Влияние нестехиометрии и упорядочения на период базисной структуры кубического карбида титана

© Л.В. Зуева, А.И. Гусев

Институт химии твердого тела Уральского отделения Российской академии наук, 620219 Екатеринбург, Россия

E-mail: gusev@chem.ural.ru

(Поступила в Редакцию 18 ноября 1998 г.)

Изучено влияние нестехиометрии и фазовых превращений типа беспорядок–порядок на период базисной (типа B1) структуры карбида титана TiC_y (0.5 < y < 1.0). Установлено, что упорядочение карбида титана TiC_y с образованием сверхструктур типа Ti_2C и Ti_3C_2 приводит к росту периода базисной кристаллической решетки по сравнению с неупорядоченным крабидом. С учетом изменения периода решетки обсужден вопрос о направлених статических смещений атомов вблизи вакансии.

Неупорядоченный карбид титана TiC_y (TiC_y \Box_{1-y}) с базисной кубической структурой типа *B*1 входит в группу сильно нестехиометрических соединений и обладает очень широкой областью гомогенности — от TiC_{0.48} до TiC_{1.00} [1–3], в пределах которой атомы углерода С и структурные вакансии \Box образуют в неметаллической подрешетке раствор замещения. В зависимости от состава, условий синтеза и термообработки карбид TiC_y может быть в неупорядоченном или упорядоченном состоянии.

Исследования превращений беспорядок-порядок в родственных карбидах ванадия, ниобия и тантала VC_v [4], NbC_v [5,6] и TaC_v [6] обнаружили, что период a_{B1} базисной кристаллической решетки этих карбидов в упорядоченном состоянии больше, чем период неупорядоченных карбидов с тем же содержанием углерода. Аналогичные систематические исследования влияния упорядочения на период решетки карбида титана не проводились. Имеются лишь отдельные свидетельства об изменении периода a_{B1} карбида TiC_v: в [7,8] зафиксирован рост а_{В1} после упорядочивающего отжига карбидов $TiC_{0.53}$, $TiC_{0.58}$, $TiC_{0.63}$ и $TiC_{0.67}$; авторы [9] сообщили о росте периода карбида TiC_y $(0.6 \leq y < 0.9)$ после отжига при 1000 и 900 К в течение 15 h при каждой температуре; такой же эффект отмечен на карбидах TiC_{0.49} и TiC_{0.55}, отожженных при 773 К [10].

Цель настоящей работы — изучить, как нестехиометрия и упорядочение влияют на период базисной структуры нестехиометрического карбида титана TiC_v.

1. Образцы и методика эксперимента

Образцы нестехиометрического карбида титана TiC_y $(0.50 \le y \le 1.00)$ с разным содержанием углерода были синтезированы тремя методами: 1 — твердофазное спекание порошков TiC_{0.94}, газовой сажи и металлического титана при 2000 K в течение 6 h в вакууме 0.0013 Pa $(1 \cdot 10^{-5} \text{ Torr})$ с промежуточным перетиранием продуктов после 3 h спекания; 2 — твердофазное спекание порошков металлического титана и газовой сажи при 1800 K в течение 8 h в вакууме 0.0013 Pa $(1 \cdot 10^{-5} \text{ Torr})$ с проме

жуточным перетиранием продуктов после 4 h спекания; 3 — горячее прессование порошковых смесей $TiC_{0.98}$ и металлического титана в атмосфере высокочистого аргона (условия синтеза приведены в табл. 1). Синтезированные образцы дополнительно отжигали в вакуумированных кварцевых ампулах в течение 4 h при 1200 K с последующей закалкой ампул с образцами в воде для получения неупорядоченного состояния; скорость охлаждения при закалке составляла ~ 250 K min⁻¹.

Состав образцов (табл. 1) и содержание примесей были определены химическим и спектральным анализами: содержание примесного азота было ~ 0.1 wt.%; содержание примесного кислорода в образцах, полученных горячим прессованием, составляло 0.05-0.14 wt.%, а в образцах, полученных твердофазным спеканием, в среднем 0.35 wt.%; содержание металлических примесей не превышало 0.02 wt.%. Рентгеновский анализ закаленных образцов был выполнен на автодифрактометре ДРОН-2 в СиКа_{1,2}-излучении методом съемки с эталоном (порошком монокристаллического кремния с периодом кубической решетки 0.543086 nm). Дифракционный эксперимент показал, что все закаленные образцы гомогенны (расщепление дублетов рентгеновских отражений наблюдалось уже для линии $(311)_{B1}$) и содержат только неупорядоченную фазу TiC_{v} со структурой *B*1. Для определения периода решетки *а*_{*B*1} использовали расщепленные дублеты $CuK\alpha_1$ и $CuK\alpha_2$ структурных отражений (331)_{B1}, (420)_{B1} и (422)_{B1}. Ошибка определения периода a_{B1} не превышала ± 0.0001 nm. Изменение периода решетки в зависимости от состава неупорядоченного карбида ТіС, (табл. 1) хорошо согласуется с наиболее точными данными [11].

