Фотохромный эффект в кластерных системах оксидов молибдена

© В.Н. Андреев, С.Е. Никитин, В.А. Климов, Ф.А. Чудновский, С.В. Козырев*, Д.В. Лещев*

Физико-технический институт им. А.Ф. Иоффе Российской акдемии наук, 194021 Санкт-Петербург, Россия *Институт высокопроизводительных вычислений и баз данных Миннауки России, 198005 Санкт-Петербург, Россия

(Поступила в Редакцию 6 июня 1998 г.)

Исследован фотохромный эффект в кластерных системах оксидов молибдена в водных растворах лимонной кислоты под действием света ультрафиолетового (УФ) диапазона. Впервые обнаружено существование двух типов систем, обладающих различным фотохромизмом. Проведены систематические измерения оптических характеристик, концентрации протонов и фотогальванической ЭДС в зависимости от состава. Предложена модель комплекса кластер оксида молибдена–лимонная кислота, в котором при УФ облучении происходит процесс внутримолекулярного переноса электрона.

В работах [1-9] показано, что оксиды переходных металлов (Mo, W, V) склонны к образованию кластерных структур. В растворах кластерные образования можно рассматривать как продукты полимеризации оксидных ионов переходных металлов (молибдатов и вольфраматов) при достижении определенной концентрации протонов (при определенном рН раствора) [8,10,11]. В аморфных пленках оксидов вольфрама и молибдена кластеры представляют собой микроскопические фрагменты кристаллической решетки, распределенные в пленке [2,9,12]. Следует ожидать, что свойства кластеров существенно отличаются от свойств объемного материала. Это связано как с искажениями кристаллической структуры в кластерах, так и с ролью поверхности. Последнее приводит к тому, что реакции, проходящие на поверхности кластера, изменяют свойства кластера в целом.

В растворах и пленках, содержащих кластеры оксидов молибдена и вольфрама, был обнаружен фотохромный эффект [1–4], состоящий в изменении окраски раствора или пленки при облучении светом ультрафиолетового диапазона (УФ). В работах [4–6] было найдено, что фотохромный эффект сопровождается возникновением ЭДС (фотогальванический эффект). Дополнительный интерес к кластерам оксидов молибдена и вольфрама обусловлен наличием у них нелинейных оптических свойств [13].

На основании исследований методами ЭПР и ЯМР растворов молибдатов и вольфраматов в [3,11] была предложена структура кластера $[Mo_7O_{24}]^{6-}$, в которой имеется 7 типов атомов кислорода и 3 типа атомов молибдена (рис. 1, *a*).

Существующие модели окрашивания кластерных систем оксидов молибдена и вольфрама под воздействием УФ излучения сводятся к следующему механизму [1–5,7]. Кластеры переходных металлов образуют комплексы, взаимодействуя с водой, протонами и органическими веществами, присутствующими в растворе. В таком комплексе при возбуждении УФ может проходить реакция внутримолекулярного переноса электрона, которая приводит к изменению валентного состояния металла в кластере за счет окисления органического компонента. Появление электрона на d-орбиталях атома металла приводит к возникновению полосы поглощения в оптических спектрах, связанной с d-d переходами. Обратим внимание, что в предложенных реакциях [1] органическое вещество в таком процессе необратимо окисляется, а концентрация протонов уменьшается.

Рис. 1. Структура кластера $[Mo_7O_{24}]^{6-}$ (*a*). Одна из возможных структур комплекса $[Mo_7O_{23} \cdot C_6H_7O_7]^{5-}$ (*b*).

Рис. 2. Спектры пропускания растворов типа *1* (0.027М (NH₄)₆[Mo₇O₂₄]+0.071М C₆H₈O₇): *1* — исходный спектр; *2* — спектр раствора после 85 мин. облучения; *3* — спектр раствора через 30 часов после окончания облучения. Край поглощения показан стрелкой.

Рис. 3. Спектры пропускания растворов типа 2 (0.018М (NH₄)₆[Mo₇O₂₄]+0.071М C₆H₈O₇): *1* — исходный спектр; 2 — спектр раствора после 85 мин. облучения; *3* — спектр раствора через 30 часов после окончания облучения. Край поглощения показан стрелкой.

Однако обнаруженная в наших первых работах [14,15] обратимость фотохромного эффекта и отсутствие продуктов окисления органической кислоты не укладываются в схему, предлагаемую в [1–5,7].

В настоящей работе выполнено исследование фотохромного эффекта в системе водный раствор

лимонной кислоты $C_6H_8O_7$ -гептамолибдат аммония $(NH_4)_6Mo_7O_{24}$. Впервые проведены систематические исследования оптических характеристик растворов в зависимости от состава и концентрации протонов (pH), а также измерения фотогальванической ЭДС, возникающей между облученной и необлученной частями раствора.

