Тонкая структура спектра диэлектрической проницаемости кристалла флюорита

© В.В. Соболев, А.И. Калугин

Удмуртский государственный университет, 426034 Ижевск, Россия E-mail: sobolev@uni.udm.ru

(Поступила в окончательном виде 15 февраля 1999 г.)

Впервые методом диаграмм Арганда экспериментальная кривая диэлектрической функции флюорита разложена в области 10.5–18 eV (90 K) на 11 компонент и 10–35 eV (300 K) на 18 компонент. Для каждой из них определены три параметра (энергия максимума и полуширина полосы, сила осциллятора). Предложена схема природы компонент диэлектрической проницаемости флюорита.

Флюорит CaF₂ является модельным кристаллом группы дифторидов [1]. Для него известны многочисленные расчеты зон, а также плотностей состояний и спектра ε_2 в приближении зон [1–7]. Однако до сих пор они противоречивы, неоднозначны даже в определении порядка чередования зон. Для сильно ионных кристаллов, в том числе CaF₂, характерны экситонные эффекты в широкой области энергии собственного поглощения. Теоретически они не рассмотрены. Поэтому максимумы спектров отражения и ε_2 CaF₂ обсуждаются упрощенно по качественным схемам комбинации экситонных и междузонных переходов [1,2,6–8]. В связи с этим особую актуальность имеют исследования энергии переходов и их вероятностей безотносительно к природе самих переходов.

Цель настоящего сообщения состоит в определении набора переходов, их энергии и сил осциллятора кристалла CaF2 в широкой области энергии собственного поглощения. Методом диаграмм Арганда [9,10] экспериментальная интегральная кривая диэлектрической проницаемости ε_2 флюорита работы [8] расположена нами на 18 элементарных лоренцевских компонент в области 10-18 eV при 300 К и на 11 компонент в области 10.5-18 eV при 90 К. В таблице для краткости приведены только три основных параметра каждой компоненты: энергия максимума полосы E_i и ее полуширина, а также сила осциллятора f_i. Следует подчеркнуть, что в общепринятом приближении представления интегральной диэлектрической проницаемости как суммы вкладов лоренцевских осцилляторов примененный нами метод диаграмм Арганда позволяет однозначно разложить интегральные спектры ε_2 и ε_1 на минимальный набор полос без каких-либо подгоночных параметров. В каждой полосе суммированы переходы с близкими энергиями, но не обязательно близкой природы. Поэтому на основе теоретических моделей о возможной тонкой структуре полос они могут быть дополнительно разложены на несколько компонент каждая. В области 12-18 eV установлено восемь полос при 300 К. При понижении температуры до 90К наблюдается триплетное (полоса № 3) и дублетное (полоса № 7) расщепления. Все эти полосы по температурному сдвигу можно разделить на две группы: с большим (~ +(0.15-0.25) eV полосы $\mathbb{N}_{\mathbb{Q}}$ 1, 2, 3^{'''}, 7') и очень малым смещением (~ +0.01 ($\mathbb{N}_{\mathbb{Q}}$ 6, 8), -0.01 ($\mathbb{N}_{\mathbb{Q}}$ 5), -0.02 eV ($\mathbb{N}_{\mathbb{Q}}$ 4)). Значения f_i не зависят от температуры для полос $\mathbb{N}_{\mathbb{Q}}$ 1, 3, 7. Для решения вопроса о природе температурных аномалий f_i других полос необходимы специальные теоретические расчеты.

Верхняя валентная полоса CaF₂ обусловлена состоянием 2*p* иона фтора, а нижняя зона проводимости — состояниями 3*d*, 4*s* и 4*p* иона кальция [2–7]. Качественно в схеме уровней энергии одноэлектронного приближения установленные нами компоненты ε_2 кристалла CaF₂ связаны с переходами из 2*p* F⁻ в 3*d* Ca⁺² (N₂ 1–3), 4*s* Ca⁺² (N₂ 4–6), 4*s*, 4*p* Ca⁺² (N₂ 7,8), 4*p* Ca⁺² (N₂ 9–11) и из 3*p* Ca⁺² в 3*d* Ca⁺², 4*s* Ca⁺² (N₂ 12–18). Особенности

Энергии (eV) максимумов E_i и полуширин H_i (eV), силы осцилляторов f_i флюорита

N₂	E_i		H_i		f_i	
	300 K	90 K	300 K	90 K	300 K	90 K
1	12.38	12.59	0.79	0.56	0.46	0.43
2	12.94	13.13	1.11	0.45	0.75	0.37
3'	-	13.575	-	0.53	-	0.15
3″	-	13.71	-	0.27	-	0.05
3‴	13.77	13.92	0.58	0.46	0.54	0.38
4	14.21	14.19	0.48	0.46	0.10	0.05
5	14.57	14.56	0.41	0.63	0.05	0.17
6	15.36	15.37	0.99	0.70	0.37	0.27
7′	_	15.78	_	0.46	-	0.04
7	15.99	16.24	1.03	0.84	0.16	0.13
8	16.99	17.00	1.31	0.81	0.16	0.09
9	19.29	_	1.03	_	0.04	_
10	20.72	_	1.59	_	0.13	_
11	23.14	_	1.71	_	0.10	_
12	25.13	_	1.75	_	0.24	_
13	25.68	_	2.86	_	0.08	_
14	27.87	_	0.63	_	0.05	_
15	29.25	_	1.37	_	0.07	_
16	30.64	-	1.04	-	0.07	-
17	32.65	-	1.75	-	0.24	-
18	34.34	_	0.63	_	0.05	_

большинства этих компонент спектра ε_2 флюорита легче объяснить в модели метастабильных экситонов. Для детального обсуждения природы компонент ε_2 необходимы расчеты зон и экситонов в широкой области энергии фундаментального поглощения. Можно надеяться, что результаты настоящей работы дают принципиально новую основу для существенно более точных и полных расчетов электронной структуры CaF₂.

Авторы благодарны Н.В. Старостину, Р.А. Эварестову и W.Y. Ching за оттиски работ.

Работа выполнена при поддержке Центра фундаментальных исследований (С.-Петербургский университет).

Список литературы

- [1] В.В. Соболев. Зоны и экситоны галогенидов металлов. Штиинца, Кишинев. (1987). 263 с.
- [2] В.А. Ганин, М.Г. Карин, В.К. Сидорин, К.К. Сидорин, Н.В. Старостин, Г.П. Старцев, М.П. Шепилов. ФТТ 16, 3554 (1974).
- [3] Н.В. Старостин, М.П. Шепилов. ФТТ 17, 822 (1975).
- [4] Р.А. Эварестов, И.В. Мурин, А.В. Петров. ФТТ 30, 292 (1988).
- [5] Л.К. Ермаков, П.А. Родный, Н.В. Старостин. ФТТ 33, 2542 (1991).
- [6] N.C. Amaral, B. Maffeo, D. Guenzburger. Phys. Stat. Sol. (b), 117, 141 (1983).
- [7] F. Gan, Y.-N. Xu, M.-Z. Huang, W.Y. Ching, J.G. Harrison. Phys. Rev. B45, 8248 (1992).
- [8] J. Barth, R.L. Johnson, M. Cardona, D. Fuchs, A.M. Bradshaw. Phys. Rev. B41, 3291 (1990).
- [9] В.В. Соболев, В. Вал. Соболев. ФТТ 36, 2570 (1994).
- [10] В.В. Соболев, В.В. Немошкаленко. Методы вычислительной физики в теории твердого тела. Электронная структура полупроводников. Наук. думка, Киев (1988). 422 с.