Для достижения упорядоченного состояния образцы карбидов титана, синтезированные твердофазным спеканием, отжигали в течение 455 h по следующему режиму: 1070 K \times 23 h + 1020 K \times 90 h + 970 K \times 100 h + 920 K \times 65 h + 870 K \times 167 h; далее температуру понижали до 300 K со скоростью 1 K min⁻¹. Карбиды TiC_{0.52}, TiC_{0.54}, TiC_{0.58}, TiC_{0.62}, TiC_{0.68}, TiC_{0.83} и TiC_{0.85}, полученные горячим прессованием, отжигали в течение 340 h: 1070 K \times 20 h + 1020 K \times 20 h + 970 K \times 24 h + 920 K \times 48 h

Состав ТіС _у	Способ синтеза*	Состав, wt.%					Период	Условия синтеза			
		Ti	C _{bond}	C _{free}	0	Ν	решетки <i>a</i> _{<i>B</i>1} , nm	температура <i>T</i> , К	время <i>t</i> , h	давление прессования <i>p</i> , MPa	
TiC _{0.50}	1	88.42	11.18	Нет	0.24	0.15	0.43017	2000	6.0	_	
TiC _{0.50}	2	88.45	11.20	_"_	0.17	0.08	0.43040	1800	8.0	-	
TiC _{0.52}	3	88.29	11.51	_"_	0.05	0.06	0.43057	1773	0.5	20	
TiC _{0.54}	3	87.87	11.96	_"_	0.08	0.06	0.43068	1773	0.5	25	
TiC _{0.55}	1	87.32	12.08	_"_	0.20	0.07	0.43072	2000	6.0	-	
TiC _{0.58}	3	87.13	12.71	_"_	0.11	0.07	0.43105	1773	0.5	25	
TiC _{0.59}	1	86.62	12.90	_"_	0.21	0.08	0.43114	2000	6.0	-	
TiC _{0.60}	2	86.68	13.13	_"_	0.15	0.07	0.43120	1800	8.0	-	
TiC _{0.62}	3	86.31	13.43	_"_	0.08	0.07	0.43152	1923	0.5	23	
TiC _{0.63}	1	86.05	13.58	_"_	0.30	0.06	0.43160	2000	6.0	-	
TiC _{0.67}	2	85.52	14.30	_"_	0.14	0.08	0.43190	1800	8.0	-	
TiC _{0.68}	1	84.45	14.37	_"_	0.76	0.07	0.43174	2000	6.0	-	
TiC _{0.68}	3	85.26	14.63	_"_	0.10	0.07	0.43198	2173	0.5	30	
TiC _{0.69}	1	84.38	14.70	_"_	0.30	0.08	0.43183	2000	6.0	-	
TiC _{0.70}	2	85.24	14.84	_"_	0.06	0.05	0.43210	1800	8.0	-	
TiC _{0.80}	2	82.83	16.67	_"_	0.21	0.09	0.43250	1800	8.0	-	
TiC _{0.81}	1	82.14	16.75	_"_	0.18	0.08	0.43248	2000	6.0	-	
TiC _{0.83}	1	82.02	17.03	_"_	0.38	0.07	0.43260	2000	6.0	-	
TiC _{0.83}	3	82.45	17.24	_"_	0.14	0.07	0.43254	2173	0.5	30	
TiC _{0.85}	3	82.18	17.51	_"_	0.12	0.07	0.43260	2173	0.5	30	
TiC _{0.90}	1	80.79	18.30	_"_	0.45	0.08	0.43256	2000	6.0	-	
TiC _{0.90}	2	80.92	18.32	_"_	0.23	0.06	0.43270	1800	8.0	-	
TiC _{0.925}	1	80.41	18.65	0.25	0.51	0.07	0.43269	2000	6.0	-	
TiC _{0.94}	1	79.68	18.84	≤ 0.01	0.31	0.07	0.43259	2000	6.0	-	
TiC _{0.97}	1	79.47	19.35	≤ 0.01	0.22	0.08	0.43265	2000	6.0	-	
TiC _{0.98}	3	80.02	19.69	Нет	0.08	0.07	0.43258	2473	0.5	35	
TiC _{0.99}	2	79.60	19.72	0.18	0.17	0.09	0.43280	1800	8.0	-	
$TiC_{1.00}$	2	79.07	19.79	0.28	0.18	0.12	0.43270	1800	8.0	-	

Таблица 1. Состав, условия синтеза и период решетки a_{B1} образцов неупорядоченного карбида титана TiC_v

* 1 и 2 — твердофазное вакуумное спекание; 3 — горячее прессование.