Рис. 4. Зависимость концентрации протонов в растворах от времени облучения: I — раствор типа I; 2 — раствор типа 2; 3 — раствор типа I через 30 часов после облучения; 4 — раствор типа 2 через 30 часов после облучения; t_0 — момент окончания облучения.

1. Приготовление образцов

Для исследований была приготовлена серия водных растворов, содержавших гептамолибдат аммония $(NH_4)_6Mo_7O_{24}$ и лимонную кислоту $C_6H_8O_7$. Для изготовления растворов использовалась лимонная кислота марки осч и гептамолибдат аммония производства Aldrich Chem. Сотрапу, USA. Во всех растворах проводилось измерение pH при помощи прибора pH-340 с использованием стеклянного электрода. Приготовленные растворы имели концентрацию $C_6H_8O_7$ 0.071M, а концентрации $(NH_4)_6Mo_7O_{24}$ составляли 0.081M или 0.027M, измеренные значения pH соответственно равнялись 1.85 и 2.8.

Были также приготовлены и более концентрированные растворы, содержащие 0.2М $(NH_4)_6Mo_7O_{24}$ и $C_6H_8O_7$ 4M, 3M, 2M, 1.5M, 1M, и соответственно pH, равные 0.69, 0.89, 1, 1.2, 1.4. В этих растворах через 16–20 часов после приготовления выпадал белый осадок, представлявший, по-видимому, гидроокись молибдена [10,11]. В менее концентрированных растворах такого явления не наблюдалось.

Для сравнения был приготовлен ряд водных растворов, содержавших 0.027М и 0.018М $(NH_4)_6Mo_7O_{24}$ и минеральные кислоты HNO₃, HCl, имеющие pH, аналогичные растворам с C₆H₈O₇.

2. Оптические измерения

Полученные растворы помещались в кювету из оптического кварца и облучались светом ртутной лампы мощностью 500 W, находившейся на расстоянии 0.4 m. Из спектра излучения ртутной лампы с помощью светофильтров выделялся свет с длиной волны 365 nm. Измерения проводились при комнатной температуре 293–294 K. Температура раствора контролировалась термометром, помещенном в кювету, с точностью до 0.5°. Время облучения для всех образцов составляло 85 минут. За это время раствор нагревался не более чем на 1°. Оптические спектры измерялись на приборе Specord UV–VIS.

Как видно на рис. 2 и 3, все исходные растворы имели край поглощения в области 380 nm. Проведенные оптические измерения позволили выделить два типа растворов. В растворах первого типа при облучении светом с длиной волны 365 nm возникает полоса поглощения в районе 750 nm (рис. 2). В растворах второго типа под действием света происходят изменения в более коротковолновой части спектра, 380–420 nm: в них после облучения пик поглощения 750 nm отсутствовал, а "хвост" края поглощения смещался в длинноволновую область (рис. 3). К растворам типа 1 относятся растворы с концентрацией (NH₄)₆Mo₇O₂₄ 0.2M и концентрациями $C_6H_8O_7 - 4M$, 3M, 1M, а также раствор с концентрациями 0.027M (NH₄)₆Mo₇O₂₄ + 0.071M $C_6H_8O_7$, а к

Рис. 5. Зависимость фотогальванической ЭДС растворов от времени облучения: *1* — раствор типа *1*; *2* — раствор типа *2*; *3* — остаточная ЭДС раствора типа *1* через 30 часов после облучения; *4* — остаточная ЭДС раствора типа *2* через 30 часов после облучения; *t*₀ — момент окончания облучения.

растворам типа 2 — с концентрациями $(NH_4)_6Mo_7O_{24}$ — 0.2M и $C_6H_8O_7$ — 2M, 1.5M, а также раствор 0.018M $(NH_4)_6Mo_7O_{24}$ + 0.071M $C_6H_8O_7$.

В растворах, содержавших неорганические кислоты HCl и HNO₃, под воздействием ультрафиолетового излучения изменений в оптических спектрах не наблюдалось. При длительном облучении растворов наблюдалось насыщение окраски, а после прекращения облучения происходило постепенное обесцвечивание раствора (рис. 2 и 3). Время возвращения спектров к исходному состоянию составляло 20–50 часов.

