Тепловой фликкер-шум в диссипативных процессах предплавления кристаллических веществ

© Л.А. Битюцкая, Г.Д. Селезнев

Воронежский государственный университет, 394693 Воронеж, Россия E-mail: root@phys.vsu.ru

(Поступила в Редакцию 3 августа 1998 г. В окончательной редакции 29 декабря 1998 г.)

Проведен спектральный анализ флуктуаций выделения тепла в режиме предплавления Cu, Sb, Ge, KCl. Впервые показано, что наблюдаемые тепловые флуктуации могут быть идентифицированы как двухуровневый тепловой фликкер-шум. Введены характеристические параметры тепловых флуктуаций переходных процессов при плавлении кристаллических веществ.

Известный уже более полувека фликкер-шум в последние годы все более привлекает внимание исследователей [1-5]. Это связано с возрастающим интересом к проблемам необратимости, нелинейности и самоорганизации, фундаментальная роль фликкер-шума в которых становится все более очевидной. Зарегистрированный вначале как электрический шум в электронных и полупроводниковых устройствах (*p*-*n*-переходах, транзисторах, контактах металл-полупроводник) [4,5], фликкер-шум впоследствии был обнаружен в процессах самой различной природы от флуктуаций мембранного потенциала живой клетки и колебаний земной коры до музыки [1,3]. В работах [6-9] обнаружены тепловые флуктуации фликкерного типа, возникающие при неравновесных фазовых переходах, а именно при плавлении кристаллических веществ в динамических режимах. Физическая природа данных флуктуаций не ясна. Целью данной работы являлся спектральный анализ тепловых флуктуаций при изотермических выдержках на стадии предплавления кристаллических веществ: меди, сурьмы, германия и хлорида калия.

Методика эксперимента и обработка данных

Исследование переходных процессов при плавлении кристаллических веществ производилось по специальной методике цифрового дифференциального термического анализа (ДТА) [10,11]. При нагревании исследуемого вещества с постоянными скоростями более 1 К/min и фиксированных массах исследуемых образцов 2 g вблизи точки плавления, в окрестности нескольких десятков градусов, обнаружены процессы, которые сопровождались выделением тепла. Эти процессы проявлялись на термограммах ДТА в виде положительных тепловых "импульсов" с резкими границами (рис. 1). На фоне этих "импульсов" наблюдались низкочастотные флуктуации выделения тепла, регистрируемые дифференциальной термопарой как изменения температуры ΔT . Если температура исследуемого вещества фиксировалась в

области такого теплового "импульса" (точка T* на рис. 1), то при длительной изотермической выдержке наблюдаемые тепловые флуктуации сохранялись и даже усиливались (рис. 2). В результате измерений получались две совокупности отсчетов дифференциальной термопары: текущая температура эталона и флуктуирующая разность температур между исследуемым образцом и эталоном, выраженная в mkV. При использовании Pt-Pt/Rh-термопары 10 mkV соответствуют 1° К. Для исследуемой группы веществ дисперсии регистрируемых макроскопических тепловых флуктуаций, приведенные в таблице, значительно превышали дисперсию собственного шума аппаратуры, равную 0.13 mkV, что свидетельствует о физической природе наблюдаемых флуктуаций. Измерительная аппаратура имела контролируемую полосу пропускания регистрируемых сигналов до 1 Hz. Для анализа использовался массив данных ДТА для изотерм предплавления меди, сурьмы, германия и хлорида калия. Характерное время изотермических выдержек составляло 30 минут, количество отсчетов 1000-1500.

Изотермические флуктуации исследовались методом цифрового спектрального анализа с обработкой данных по специальной программе, использующей периодограммный метод Уэлча [12]. Этот метод эффективен при оценке спектральной плотности мощности.

Следует отметить, что обычно при проведении спектрального анализа случайных процессов [5,12] результаты представляются в виде зависимости величины спек-

Рис. 1. Термограмма ДТА предплавления меди, $T'_{\text{pre-m}}$ и $T''_{\text{pre-m}}$ — температуры начала и конца предплавления.

Рис. 2. Флуктуации тепловыделения Cu, Sb, Ge и KCl при изотермических режимах предплавления.