+870 K × 72 h + 820 K × 98 h + 770 K × 48 h; переход от одной температуры отжига к другой, а также охлаждение от 770 до 300 K проводились со скоростью 1 K min⁻¹. В результате отжига карбида TiC_{0.50} вдоль границ зерен выделился металлический титан α -Ti. Выделения α -Ti в результате отжига других карбидов TiC_y ($y \ge 0.52$) не обнаружено.

Фазовый состав и кристаллическую структуру образцов TiC_y после отжига изучали рентгеновским методом в CuK $\alpha_{1,2}$ -излучении в режиме пошагового сканирования с $\Delta 2\theta = 0.02^{\circ}$ в интервале углов 2θ от 14° до 130°; при съемке отожженных карбидов время экспозиции в каждой точке составляло 5 s.

Отжиг привел к появлению сверхструктурных отражений на рентгенограммах карбидов $TiC_{0.50}$, $TiC_{0.52}$, $TiC_{0.54}$, $TiC_{0.55}$, $TiC_{0.58}$, $TiC_{0.59}$, $TiC_{0.62}$, $TiC_{0.63}$, $TiC_{0.67}$ и $TiC_{0.68}$. Одинаковый набор сверхструктурных отражений, соответствующий кубической (пр. гр. Fd3m) упорядоченной фазе Ti_2C , наблюдался на рентгенограммах отожженных карбидов $TiC_{0.50}$, $TiC_{0.52}$, $TiC_{0.54}$, $TiC_{0.55}$. Особенностью дифракционных картин отожженных карбидов TiC_{58} и $TiC_{0.59}$ является тригональное расщепление структурных линий (220)_{B1}, (311)_{B1}, (331)_{B1}, (420)_{B1} и (422)_{B1}, указывающее на образование тригональной (пр. гр. $R\bar{3}m$) сверхструктуры Ti₂C. На рентгенограммах отожженных карбидов TiC_{0.62} и TiC_{0.63} наряду с отражениями от тригональной упорядоченной фазы Ti₂C наблюдались сверхструктурные рефлексы от ромбической (пр. гр. C222₁) упорядоченной фазы Ti₃C₂. Отжиг карбидов TiC_{0.67} и TiC_{0.68} привел к появлению сверхструктурных отражений, соответствующих ромбической фазе Ti₃C₂.

Таким образом, из структурных данных следует, что при упорядочении карбида TiC_y в областях $TiC_{0.49} - TiC_{0.59}$ и $TiC_{0.63} - TiC_{0.68}$ образуются упорядоченные фазы типа Ti_2C и Ti_3C_2 . Детальный анализ дифракционных данных и описание структуры упорядоченных фаз карбида титана даны в предшествующей работе [12].

Экспериментальные результаты и обсуждение

Изменение периода базисной кристаллической решетки в зависимости от состава неупорядоченного и упорядоченного карбидов титана TiC_y показано на рис. 1. Зависимость периода решетки a_{B1} от состава неупоря-

Рис. 1. Зависимость периода a_{B1} базисной кристаллической решетки от состава карбида титана TiC_y в закаленном неупорядоченном (2, 4, 5) и отожженном упорядоченном (1, 3) состояниях: 1, 2 — образцы, полученные спеканием Ti и TiC_{0.94}; 3, 4 — образцы, полученные спеканием Ti и C; 5 — образцы, полученные горячим прессованием Ti и TiC_{0.98}; I, II, III — области существования упорядоченных фаз Ti₂C, Ti₃C₂ и Ti₆C₅ соответственно.

доченного карбида титана TiC_y была аппроксимирована полиномом второй степени $a_{B1}(y, 0) = a_0 + a_1 y + a_2 y^2$, где $a_0 = 0.421595$, $a_1 = 0.023699$ и $a_2 = -0.012655$ nm.

При изменении состава карбида титана от TiC_{1.00} до TiC_{0.92} период решетки слабо увеличивается и проходит через максимум при ТіС_{0.91-0.93}. Дальнейшее уменьшение содержания углерода в неупорядоченном карбиде ТіС_v, т.е. рост концентрации структурных вакансий, приводит к быстрому понижению периода *a*_{B1}. Наличие на зависимости $a_{B1}(y)$ почти горизонтального участка в области TiC_{0.90}-TiC_{1.00} (рис. 1) указывает на то, что при малой концентрации структурных вакансий создаваемые ими в кристаллической решетке области возмущений имеют малый радиус и не перекрываются. Отсутствие такого участка на зависимостях $a_{B1}(y)$ карбидов NbC_v и TaC_v [5,6] свидетельствует о том, что в этих соединениях возмущения, создаваемые вакансией, являются более дальнодействующими, чем в карбиде титана ТіС_у.

