Особенности механизма аннигиляции позитронов в металлах

© В.И. Графутин, Е.П. Прокопьев, Г.Г. Мясищева, Ю.В. Фунтиков

Институт теоретической и экспериментальной физики, 117259 Москва, Россия E-mail: grafutin@vitep5.itep.ru

(Поступила в Редакцию 11 июня 1998 г.)

В поликристаллических образцах магния, алюминия, меди, цинка, индия, олова, свинца и висмута методом углового распределения аннигиляционных фотонов изучен процесс аннигиляции позитронов в объеме металлов. Показано, что в аннигиляции позитронов принимают участие как остовные электроны, так и электроны проводимости. Определены концентрации электронов проводимости и энергии Ферми. Установлено, что концентрация электронов в окрестности позитрона значительно выше концентрации свободного электронного газа. Высказано предположение, что это связано с образованием комплексов типа Уилера и оценен его заряд. Проанализированы различные способы измерения концентраций электронов проводимости и сделан вывод, что позитронный метод дает наиболее достоверную информацию.

Позитронная аннигиляция интенсивно исследуется в металлах (см., например, [1–4]). Это связано с тем обстоятельством, что метод аннигиляции позволяет определять такие важные свойства металлов, как распределение электронов по импульсам, энергию уровня Ферми ε_F (eV), удельное число свободных электронов Z_c , приходящихся на один атом металла, и их концентрацию n_p (сm⁻³) в зоне проводимости. Эти параметры, как известно [5–8], во многом определяют механические, электрические и магнитные свойства металлов.

В кристаллической решетке металла не все валентные электроны связаны со своими атомами. Некоторая их часть (Z_c ≥ 1 на атом) подвижна в объеме металла и образует электронный газ, в который как бы погружен каркас из положительных ионов. Электронный газ в свою очередь компенсирует силы электростатического отталкивания между ионами и связыает их в твердое тело (металлическая связь). Числа электронов Z_c и n_p для идеальных и реальных (например, поликристаллических образцов) металлов несомненно различаются. Поэтому в данной работе были предприняты экспериментальные исследования позитронной аннигиляции (углового распределения аннигиляционных фотонов (УРАФ)) в ряде поликристаллических образцов металлов для выяснения особенностей механизма аннигиляции и определения параметров ε_F , Z_c и n_p , а также их зависимостей от природы металлов.

1. Методика, теория и результаты экспериментов

Измерения УРАФ проводились на установке, реализующей параллельно-щелевую геометрию регистрации аннигиляционных фотонов. Установка прошла модернизацию, включающую автоматизацию эксперимента и регистрацию загрузок обоих детекторов однорвеменно с регистрацией совпадений [9], что позволяет вводить поправки в кривые УРАФ, обусловленные поглощением фотонов в исследуемом образце. Источником позитронов служил радиоактивный изотоп Na²² активностью 100 mCi. Число совпадений в максимуме составляло $\sim 20\,000$. Исследуемые образцы размерами $\sim 10 \times 20 \times 10 \text{ mm}^3$ были вырезаны из целых кусков металла и не подвергались никакой специальной обработке. Для исследований были выбраны Mg, Al, Cu, Zn, In, Sn, Pb и Bi. Два металла из этой серии образцов (Al и Cu) уже изучались ранее [10], но это были образцы с другой предысторией.

Известно, что для экспериментальной установки с параллельно-щелевой геометрией регистрации аннигиляционных фотонов импульсная плотность электронов n_e связана с УРАФ исследуемого металла $f(\theta)$ выражением [10]

$$f(\theta) \cong A_0 \int_{p_z - \frac{1}{2}\Delta p_z}^{p_z + \frac{1}{2}\Delta p_z} dp_z \int_{-\Delta p_y}^{+\Delta p_y} dp_y \int_{-\infty}^{+\infty} n_e(p_x, p_y, p_z) dp_x, \quad (1)$$

где A_0 — нормировочная константа; Δp_y , Δp_z — разрешения установки по проекциям импульса p_y и p_z , удовлетворяющие условиям

$$\Delta p_y \gg 2p_{\max}; \qquad \Delta p_z \ll p_{\max}.$$

Здесь $p_{\rm max}$ — максимальная величина импульса электрона в металле; θ — отклонение угла разлета аннигиляционных фотонов от 180°

$$p_z = \theta m c$$

где m — эффективная масса электрона в металле, c — скорость света. Поэтому при исследовании изотропных веществ (например, поликристаллических образцов) импульсную плотность электронов (*z*-компоненту) можно определить, исходя из данных УРАФ

$$n_e(p_z) \sim \frac{1}{\theta} \frac{df(\theta)}{d\theta}.$$
 (2)

В металлах [5–8] валентные электроны обычно разделяют на две группы: электроны проводимости (свободные

электроны) и электроны, находящиеся на ионных остовах атомов (связанные электроны). Электроны проводимости имеют импульсное распределение

$$n_e(p) = \left[\exp\left(\frac{p^2/2m - \varepsilon_F}{\kappa_B T}\right) + 1 \right]^{-1}, \qquad (3)$$