3. Физико-химические измерения

Нами были поставлены эксперименты для выявления связи между изменением оптических свойств растворов под действием УФ облучения и концентрацией протонов в растворе. С этой целью были проведены измерения рН растворов под воздействием облучения и измерения ЭДС, возникающей при облучении. Для измерений рН и фотогальванической ЭДС использовались растворы: 1 - 0.027 (NH₄)₆Mo₇O₂₄ + 0.071M C₆H₈O₇. Исследуемый раствор помещался в кварцевую кювету, где также размещались электроды рН-метра и термометр. Для проверки температурной зависимости рН исходный раствор нагревался до 305 К. При этом рН практически не изменялся.

На рис. 4 представлены зависимости pH от времени облучения для составов I и 2. Отметим, что изменение pH от времени облучения для состава типа I имеет тенденцию к насыщению, в то время как для раствора типа 2 находится в пределах ошибки измерения, т. е. pH практически не меняется.

Для измерений фотогальванической ЭДС, возникающей при облучении, растворы составов 1 и 2 помещали в непрозрачный пластиковый контейнер, разделенный пористой перегородкой. Половина раствора освещалась, а другая половина была закрыта экраном от света. Возникающая ЭДС измерялась компенсационным методом с помощью двух платиновых электродов, погруженных в раствор. Освещенный электрод заряжался отрицательным зарядом как в случае раствора типа 1, так и типа 2. Зависимости фотогальванической ЭДС для растворов типа 1 и 2 от времени облучения показаны на рис. 5. Эти зависимости также имеют тенденцию к насыщению. Причем фотогальваническая ЭДС для раствора типа 1 составляет 100 mV, что более чем вдвое больше ЭДС раствора типа 2 (35-40 mV). После прекращения облучения в растворах обоих типов наблюдается релаксация спектральных характеристик, рН и фотогальванической ЭДС к исходному значению. В отличие от работы [1], где было замечено декарбоксилирование уксусной кислоты, выделение газа на наблюдалось. Исследованные образцы были способны выдержать много циклов окрашивания.

4. Обсуждение результатов

Кластеры, как уже отмечалось выше, обладают высокой реакционной способностью, благодаря чему в изученной нами системе происходит ряд реакций, приводящих к образованию комплексов из кластеров оксида молибдена и присоединенных к ним химических частиц. К настоящему времени были изучены реакции протонирования (1, 2, 3) кластера $[Mo_7O_{24}]^{6-}$, находящегося в достаточно кислом растворе, и определены их энтальпии

Рис. 6. Корреляция между оптическими свойствами раствора типа *I* и изменением химического потенциала $\Delta \mu$ [H⁺] протонов в растворе: *I* — изменение химического потенциала протонов в растворе в зависимости от времени облучения; *2* — изменение пропускания раствора на длине волны 750 nm в зависимости от времени облучения; $\Delta \mu$ [H⁺] = *RT* ln[H⁺].

 ΔH и энтропии ΔS [8]

$$[\mathrm{Mo_7O_{24}}]^{6-} + H^+ \Leftrightarrow [\mathrm{Mo_7O_{23}OH}]^{5-}$$

$$\Delta H = 2.6 \pm 0.3, \text{ kcal/mol},$$

$$\Delta S = 29 \pm 1 \text{ cal/mol K.}$$
(1)
$$[Mo_7O_{23}OH]^{5-} + H^+ \Leftrightarrow [Mo_7O_{22}(OH)_2]^{4-}$$

$$\Delta H = 0.8 \pm 0.5 \text{ kcal/mol},$$

$$\Delta S = 19 \pm 2 \text{ cal/mol K.}$$
(2)
$$[Mo_7O_{22}(OH)_2]^{4-} + H^+ \Leftrightarrow [Mo_7O_{21}(OH)_3]^{3-}$$

$$\Delta H = -0.6 \pm 1.3 \text{ kcal/mol},$$
$$\Delta S = 10 \pm 4 \text{ cal/mol K}.$$
(3)

В ходе этих реакций часть концевых атомов кислорода в кластере присоединяет протон, превращаясь в ОН-группы. Приведенные значения энтальпий и энтропий свидетельствуют о том, что реакции (1,2,3) обратимы при комнатной температуре. Известно также, что протонирование может привести к кластеру, содержащему молекулу воды в качестве лиганда

$$[Mo_7O_{24}]^{6-} + 2H^+ \Leftrightarrow [Mo_7O_{23}H_2O]^{4-}.$$
 (4)

Однако протеканием только этих процессов невозможно объяснить наблюдаемые фотохромные свойства исследованной системы. Во-первых, не наблюдается влияние УФ облучения на водные растворы, не содержащие

Физика твердого тела, 1999, том 41, вып. 7

органической кислоты. Во-вторых, если бы фотогальваническая ЭДС возникала бы только за счет разности химического потенциала протонов в разных частях кюветы благодаря протеканию реакций (1)–(4) и обратных к ним, то она была бы порядка 14–15 mV, что существенно меньше наблюдаемых экспериментальных значений (рис. 5). Это заставляет сделать вывод, что основной вклад в фотогальваническую ЭДС вносят измененные кластеры молибдена.