В карбидах со структурой типа *B*1 каждый атом металла находится в октаэдрическом окружении шести узлов неметаллической подрешетки, а каждый узел неметаллической подрешетки окружен шестью атомами металла. Наличие одной или нескольких структурных вакансий в ближайшем окружении атома металла приводит к

его статическим смещениям из-за асимметрии общего воздействия ближайших соседей. Обсудим, в каком направлении могут смещаться атомы металла, чтобы обеспечить экспериментально наблюдаемое уменьшение периода кристаллической решетки карбида TiC_y при увеличении концентрации структурных вакансий.

Если атомы металла смещаются к вакансии, то рост концентрации вакантных междоузлий $\Box M_6$, имеющих меньший линейный размер по сравнению с заполненными октаэдрическими междоузлиями CM_6 , будет сопровождаться уменьшением периода a_{B1} . Уменьшение периода будет происходить, если статические смещения атомов металла монотонно уменьшаются и асимптотически стремятся к нулю при увеличении расстояния от вакансии и даже в том случае, если создаваемые вакансией возмущения распространяются только на первую координационную сферу.

Если ближайшие к вакансии атомы металла смещаются от нее, то для уменьшения периода решетки атомы металла, образующие вторую координационную сферу, должны смещаться в противоположном направлении, т. е. к вакансии. Таким образом, создаваемое вакансией поле возмущений должно распространяться не менее чем на две координационные сферы атомов металла. В этом случае затухание возмущений с увеличением расстояния

Координацион-		TiC	$_{0.64}$ (a_{B1}	= 0.4322 nm пр	ои 300 К)	ТіС _{0.76} (<i>a</i> _{B1} = 0.4330 nm при 300 K)				
ная сфера (hkl)		α [16]	$\langle u \rangle^*$ [16]	⟨и⟩, nm (при 300 K)	<i>u</i> , nm (при 300 K)	$\begin{array}{c} \alpha & \langle u \rangle^* \\ [16] & [16] \end{array}$		⟨и⟩, nm (при 300 K)	<i>u</i> , nm (при 300 K)	
100 (I) 110 (II) 111 (III) 200 (IV)	$\Box - Ti$ $\Box - C$ $\Box - Ti$ $\Box - C$	0 -0.058 0 -0.291	253 -45 -48 42	0.00547 -0.00097 -0.00104 0.00091	0.00662	0 -0.047 0 -0.122	232 -38 -40 -13	0.00502 -0.00082 -0.00087 -0.00028	0.00589	

Таблица 2. Параметры ближнего порядка α , средние статические атомные смещения $\langle u \rangle^*$ (в единицах $a_{B1} \times 10^{-4}/2$) и смещения относительно изолированной вакансии *и* в карбиде титана

Примечание. Центром координационных сфер является вакансия.

от вакансии представляет собой осцилляции Фриделя. Судя по оценкам [1,13–16], в нестехиометрических кубических карбидах MC_y эффективный радиус возмущения превышает период элементарной ячейки и возмущение распространяется более чем на две координационные сферы (например, в карбиде ниобия корреляции распространяются на восемь координационных сфер [13]).

Таким образом, в самом общем случае уменьшение периода решетки неупорядоченного карбида с ростом концентрации вакансий может происходить при смещении атомов металла первой координационной сферы как к вакансии, так и от нее. Имеющиеся экспериментальные результаты по карбиду TiC_y показывают, что атомы титана в первой координационной сфере смещаются от вакансии.

Ранее средние статические атомные смещения $\langle u \rangle$ были определены методом упругого диффузного рассеяния нейтронов на монокристаллах TiC_{0.64} и TiC_{0.76} [16–18]. Измерения проводили при температуре 1173 K, которая заведомо выше температуры перехода беспорядок-порядок T_{trans} , т. е. на неупорядоченных карбидах. Найденные параметры ближнего порядка α и статические атомные смещения $\langle u \rangle$ для четырех координационных сфер с вакансией в центре приведены в табл. 2. Положительная величина смещений соответствует удалению атома от вакансии. Как видно из табл. 2, для неупорядоченных карбидов основное атомное смещение — сдвиг атомов титана в первой координационной сфере от вакансии примерно на 0.005 nm.

Схема уменьшения периода решетки с учетом направлений атомных смещений при образовании вакансии показана на рис. 2. Она построена для плоскости $(110)_{B1}$ нестехиометрического карбида MC_y со структурой B1. Схема учитывает распространение поля смещений вокруг вакансии \Box на несколько координационных сфер и осцилляционное затухание смещений с увеличением расстояния от вакансии. С использованием данных [17] на рис. 3 показаны величина и направление статических смещений атомов титана и углерода $\langle u_{\Box-Ti}^{hkl} \rangle$ в 12 координационных сферах вакансии в неупорядоченном карбиде TiC_{0.64}. Как видно из рис. 3, смещения атомов Ti и C осциллируют, уменьшаясь по абсолютной величине с увеличением расстояния *r* от

вакансии, причем создаваемые вакансией возмущения распространяются на расстояние, равное почти двум периодам элементарной ячейки.