тральной плотности мощности *S* от частоты *f*. Пусть x(t) — регистрируемый в течение времени *T* стационарный случайный процесс. Соответствующее ему преобразование Фурье есть $X(j\omega)$, где $\omega = 2\pi f$. Спектральная плотность мощности (одностронняя) этого процесса

определяется, согласно [4], как

$$S(j\omega) = \lim_{T \to \infty} \frac{2|X(j\omega)|^2}{T}.$$
 (1)

Величина $S(j\omega)$ считается энергетической характеристикой процесса, поскольку амплитуды колебаний его спектральных составляющих $|X(j\omega)|$ входят в выражение (1) во второй степени. Однако рассматриваемые в данной работе тепловые фылуктуации уже сами по себе являются процессом выделения тепловой энергии, и в этом случае их спектральную плотность, которую обозначим $S^*(j\omega)$, следует представлять выражением, в которое абсолютные значения амплитуд должны входить в первой степени

$$S^*(j\omega) = \lim_{T \to \infty} \frac{2|X(j\omega)|}{T}.$$
 (2)

2. Результаты и их обсуждение

Для всех исследуемых веществ спектр в двойных логарифмических координатах представлялся в виде двух участков A и B, аппроксимирующихся прямыми линиями, абсолютные значения тангенсов углов наклона которых $\alpha_A > 1$, $\alpha_B < 1$ и критическая частота, при которой происходит смена наклона прямой f_c (рис. 3), приведены в таблице. Гиперболическая $S(j\omega) = C|f|^{-\alpha}$ (в двойных логарифмических координатах линейная) за-

Рис. 3. Зависимость относительной спектральной плотности флуктуаций $\lg(\overline{S^*}/\overline{S^*_{max}})$ от относительной частоты $\lg(f/f_{max})$, где f_{max} и $\overline{S^*_{max}}$ — максимальные значения для Cu (*a*), Sb (*b*), Ge (*c*) и KCl (*d*).

Вещество	Температура изотермической выдержки, °С	Дисперсия, μV^2	Спектральные характеристики			
			$lpha_A$	α_B	$\alpha_B/lpha_A$	f_c, Hz
Cu	1047	3.56	1.25	0.38	0.30	0.085
Sb	584	0.78	1.4	0.42	0.30	0.042
Ge	949	2.94	1.02	0.5	0.50	0.056
KCl	762	2.47	1.1	0.52	0.47	0.115

Спектральные характеристики тепловых флуктуаций при изотермических выдержках в режиме предплавления

висимость величины спектральной плотности от частоты характерна для флуктуационного процесса, известного как фликкер-шум [5]. Показанное в настоящих исследованиях наличие двух приближенно прямолинейных участков А и В на спектрах всех исследуемых веществ позволяет утверждать, что изотермические тепловые флуктуации в интервале температур предплавления кристаллических веществ могут быть идентифицированы как двухуровневый тепловой фликкер-шум. Двухуровневый фликкер-шум наблюдался и в экспериментах по иссдованию флуктуаций электрического тока [13], но в отличие от тепловых флуктуаций имело место обратное отношение: $\alpha_A < \alpha_B$. Можно предположить, что наличие двух участков на спектрах изотермических тепловых флуктуаций вызвано наличием двух уровней единого физического процесса возникновения этих флуктуаций.

Рассмотрим возможные причины возникновения наблюдаемого в экспериментах теплового фликкер-шума. Различают равновесный и неравновесный фликкершумы. Равновесный фликкер-шум наблюдается в системах, находящихся в состоянии статистического равновесия, и связан с наличием аномального броуновского движения, т.е. такого, при котором нарушается соотношение Эйнштейна: среднеквадратическое смещение диффундирующей частицы пропорционально времени [2]. Неравновесный фликкер-шум возникает при стационарно протекающих диссипативных процессах и является результатом флуктуаций диссипативных параметров системы — сопротивлений, проводимостей и т.п., которые определяют величину необратимых потоков при заданных условиях неравновесности [3]. В этом случае фликкер-шум выглядит как лавинообразные флуктуации этих потоков, описываемые моделью самоорганизованной критичности [14]. Как равновесный, так и неравновесный фликкер-шумы связаны с возникновением в системе долгоживущих временных корреляций, временного упорядочения, самоорганизации [2].

