общую интенсивность.

Таким образом, для сплавов магния с редкоземельными металлами модулирующие функции размерных эффектов на первой и второй координационных сферах имеют разный характер, причем основной вклад в общую интенсивность вносят функции линейных размерных эффектов. Квадратичные размерные эффекты, в которых учитываются взаимодействия атомов между подрешетками (первая сфера), малы и не возрастают с ростом угла рассеяния, как в случае ГЦК- и ОЦК-сплавов.

Расчет параметров ближнего порядка

По данным о диффузном рассеянии рентгеновских лучей проводился расчет параметров ближнего порядка с учетом модулирующих функций размерных эффектов на нулевой и двух первых координационных сферах. Результаты расчетов приведены в табл. 1, 2.

Из таблиц видно, что для всех исследуемых сплавов параметры ближнего порядка на первой координационной сфере меньше нуля, а на второй координационной сфере — больше нуля. Следует также отметить, что, несмотря на то что радиусы двух первых сфер весьма близки (3.20 и 3.22 Å для Mg–Dy; 3.21 и 3.22 Å для Mg–Tb), учет размерных эффектов на этих сферах позволяет рассматривать их отдельно и определять для них параметры ближнего порядка. Разделение двух близких координационных сфер стало возможным благодаря тому, что модулирующие функции размерных эффектов на первой и второй сферах различны.

По рассчитанным параметрам ближнего порядка были построены синтезированные кривые, представленные на рис. 2 и 3. Из рисунков видно, что экспериментальные и синтезированные значения интенсивностей удовлетворительно близки.

Таким образом, разработана рентгенографическая методика исследования ближнего порядка в поликристаллических сплавах с ГПУ-решеткой, основанная на анализе влияния корреляций на размерный эффект. На примере ГПУ-сплавов Mg–3.4 at.% Dy, Mg–2.9 at.% Тb экспериментально доказана реалистичность предложенной модели.

Таблица 1. Параметры ближнего порядка для сплава Mg-3.4 at.% Dy (безразмерные единицы)

α_1	α_2	α_3	$lpha_4$	$lpha_{5-6}$	$lpha_0$
-0.018	0.017	0.04	1.25	-0.12	-0.42

Таблица 2. Параметры ближнего порядка для сплава Mg-2.9 at.% Тb (безразмерные единицы)

α_1	α_2	α_3	$lpha_4$	$lpha_{5-6}$	$lpha_0$
-0.011	0.018	0.05	0.84	-0.13	-0.40

Впервые в рамках новой методики рассчитаны модулирующие функции линейного и квадратичного размерных эффектов для ГПУ-сплавов. Показано, что для сплавов магния с редкоземельными металлами модулирующие функции размерных эффектов на первой и второй координационых сферах имеют разный характер, причем основной вклад в общую интенсивность вносят функции линейных размерных эффектов.

Учет модулирующих функций размерных эффектов на двух первых координационных сферах, имеющих близкие радиусы, позволил решить проблему расчета параметров ближнего порядка на этих сферах.

Список литературы

- [1] М.А. Кривоглаз, Тю Хао. Металлофизика 24, 63 (1968).
- [2] В.И. Иверонова, А.А. Кацнельсон. Ближний порядок в твердых растворах. Наука, М. (1977). С. 256.
- [3] С.А. Веремчук, А.А. Кацнельсон, В.М. Авдюхина, С.В. Свешников. ФММ **39**, *5*, 1324 (1975).
- [4] Л.А. Сафронова, А.А. Кацнельсон, С.В. Свешников, Ю.М. Львов. ФММ 43, 76 (1977).
- [5] Д.С. Генчева, А.А. Кацнельсон, Л.Л. Рохлин. ФММ 51, 788 (1981).
- [6] В.М. Силонов, Е.В. Евлюхина, Л.Л. Рохлин. Вестник МГУ. Сер. 3. Физика, астрономия 36, 5, 93 (1995).
- [7] Л.Л. Рохлин. ФММ 56, 4, 733 (1983).
- [8] Л.Л. Рохлин, И.Е. Тарыгина. ФММ 59, 6, 1188 (1985).
- [9] J.H. Hubbel, Wm.J. Veigele, E.A. Brigges. J. Phys. Chem. Ref. Data. 4, 3, 471 (1975).
- [10] T. Cromer, D. Liberman. J. Chem. Phys. 53, 5, 1891 (1970).
- [11] А.А. Кацнельсон, И.И. Попова. Изв. вузов. Физика 5, 132 (1974).