Смещения $\langle u \rangle$, найденные из диффузного рассеяния, являются средними по всем атомным конфигурациям, существующим в карбидах TiC_{0.64} и TiC_{0.76} с высокой концентрацией структурных вакансий. В первом приближении поля смещений, создаваемые вакансиями, являются аддитивными, поэтому смещения $\langle u_{\Box-Ti}^{100} \rangle$ атомов титана первой координационной сферы можно представить в виде

$$\langle u_{\Box-\mathrm{Ti}}^{100} \rangle = P_{\Box-\mathrm{C}}^{200} u_{\Box-\mathrm{Ti}}^{100} + P_{\Box-\Box}^{200} u_{\Box-\mathrm{Ti}}^{100(2)},$$
 (1)

где $P_{\square-C}^{200} = y(1 - \alpha_{200})$ и $P_{\square-\square}^{200} = 1 - y(1 - \alpha_{200})$ вероятности существования пар \square – С и \square – \square ; $u_{\square-Ti}^{100}$ — смещение атомов титана относительно изолированной вакансии, т.е. в цепочке \square – Ti – C; $u_{\square-Ti}^{100(2)} \equiv 0$ — смещение атомов титана в цепочке \square – Ti – \square , тождественно равное нулю из-за симметричного расположения атома Ti. С учетом отмеченного смещение атомов титана относительно изолированной вакансии, $u_{\square-Ti}^{100}$, можно найти по формуле

$$u_{\Box-\mathrm{Ti}}^{100} = \left\langle u_{\Box-\mathrm{Ti}}^{100} \right\rangle / \left[y(1 - \alpha_{200}) \right].$$
 (2)

*и*¹⁰⁰_{□-Ті} (табл. Рассчитанные значения 2) равны $u^{100}_{\Box-{\rm Ti}}$, 0.006-0.007 nm (величины смещений приведенные в [16,17], неверны, так как при расчете вместо значений α_{200} по ошибке использованы значения α_{110}). Это достаточно близко к литературным данным: смещение атомов Ті от изолированной вакансии составляет 0.0044 nm в ТіС_{0 90} [14], 0.0097 nm в TiC_{0.94} [19] и 0.0080 nm в TiC_{0.97} [20].

Исследования структуры отожженных образцов TiC_y показали, что в интервалах составов TiC_{0.50}-TiC_{0.59} и TiC_{0.63}-TiC_{0.68} образуются упорядоченные фазы Ti₂C и Ti₃C₂, а интервал TiC_{0.59}-TiC_{0.63} соответствует двухфазной области Ti₂C + Ti₃C₂. Кроме того, согласно теоретическим расчетам [21], в интервале TiC_{0.79}-TiC_{0.87} возможно образование упорядоченной фазы Ti₆C₅. Упорядочение сопровождается ростом периода базисной кристаллической решетки a_{B1} карбида титана. На зависимости $a_{B1}(y)$ упорядоченного карбида TiC_y можно

Рис. 2. Схема уменьшения периода решетки нестехиометрических карбидов MC_y (TiC_y) со структурой B1 при образовании вакансии \Box и статических атомных смещений вокруг вакансии в плоскости $(110)_{B1}$: 1 — атомы внедрения (C); 2 — вакансия; 3 — атомы металла (Ti); 4 — идеальная бездефектная решетка; 5 — решетка с вакансией (без учета атомных смещений); 6 — реальная решетка с учетом атомных смещений; 7 — контур элементарной ячейки; I, II, IV, V, VIII — номера координационных сфер (относительно вакансии); направления смещений показаны стрелками.

выделить три участка, соответствующих возможным упорядоченным фазам Ti_2C , Ti_3C_2 и Ti_6C_5 (рис. 1). Наиболее заметное увеличение периода решетки наблюдается при образовании упорядоченных фаз Ti_3C_2 и в меньшей степени Ti_2C . В области $TiC_{0.79} - TiC_{0.87}$, где возможно образование фазы Ti_6C_5 , увеличение периода незначительно превышает ошибку измерений.

Упорядочение карбида титана наблюдается при высокой концентрации структурных вакансий $0.5 \ge (1 - y) > 0.2$. В неупорядоченном карбиде при такой концентрации вакансий создаваемые ими области возмущения перекрываются, в результате чего возмущения распространяются по всему объему кристалла, приводя к быстрому понижению периода a_{B1} . В результате упорядочения вакансии и атомы углерода перераспределяются по узлам неметаллической подрешетки таким образом, что относительное число вакансий, являющихся ближайшими соседями, в упорядоченном карбиде оказывается меньше, чем в неупорядоченном карбиде того же состава. Тем самым снижается степень перекрытия областей возмущения и период а_{В1} базисной кристаллической решетки упорядоченного карбида оказывается больше, чем неупорядоченного карбида того же состава.