Следует предположить, что фоточувствительность исследованной системы возникает в результате протекания реакций протонирования одновременно с реакциями замещения, модифицирующими кластер. В них молекулы органической кислоты становятся лигандами в комплексе, замещая атом кислорода, например

$$[Mo_7O_{24}]^{6-} + C_6H_8O_7 + H^+ \Leftrightarrow [Mo_7O_{23}C_6H_7O_7]^{5-} + H_2O.$$
(5)

Лимонная кислота — трехосновна и способна диссоциировать по всем трем карбоксильным группам, образуя пять видов анионов. Поскольку каждая из форм кислоты может присоединяться к кластеру по различным функциональным группам, то в ходе реакций типа (5) может образовываться много различных комплексов из кластера оксида молибдена $[Mo_7O_{24}]^{6-}$ и молекулы лимонной кислоты; также возможно присоединение нескольких молекул кислоты. Один из возможных вариантов структуры комплекса $[Mo_7O_{23} \cdot C_6H_7O_7]^{5-}$ получен при помощи стандартного пакета квантово-химических программ и визуализирован программой RasMol (рис. 1, *b*). Линейный размер комплекса составляет приблизительно 2 nm. При облучении УФ в таком комплексе происходит восстановление металла одновременно с отщеплением протона в среду (рис. 6)

$$\begin{split} [\mathrm{Mo}_{7}^{\mathrm{VI}}\mathrm{O}_{23}\mathrm{H}_{n}\mathrm{C}_{6}\mathrm{H}_{7}\mathrm{O}_{7}]^{(5-n)-} + h\nu \\ & \Rightarrow [\mathrm{Mo}_{7}^{\mathrm{VI}}\mathrm{O}_{23}\mathrm{H}_{n}(\mathrm{C}_{6}\mathrm{H}_{6}\mathrm{O}_{7})^{*}]^{(6-n)-} + \mathrm{H}^{+}, \\ [(\mathrm{Mo}_{7}^{\mathrm{VI}}\mathrm{O}_{23}\mathrm{H}_{n})^{(4-n)-}(\mathrm{C}_{6}\mathrm{H}_{6}\mathrm{O}_{7})^{*,2-}] \\ & \Rightarrow [(\mathrm{Mo}_{6}^{\mathrm{VI}}\mathrm{Mo}^{\mathrm{V}}\mathrm{O}_{23}\mathrm{H}_{n})^{(5-n)-}(\mathrm{C}_{6}\mathrm{H}_{6}\mathrm{O}_{7})^{1-}], \\ [\mathrm{Mo}_{7}^{\mathrm{VI}}\mathrm{O}_{23}\mathrm{H}_{n}\mathrm{C}_{6}\mathrm{H}_{7}\mathrm{O}_{7}]^{(5-n)-} + h\nu \\ & \Rightarrow [\mathrm{Mo}_{7}^{\mathrm{VI}}\mathrm{O}_{23}\mathrm{H}_{n-1}(\mathrm{C}_{6}\mathrm{H}_{7}\mathrm{O}_{7})^{*}]^{(6-n)-} + \mathrm{H}^{+}, \\ [(\mathrm{Mo}_{7}^{\mathrm{VI}}\mathrm{O}_{23}\mathrm{H}_{n-1})^{(5-n)-}(\mathrm{C}_{6}\mathrm{H}_{7}\mathrm{O}_{7})^{*,1-}] \\ & \Rightarrow [(\mathrm{Mo}_{6}^{\mathrm{VI}}\mathrm{Mo}^{\mathrm{V}}\mathrm{O}_{23}\mathrm{H}_{n-1})^{(6-n)-}(\mathrm{C}_{6}\mathrm{H}_{7}\mathrm{O}_{7})]. \quad (6b) \end{split}$$

Здесь символ * обозначает возбужденное состояние, в реакции (6а) протон отщепляется от молекулы кислоты, а в реакции (6b) — от протонированного кластера.

Конечные продукты этих реакций являются нестабильными, и комплекс возвращается в основное состояние, благодаря чему раствор после снятия облучения обесцвечивается, например, по реакции

$$[(Mo_6^{VI}Mo^VO_{23}H_n)^{5-}(C_6H_6O_7)^{1-}] + H^+ \Rightarrow [Mo_7^{VI}O_{23}H_n(C_6H_7O_7)]^{5-}.$$
(7)

Цикл реакций (6)–(7) может происходить многократно, что объясняет наблюдаемую обратимость процессов.

