Фазовый состав нанокристаллических пленок железа, осажденных в атмосфере азота

© Г.И. Фролов, В.С. Жигалов, О.А. Баюков

Институт физики им. Л.В. Киренского Сибирского отделения Российской академии наук, 660036 Красноярск, Россия E-mail: frolov@iph.krasnoyarsk.su

(Поступила в Редакцию 24 февраля 1999 г.)

С помощью мессбауэровской спектроскопии проведено исследование фазового состава пленок железа, полученных методом импульсно-плазменного напыления в регулируемой среде азота. Наблюдаемые изменения фазового состава определяются нанокристаллической структурой образцов и динамикой температуры подложки во время осаждения пленок.

В последние годы проводится интенсивный поиск новых магнитопленочных магнитомягких материалов с высокой магнитной индукцией насыщения для устройств современной радиоэлектроники. В этом плане вызывают интерес соединения типа Fe–N, так как небольшие добавки азота к пленкам на основе железа увеличивают магнитный момент, улучшают коррозийные характеристики пленок, уменьшают коэрцитивную силу [1,2].

В связи с разработкой методов получения нанокристаллических материалов [3] расширились потенциальные возможности создания различных сплавов. Прежде всего это связано с тем, что химическая активность материалов проявляет сильную зависимость от размеров нанокристаллитов [4]. В настоящее время проводятся исследования в основном на порошках, которые после их осаждения на подложку помещают в атмосферу того или иного газа [5]. В результате получаются сложные композитные образования с интересными физическими свойствами. Однако в практическом плане более интересны непрерывные конденсированные среды. При этом свойства таких материалов могут отличаться от свойств образующих их наночастиц из-за эффектов взаимодействия между ними. В данной работе методами мессбауэровской спектроскопии исследовался фазовый состав пленок железа в зависимости от давления азота в вакуумной камере. Для получения пленок использовался метод импульсноплазменного испарения (ИПИ). Атмосфера для напыления формировалась предварительной откачкой вакуумной системы до давления 10^{-6} Torr с вымораживанием паров масла и последующим напуском спектрально чистого азота, давление которого варьировалось от 10^{-5} до 10^{-2} Torr. Температура подложки в начале напыления была равна комнатной. Толщина образцов составляла $\sim 10^3$ Å и измерялась методом рентгеновского флуоресцентного анализа. Скорость конденсации пленок железа в импульсе длительностью $100 \,\mu$ s составляла $10^4 - 10^5$ Å/s.

Импульсный характер плазмы задавался импульсами лазерного излучения, генерируемого твердотельным лазером марки ЛТИ-207, и разрядом конденсаторной батареи в парах распыляемой мишени. Особенностью процесса напыления пленок, кроме высокой скорости испарения, является высокая энергетическая насыщенность плазмы, основными составляющими которой служат ионы железа и азота.

	P, Torr	H, kOe	δ , mm \cdot s ⁻¹	$arepsilon, \ \mathrm{mm}\cdot\mathrm{s}^{-1}$	S, %	Предполагаемый состав	Литературные данные			
N₂							H, kOe	$\delta, \ \mathrm{mm} \cdot \mathrm{s}^{-1}$	$arepsilon, \ \mathrm{mm} \cdot \mathrm{s}^{-1}$	Ссылки
1	10 ⁻⁶	$\begin{array}{c} 330 \\ \sim 250 \\ 0 \end{array}$	$\begin{array}{c} 0 \\ \sim 0.15 \\ 0.19 \end{array}$	0 0 0.6	26 72 2	lpha-Fe, \sim Fe ₈ C	245	~ 0.17		[6,7]
2	10 ⁻⁵	$ \begin{array}{c} 331 \\ \sim 234 \\ 0 \end{array} $	0.01 0.27 0.16	0 0.06 0.8	20 75 5	lpha-Fe, arepsilon-карбонитрид или $arepsilon$ -Fe $_{3.2}$ N	230 238	0.24 0.33	0.10	[8] [9]
3	10^{-4}	332 251	$-0.01 \\ 0.16$	0 0	76 24	α -Fe, \sim Fe ₈ C	245	~ 0.17		[6,7]
4	10 ⁻²	0	0.58	0.29	100	ε- или γ-Fe ₂ N	0	0.42	0.27	[10]

Параметры мессбауэровских спектров пленок Fe-N

Рис. 1. Мессбауэровские спектры пленок Fe–N в зависимости от давления азотной атмосферы (Torr): $1 - P = 10^{-6}$; $2 - 10^{-5}$; $3 - 10^{-4}$; $4 - 10^{-2}$.

В предложенной технологии эффекты взаимодействия лазерного излучения с адсорбированным на поверхности мишени газом и бомбардировка мишени высокоэнергетическими частицами плазмы под действием приложенного электрического поля приводит к увеличению атомной составляющей азота в газовой системе Fe–N, что способствует росту его реактивной способности. Как показывают результаты масс-спектроскопического анализа, количество ионизированного атомарного азота возрастает до 15–20%.

Мессбауэровские спектры исследованных пленок показаны на рис. 1, параметры этих спектров представлены в таблице. Спектры снимались с источником $Co^{57}(Cr)$ при комнатной температуре. Линии спектров для пленок, полученных при $P = 10^{-6}$ и 10^{-5} Torr, очень широкие и развиваются на корытообразном основании, что характерно для ультрадисперсного или аморфного состояния. Электронно-микроскопические исследования пленок железа, полученные методом ИПИ, показали, что образцы состоят из нанокристаллитов размерами ≤ 50 Å [11,12].