Ранее [6] для количественного анализа изменения периода a_{B1} при образовании в карбидах NbC_y и TaC_y упорядоченной фазы M_6C_5 была предложена феноменологическая модель. Рассмотрим ее применение к упорядоченным фазам $M_{2t}C_{2t-1}$ (t = 1, 1.5, 2, 3 и 4), которые могут образовываться в нестехиометрических карбидах.

В нестехиометрических карбидах с базисной структурой *B*1 каждый атом металла находится в ближайшем окружении шести узлов неметаллической подрешетки, которые могут быть заняты атомами углерода или вакантны. Это дает возможность представить кристалл со структурой *B*1 как совокупность кластеров в форме многогранников Дирихле–Вороного, т.е. искаженной ячейки Вигнера–Зейтца (в структуре *B*1 ячейкой Вигнера–Зейтца является ромбододекаэдр). Каждый кластер включает в себя атом металла, расположенный в центре, и шесть узлов неметаллической подрешетки (рис. 4). Такие кластеры в виде многогранников Дирихле–Вороного заполняют весь объем кристалла и учитывают все узлы кристаллической решетки.

Рис. 3. Осцилляция статических смещений атомов титана и углерода $\langle u_{\Box-Ti} \rangle$ и $\langle u_{\Box-C} \rangle$ относительно вакансии при увеличении радиуса *r* координационной сферы (*hkl*) в неупорядоченном карбиде TiC_{0.64} (положительная величина смещений соответствует удалению атома от вакансии, а отрицательная приближению атома к вакансии); построено с использованием экспериментальных данных [17].

В первом приближении будем полагать, что объем кластера V_m зависит только от числа вакансий m в нем и не зависит от их взаимного расположения. В этом случае объем V кристалла, содержащего N узлов металлической подрешетки, имеет вид

$$V = N \sum_{m=0}^{6} \lambda_m P_m(y, \eta) V_m, \qquad (3)$$

где $P_m(y, \eta)$ — вероятность образования кластера с числом вакансий, равным *m*; η — параметр дальнего порядка; $\lambda_m = C_6^m$ — мультиплетность *m*-конфигурации кластера. С другой стороны, объем неупорядоченного карбида титана можно представить через период базисной структры $a_{B1}(y) = a_0 + a_1y + a_2y^2$ как $V = (N/4)a_{B1}^3(y)$. С учетом этого уравнение (3) для неупорядоченного карбида примет вид

$$\sum_{m=0}^{6} \lambda_m P_m(y,0) V_m = \frac{(a_0 + a_1 y + a_2 y^2)^3}{4}, \qquad (4)$$

где $P_m(y, 0) = (1 - y)^m y^{(6-m)}$ — вероятность образования в неупорядоченном карбиде кластера, включающего

т вакансий. Решая уравнение (4), найдем объем кластера

$$V_m = \frac{1}{4} \sum_{k=m}^{6} A_{6-k} \frac{k!(6-m)!}{6!(k-m)!},$$
(5)

где A_{6-k} — коэффициенты при y^k в правой части уравнения (4).

Вклад каждого кластера в общий объем кристалла пропорционален его вероятности P_m . Для равновесных условий вероятность $P_m(y, \eta)$ существования кластера с *m* вакансий в упорядоченной фазе типа $M_{2t}C_{2t-1}$ с любой степенью дальнего порядка можно представить [1,2,22] в виде

$$P_{m,t}(y,\eta) = \frac{1}{\Phi} \sum_{f} \frac{g_f}{C_6^{\nu(t,f)}} \sum_{\nu=0}^{\nu(t,f)} C_{6-m}^{\nu(t,f)-\nu} C_m^{\nu}$$
$$\times n_1^{[\nu(t,f)-\nu]} n_2^{[6-m-\nu(t,f)+\nu]}$$
$$\times (1-n_1)^{\nu} (1-n_2)^{(m-\nu)}, \tag{6}$$

где $n_1 = y - (2t-1)\eta/2t$ и $n_2 = y + \eta/2t$ — вероятности обнаружения атома углерода на узле вакансионной и углеродной подрешеток при образовании сверхструктуры типа $M_{2t}C_{2t-1}$; g_f — мультиплетность неэквивалентных позиций атомов металла, находящихся в центре каждого кластера ($\sum_f g_f = \Phi$); $\nu(t, f)$ — число узлов вакансионной подрешетки, принадлежащих кластеру с мультиплетностью g_f в сверхструктуре $M_{2t}C_{2t-1}$.

Используя уравнения (3), (5) и (6), можно найти объем кристалла и период базисной решетки a_{B1} нестехиометрического карбида с любой степенью порядка. Расчет периода a_{B1} упорядоченного карбида титана проводили в двух вариантах.

Рис. 4. Кластерная фигура (без учета искажений), используемая для описания нестехиометрических карбидов MC_y с базисной структурой типа B1: 1 — узел неметаллической подрешетки; 2 — атом металла М.