В условиях нашего эксперимента вещество находится в стационарно возбужденном состоянии в результате протекания неравновесного фазового перехода — предплавления. Согласно Пригожину, неравновесные фазовые переходы характеризуются протеканием диссипативных процессов, возникновение которых предполагает основными условиями открытость и неравновесность. В нашем случае неравновесность возникает в результате ангармонизма колебаний кристаллической решетки на этапе предплавления в динамических режимах за счет резкого возрастания концентрации вакансий. Открытость при этом понимается в более широком смысле: не только как обмен энергией между системой и ее окружением, но и как энергетическое взаимодействие двух ее подсистем: атомной и фононной. В условиях сильного ангармонизма это взаимодействие приводит к качественному преобразованию как фононной, так и атомной подсистем кристалла. Уменьшение интенсивности фононных колебаний кристаллической решетки при нагревании и даже полное их исчезновение при температурах, близких к температуре плавления, наблюдалось в экспериментах по комбинационному рассеянию света кристаллических NaOH [15-18]. В технологических и природных материальных средах возникновение фликкер-шума связывают с возникновением долгоживущих временных корреляций, приводящих к деградации, деформации и разрушению материалов [1,2]. Можно считать, что проявление теплового фликкер-шума свидетельствует о структурной перестройке на этапе предплавления. Это предположение подтверждается электронографическими исследованиями структуры металлов в динамических режимах вблизи температуры плавления [19]. В этих работах проводилась непрерывная съемка быстро меняющихся дифракционных картин в процессе нагревания металлических пленок, при скоростях нагревания $20-25 \,\mathrm{K} \cdot \mathrm{min}^{-1}$. Прямыми наблюдениями была установлена динамическая структура переходных температурных областей, в которых возникает позиционное разупорядочение и изменение симметрии кристаллической решетки, в частности в плавящемся ГЦК-металле наблюдалось возникновение икосаэдрических формирований.

Известно свойство фликкер-шума — его самоподобие при изменении масштаба времени [4] — в этом свойстве проявляется его фрактальная структура. Если фрактальность теплового фликкер-шума расценивать как проявление динамической фрактальности структуры вещества в состоянии предплавления [1], то его возникновение свидетельствует об образовании динамической мезофазы предплавления.

Таким образом, в результате проведенных исследований можно сделать следующие выводы.

 Эффект возникновения теплового фликкер-шума в диссипативных процессах предплавления кристаллических веществ в динамических режимах является универсальным и не зависит от типа химической связи и структуры вещества.

2) Параметры фликкер-шума: показатели спектральной плотности α_A , α_B и критическая частота f_c , являются характеристическими параметрами диссипативных переходных процессов при плавлении, сопровождающихся структурной перестройкой с образованием фрактальной мезофазы предплавления.

Работа была выполнена при поддержке РФФИ (грант № 98-03-32406).

Список литературы

- [1] С.Ф. Тимашев. Российский химический журнал. XLI, *3*, 17 (1997).
- [2] А.С. Врачев. Шумовые и деградационные процессы в полупроводниковых приборах: Материалы докладов научно-технического семинара. МНТОРЭС им. А.С. Попова, М. (1995). С. 43.
- [3] Ю.Л. Климонтович. Статистическая теория открытых систем. ТОО "Янус", М. (1995). 624 с.
- [4] Г.Н. Бочков, Ю.Е. Кузовлев. УФН. 141, 1, 151 (1983).
- [5] М. Букингем. Шумы в электронных приборах и системах. Мир, М. (1986). 398 с.
- [6] Л.А. Битюцкая, Е.С. Машкина. Письма в ЖТФ. 21, 17, 85 (1995).
- [7] Л.А. Битюцкая, Е.С. Машкина. Письма в ЖТФ. 21, 18, 8 (1995).
- [8] Л.А. Битюцкая, Е.С. Машкина. Письма в ЖТФ. 21, 20, 30 (1995).
- [9] Л.А. Битюцкая, Е.С. Машкина. Письма в ЖТФ. **21**, *24*, 90 (1995).
- [10] У. Уэндландт. Термические методы анализа. Мир, М. (1978). 526 с.
- [11] Л.А. Битюцкая, Г.Д. Селезнев. Письма в ЖТФ. 24, 14, 24 (1998).
- [12] С.Л. Марпл мл. Цифровой спектральный анализ и его приложения. Мир, М. (1990). 584 с.
- [13] R.F. Voss, J. Clarke. Phys. Rev. Lett. Ser. B13, 556 (1976).
- [14] P. Bak, C. Tang, K. Wiesenfeld. Phys. Rev. Ser. A38, 780 (1988).
- [15] Л.А. Жукова. Расплавы 4, 29 (1990).
- [16] Л.А. Жукова. Расплавы 6, 15 (1991).
- [17] Л.А. Жукова. Расплавы 5, 15 (1992).
- [18] Л.А. Жукова. Расплавы 2, 95 (1995).
- [19] И.Д. Закирьянова, А.П. Хайменов, В.А. Хохлов, В.А. Кочедыков. Расплавы **3**, 45 (1997).