Спектр пленки № 1 содержит два секстета, которые можно связать с фазами α -Fe и карбида железа Fe₈C [6]. Формирование второй фазы вызвано большим содержанием углерода в пленках ($\sim 20 \text{ at.}\%$). Как показали данные оже-спектроскопии, это вообще характерно для пленок 3*d*-металлов, полученных методом ИПИ [13]. При этом доля связанного углерода < 10 at.%.

В пленке № 2 также наблюдается два секстета. Кроме α -Fe появилась фаза с намагниченностью, аналогичной намагниченности Fe₈C, но с бо́льшим изомерным сдвигом. Согласно литературным данным, эта параметры характерны для соединения ε -карбонитрида или ε -Fe_{3.2}N [9].

Необычные результаты показывают спектры пленки N_{0} 3: нитридные соединения в ней отсутствуют. Фазовый состав этого образца повторяет состав пленки N_{0} 1, но только теперь доля α -Fe преобладает.

Для объяснения этих данных были проведены исследования температуры подложки во время напыления пленки. Поводом для постановки этих экспериментов послужила наша предыдущая работа, в которой исследовались пленки Ni–N. Было обнаружено, что при напылении никеля в среде азота при давлении 10⁻⁴ Тогг подложки испытывают сильное температурное воздействие вплоть до деформации [14]. Для анализа динамики температуры подложки в процессе осаждения пленки на подложку предварительно наносилась пленочная термопара Pd–Cu.

Полученные результаты представлены на рис. 2. В течение первых минут, когда происходит осаждение пленки, температура подложки поднимается до 500-600 К. Это связано с тем, что высокая плотность потока испаряемого материала несет с собой большое количество тепла, которое выделяется на подложке. После выключения плазмы температура подложки в течение некоторого времени не изменяется, а затем начинает падать по

Рис. 2. Временны́е зависимости температуры подложки при разных давлениях азотной атмосферы (Torr): $1 - 10^{-5}$; $2 - 10^{-4}$; $3 - 10^{-2}$.

экспоненциальному закону. При этом в низком вакууме температура подложки меньше (кривые I и 3). Для пленки № 3 (кривая 2) наблюдается иная картина: когда температура поднимается до $T \sim 520$ K, имеет место ее резкое увеличение до $T \sim 750$ K. Этот подъем может быть связан с выделением тепла при разложении нитрида железа.

Как показано в работе [8], при T = 520 К происходит разложение фазы ε -карбонитрида, а при T = 720 К разлагается фаза Fe_{3.2}N. Можно предположить, что в процессе напыления при $P = 10^{-4}$ Тогг формируется либо ε -карбонитрид, либо смесь ε -карбонитрида и Fe_{3.2}N. Когда температура подложки поднимается до T = 520 К происходит фазовый переход ε -карбонитрид–Fe_{3.2}N. Выделяющаяся при этом теплота приводит к резкому росту температуры и при T = 720-750 К происходит разложение нитрида железа с выделением фазы α -Fe.

При $P = 10^{-2}$ в мессбауэровском спектре наблюдается только один квадрупольный дуплет, который интерпретируется как фазы ε - или ξ -Fe₂N [10]. Очевидно, при этой концентрации азота в камере достаточно для формирования обогащенной азотом фазы Fe₂N во всем объеме пленки, и в то же время возникающая температура подложки ниже температуры разложения этого соединения.

Список литературы

- [1] T.K. Kum, M. Takahashi. Appl. Phys. Lett. 12, 492 (1972).
- [2] K.K. Shih, M.E. Re, D.B. Pove. Appl. Phys. Lett. 57, 412 (1990).
- [3] W. Siegel. Nonostruct. Mat. 3, 1 (1993).
- [4] M.L. Cohen, W.D. Knight. Phys. Today 43, 12, 42 (1990).
- [5] C.-M. Hsu, H.-M. Lin, K.-R. Tsai. J. Appl. Phys. 76, 8, 4793 (1994).
- [6] J.M. Dubois, G. Le Gaër. Acta Metalurgica 25, 609 (1974).
- [7] E. Bauer-Grosse, G.Le Caër. Phil. Mag. B56, 4, 485 (1987).
- [8] C.A. Santos, B.A.S. Barros, J.P. Souza, J.R. Baumvoll. Appl. Phys. Lett. 41, 3, 237 (1982).
- [9] G.M. Chen, N.K. Jaggi, J.B. Butt, Yeh, L.H. Schwartz. J. Phys. Chem. 87, 26, 5326 (1983).
- [10] M. Chabanel, C. Janot, J.P. Motte. C.R. Acad. Sci. Paris 222, 13419 (1968).
- [11] Г.И. Фролов, В.С. Жигалов, С.М. Жарков, И.Р. Яруллин. ФТТ 36, 4, 970 (1994).
- [12] Г.И. Фролов, О.А. Баюков, В.С. Жигалов, Л.И. Квеглис, В.Г. Мягков. Письма в ЖЭТФ 61, 1, 61 (1995).
- [13] В.С. Жигалов, Г.И. Фролов, Л.И. Квеглис. ФТТ 40, 11, 2074 (1998).
- [14] В.С. Жигалов, Г.И. Фролов, В.Г. Мягков, С.М. Жарков, Г.В. Бондаренко. ЖТФ 68, 9, 136 (1998).