		$\Delta a_{B1} = a_{B1}(y,\eta) - a_{B1}(y,0), \text{nm}$									
Карбид	Фазовое		Расчет								
TiCy	превращение	Эксперимент	Эксперимент $\eta = \eta_{ m equilibr}$					$\eta=\eta_{ m max}$			
			η	Т, К	Δa_{B1}	η	Δa_{B1}	η	Δa_{B1}		
TiC _{0.50}	$TiC_v \rightarrow Ti_2C$	0.00010	0.640	940	0.000100	-	-	1.000	0.000622		
TiC _{0.50}	$TiC_{y} \rightarrow Ti_{2}C$	0.00035	0.735	760	0.000350	-	_	1.000	0.000622		
TiC _{0.55}	$TiC_y \rightarrow Ti_2C$	0.00032	0.710	730	0.000320	_	_	0.900	0.000506		
TiC _{0.59}	$TiC_y \rightarrow Ti_2C$	0.00013	0.510	1020	0.000229	_	_	0.820	0.000421		
TiC _{0.60}	$TiC_y \rightarrow Ti_3C_2$	0.00010	0.340	800	0.000100	0.190	0.000018	0.900	0.000401		
TiC _{0.63}	$\text{TiC}_y \rightarrow \text{Ti}_3\text{C}_2$	0.00014	0.400	760	0.000140	0.233	0.000030	0.945	0.000501		
TiC _{0.67}	$TiC_y \rightarrow Ti_3C_2$	0.00010	0.365	760	0.000100	0.281	0.000043	0.990	0.000551		
TiC _{0.68}	$TiC_y \rightarrow Ti_3C_2$	0.00024	0.560	600	0.000240	0.289	0.000046	0.960	0.000519		
TiC _{0.69}	$\text{TiC}_y \rightarrow \text{Ti}_3\text{C}_2$	0.00020	0.515	610	0.000200	0.296	0.000049	0.930	0.000487		
TiC _{0.81}	$TiC_y \rightarrow Ti_6C_5$	0.00008	< 0.60	< 600	0.000080	0.632	0.000140	0.972	0.000332		
TiC _{0.83}	$TiC_y \rightarrow Ti_6C_5$	0.00020	0.750	610	0.000200	0.635	0.000142	0.996	0.000349		

Таблица 3. Изменение периода $\Delta a_{B1} = a_{B1}(y, \eta) - a_{B1}(y, 0)$ базисной (типа *B*1) кристаллической решетки при упорядочении нестехиометрического карбида титана TiC_y

В первом варианте предполагалось, что в карбиде титана была достигнута максимальная степень дальнего порядка η_{max} . Согласно [1,2], зависимость η_{max} от состава карбида MC_y при образовании упорядоченной фазы типа $M_{2t}C_{2t-1}$ имеет вид

$$\eta_{\max}(y) = \begin{cases} 2t(1-y), & \text{если } y \ge (2t-1)/2t, \\ 2ty/(2t-1), & \text{если } y < (2t-1)/2t. \end{cases}$$
(7)

Во втором варианте предполагали, что в упорядоченном карбиде титана параметр дальнего порядка имеет такую же величину, как при температуре фазового перехода беспорядок-порядок T_{trans} , т. е. $\eta = \eta_{\text{trans}}$.

Расчет величины $\Delta a_{B1} = a_{B1}(y, \eta) - a_{B1}(y, 0)$ в приближениях $\eta = \eta_{max}$ и $\eta = \eta_{trans}$ (табл. 3) показал, что экспериментальные значения Δa_{B1} соответствуют промежуточному значению параметра дальнего порядка $\eta_{trans} < \eta < \eta_{max}$. В табл. 3 приведены рассчитанные значения параметра $\eta = \eta_{equilibr}$, при котором достигается экспериментальное изменение периода Δa_{B1} и температура *T*, для которой это значение параметра дальнего порядка является равновесным. Значения η_{trans} и $\eta_{equilibr}$ рассчитывали методом функционала параметров порядка [2,21,22].

Изменения периода карбида TiC_y при упорядочении, найденные в настоящей работе, близки к значениям Δa_{B1} (0.00052 nm для TiC_{0.60}, 0.00028 nm для TiC_{0.70} и 0.00012 nm для TiC_{0.80}), измеренным авторами [9]. Согласно [8], после длительного упорядочивающего отжига карбидов TiC_{0.53} и TiC_{0.58} величина Δa_{B1} составила 0.00168 и 0.00112 nm. Однако при отжиге этих карбидов выделился металлический титан в количестве 11.3 и 3.3 at.%, и фактический состав образцов был TiC_{0.58} и TiC_{0.60}. С учетом этого изменение Δa_{B1} , обусловленное упорядочением карбидов TiC_{0.58}, $TiC_{0.60}$, $TiC_{0.63}$ и $TiC_{0.67}$, равно 0.00088, 0.00082, 0.00032 и 0.00008 nm [8].