В итоге предлагаемый нами механизм фотохромного эффекта в водных растворах органической кислоты, содержащих кластеры оксидов переходных металлов, выглядит следующим образом. В исследованной системе образуется комплекс из кластера оксида молибдена, протонов и лимонной кислоты в качестве одного из лигандов (реакции (1)-(5)). Под воздействием УФ излучения органическая кислота в таком комплексе переходит в возбужденное состояние (первые части реакций (6a, b)). Затем происходит перенос электрона к атому металла от органического вещества и изменение состояния окисления атома Мо в кластере от +6 до +5 (окончания реакций (6a, b)), что приводит к возникновению полосы поглощения, связанной с появившимися в электронном спектре d-d переходами в области 750 nm. Одновременно происходит отщепление протона от кластера или присоединенной к нему кислоты. Процесс электронного переноса характерен для раствора типа 1. В растворах типа 2 фотовозбуждение приводит к изменению конформации кластера и смещению границы поглощения, за которую ответственны возбуждения с кислородных орбиталей. И в том, и в другом случаях получающийся комплекс энергетически нестабилен и самопроизвольно переходит в основное состояние (например, по реакции (7)), что приводит к постепенному обесцвечиванию раствора и восстановлению прежней концентрации протонов (рис. 4).

В этом механизме проявляется уникальность кластеров, состоящая в том, что они занимают граничное положение между кристаллами и молекулами. С одной стороны, кластер $[Mo_7O_{24}]^{6-}$ обладает достаточно малым размером, чтобы чувствовать изменения, происходящие на его поверхности при присоединении органической кислоты и других лигандов. С другой стороны, он состоит из достаточно большого числа атомов для создания потенциального барьера, препятствующего обратному переходу кластера в основное состояние. Этот барьер возникает из-за перестройки положения атомов при изменении электронной структуры кластера при переходе фотовозбужденного электрона.

Итак, предложено объяснение обнаруженному существованию двух видов фотоокрашивания (растворы типа *I* и типа 2). Отличие между ними заключается в различном поведении кластеров после фотовозбуждения. Это вызвано тем, что электронный перенос, ответственный за фотохромный эффект, является процессом, чувствительным к различиям в строении комплекса, которые вызваны относительно небольшим изменением концентрации исходных химических компонентов.

Авторы благодарят В.А. Ерохина за полезные дискуссии.

Работа выполнена при поддержке Российской программы "Фуллерены и атомные кластеры".

Список литературы

- [1] T. Yamase, T. Kurozumi. J. Chem. Soc. Dalton Trans. 2205 (1983).
- [2] C. Bechinger, G. Oefinger, S. Herminghaus, P. Leiderer. J. Appl. Phys. 74, 7, 4527 (1993).
- [3] T. Yamase. J. Chem. Soc. Dalton. Trans. 1987 (1982).
- [4] T. Yamase, T. Ikawa. Inorganica Chimica Acta 37, L 529 (1979).
- [5] T. Yamase. Inorganica Chimica Acta 64, L 155 (1982).
- [6] T. Yamase, T. Kurozumi. Inorganica Chimica Acta 83, L 25 (1984).
- [7] R.I. Bukley, R.J.H. Clark. Coordination Chemistry Rev. 65, 167 (1985).
- [8] M.T. Pope. Heteropoly and Isopoly Oxometalates. Springer-Verlag, Berlin (1983).
- [9] H.R. Zeller, H.U. Beyler. Appl. Phys. 13, 231 (1977).
- [10] К.Г. Бурцева, Л.А. Воропанова, Л.А. Кочубей. ЖНХ 29, 6, 1463 (1984).
- [11] Р.И. Максимовская, С.М. Максимов, А.А. Блохин, В.П. Таушканов. ЖНХ 35, 4, 1011 (1991).
- [12] A. Michalak, K. Hermann, M. Witko. Surface Science 366, 323 (1996).
- [13] J. Niu, X. You, C. Duan. Inorg. Chem. 35, 4211 (1996).
- [14] V.N. Andreev, F.A. Chudnovskii, S.E. Nikitin, S.V. Kozyrev, Abstracts of The 3rd International Workshop "Fullerenes and atomic clusters". St-Petersburg, Russia (1997). P. 282.
- [15] V.N. Andreev, F.A. Chudnovskii, S.E. Nikitin, S.V. Kozyrev. Molecular Materials. 10, 409 (1998).