Изменения периода решетки карбида TiC_y при упорядочении по величине сравнимы с изменениями периода a_{B1} в тех частях области гомогенности TiC_y, где образуются упорядоченные фазы. Например, при изменении состава неупорядоченного карбида от TiC_{0.59} до TiC_{0.59} период a_{B1} увеличивается на 0.00089 nm, а в результате образования упорядоченной фазы Ti₂C максимальное увеличение периода составляет 0.00035 nm; в области TiC_{0.63}—TiC_{0.68}, где образуется сверхструктура типа Ti₃C₂, период неупорядоченного карбида меняется на 0.00036 nm, а при упорядочении изменение $\Delta a_{B1} = 0.00024$ nm. Таким образом, эффекты нестехиометрии и упорядочения на периоде базисной решетки карбида TiC_y сравнимы по величине.

Изменения периода базисной решетки, происходящие в результате упорядочения нестехиометрического карбида титана TiC_y , указывают на то, что фазовые превращения $TiC_y \leftrightarrow Ti_2C$ и $TiC_y \leftrightarrow Ti_3C_2$ являются скорее всего переходами первого рода. Это совпадает с выводами [12] о первом роде фазовых превращений беспорядок-порядок в карбиде титана TiC_y .

Исследование поддержано проектом РФФИ (грант № 98-03-32856а).

Список литературы

- А.И. Гусев, А.А. Ремпель. Структурные фазовые переходы в нестехиометрических соединениях. Наука, М. (1988). 308 с.
- [2] А.И. Гусев. Физическая химия нестехиометрических тугоплавких соединений. Наука, М. (1991). 286 с.
- [3] A.I. Gusev. Phys. Stat. Sol. (b) 163, 1, 17 (1991).

- [4] T. Athanassiadis, N. Lorenzelli, C.H. de Novion. Ann. Chim. France 12, 2, 129 (1987).
- [5] А.И. Гусев, А.А. Ремпель. ФТТ **26**, *12*, 3622 (1984).
- [6] В.Н. Липатников, А.А. Ремпель, А.И. Гусев. Изв. АН СССР. Неорган. материалы 26, 12, 2522 (1990).
- [7] V. Moisy-Maurice. Structure atomique des carbures nonstoechiometriques de metaux de transition. Rapport CEA-R-5127. Commissariat a l'Energie Atomique. Gif-sur-Yvette, France (1981). 184 p.
- [8] V. Moisy-Maurice, N. Lorenzelli, C.H. de Novion, P. Convert. Acta Metall **30**, *9*, 1769 (1982).
- [9] V.N. Lipatnikov, A.A. Rempel, A.I. Gusev. Int. J. Refract. Metals and Hard Mater. 15, 1–3, 61 (1997).
- [10] А.Н. Емельянов. ТВТ **28**, *2*, 269 (1990).
- [11] L. Ramqvist. Jernkont. Annaler. 152, 10, 517 (1968).
- [12] В.Н. Липатников, А. Коттар, Л.В. Зуева, А.И. Гусев. ФТТ 40, 7, 1332 (1998).
- [13] V. Moisy-Maurice, C.H. de Novion, A.N. Christensen, W. Just. Solid State Commun. 39, 5, 661 (1981).
- [14] R. Kaufmann, O. Meyer. Solid State Commun. 51, 7, 539 (1984).
- [15] A.I. Gusev, A.A. Rempel. Phys. Stat. Sol. (b) 154, 2, 453 (1989).
- [16] C.H. de Novion, B. Beuneu, T. Priem, N. Lorenzelli, A. Finel. In: The Physics and Chemistry of Carbides, Nitrides and Borides / Ed. by R. Freer. Kluwer Acad. Publ., Netherlands (1990). P. 329–355.
- [17] T. Priem. Etude de l'ordre a courte distance dans les carbures et nitrures non-stoechiometriques de metaux de transition par diffusion diffuse de neutrons. Rapport CEA-R-5499. Commissariat a l'Energie Atomique. Gif-sur-Yvette (France) (1989). 162 p.
- [18] T. Priem, B. Beuneu, C.H. de Novion, J. Chevrier, F. Livet, A. Finel, S. Lefevbre. Physica B156–157, *1*, 47 (1989).
- [19] A. Dunand, H.D. Flack, K. Yvon. Phys. Rev. **B31**, *4*, 2299 (1985).
- [20] V. Moisy-Maurice, C.H. de Novion. J. de Phys. France 49, 10, 1737 (1988).
- [21] A.I. Gusev, A.A. Rempel. Phys. Stat. Sol. (a) **163**, *2*, 273 (1997).
- [22] A.I. Gusev. Philosoph. Mag. B60, 3, 307 (1989).