где ε_F — энергия Ферми, κ_B — постоянная Больцмана; T — абсолютная температура. Для низких температур это распределение близко к прямоугольному. Отсюда следует, что в кривых УРАФ поликристаллических металлов должна наблюдаться параболическая компонента

$$f_p(\theta) = \begin{cases} (3I_p/4\theta_p^3)(\theta_p^2 - \theta^2), & |\theta| \leq \theta_p, \\ 0, & |\theta| > \theta_p. \end{cases}$$
(4)

Действительно, эта компонента хорошо проявляется для всех металлов даже при комнатной температуре. На рисунке приведены спектры УРАФ ряда поликристаллических металлов, полученные в наших экспериментах. Оставшаяся после вычитания параболы зависимость $f_g(\theta)$ достаточно хорошо описывается гауссовой кривой

$$f_g(\theta) = \left(I_g/\sqrt{2\pi}\,\theta_g\right)\exp\left(-\theta^2/2\theta_g^2\right).$$
 (5)

Здесь I_p , I_g — интенсивности параболической и гауссовой компоненты соответственно, численно равные относительной площади данной компоненты в спектре УРАФ, θ_g — дисперсия гауссовой кривой, θ_p — угол пересечения параболой оси абсцисс (θ) (см. рисунок).

Таким образом, угловые распределения аннигиляционных фотонов исследованных образцов металлов достаточно хорошо описываются суммой параболической и гауссовой кривых

$$f(\theta) = f_p(\theta) + f_g(\theta).$$
(6)

При этом в силу нормировки УРАФ бездефектного металла

$$\int_{\pi/2}^{\pi/2} f(\theta) \, d\theta = 1,\tag{7}$$

выполняется соотношение

$$I_p + I_g = 1, \tag{8}$$

связывающее относительные вклады параболической и гауссовой компонент.

Далее, используя параметр θ_p (угол отсечки параболой оси абсцисс θ , рис. 1), определяемый из эксперимента, можно оценить импульс Ферми p_F и энергию Ферми ε_F исследуемого металла

$$p_F = \theta_p \, m \, c, \tag{9}$$

$$\varepsilon_F = \theta_p^2 \, (mc^2/2). \tag{10}$$

В приближении модели свободного электронного газа [5] параметр θ_p определяет также удельное число свободных

электронов Z_c (число электронов проводимости), приходящихся на один атом металла и их концентрацию $n_p(\theta)$

$$Z_c = (8\pi/3)(mc^2/h)^3 (A/\rho N_A) \theta_p^3, \qquad (11)$$

$$n_p(\theta) = Z_c \ n_A = (8\pi/3)(mc^2/h)^3 \theta_p^3,$$
 (12)

а также энергию остовных электронов (т.е. тех электронов, для которых угловое распределение аннигиляционных фотонов в спектрах УРАФ имеет гауссово распределение)

$$\varepsilon_g = (3/2)(mc^2/2)\,\theta_g^2. \tag{13}$$

Здесь N_a — число Авогадро, h — постоянная Планка, A — атомный вес металла, ρ — его плотность.

Принято сопоставлять экспериментально получаемые значения Z_c , ε_F , n_p с аналогичными параметрами идеального металла. Будем считать, согласно Киттелю [5], идеальным металлом такой металл, в котором все валентные электроны переходят в зону проводимости. В этом случае [5–8] удельное число электронов проводимости Z_c определяется номером группы Периодической системы элементов Менделеева, а энергия Ферми ε_F и концентрация электронов проводимости n_p , в рамках модели свободного электронного газа, являются его константами

$$\varepsilon_F = (h^2/8m)(3/\pi n_A Z_c)^{2/3},$$
 (14)

$$n_p = Z_c \ n_A = (N_A \rho / A) Z_c, \tag{15}$$

где *n_A* — концентрация атомов в единице объема металла.

Особенности спектров УРАФ исследованных металлов

На рисунке показаны измеренные кривые УРАФ в магнии, алюминии, меди и индии и их разложение на параболическую и гауссову компоненты (штриховые линии). Сплошная линия является суммой этих компонент и хорошо описывает эксперимент. В таблице приведены параметры разложения УРАФ исследованных металлов, а также данные из работы [10] для алюминия и меди. Обращает на себя внимание, что значения θ_p , I_p , θ_g и I_g , полученные в настоящей работе и взятые из [10], существенно различаются как для алюминия, так и для меди. В связи с тем, что в работах использовались разные образцы металла, такие различия можно объяснить разной дефектностью образцов.

В таблице величины I_g не приведены, так как $I_g = 1 - I_p$. Как видно из таблицы, значения интенсивностей гауссовой компоненты I_g и параболической I_p сопоставимы, т. е. позитроны с достаточно высокой вероятностью взаимодействуют как с валентными электронами ионных остовов, так и с электронами зоны проводимости. Высокое значение вероятности I_p , по-видимому,

Угловые распределения аннигиляционных фотонов в образцах магния (*a*), алюминия (*b*), меди (*c*) и индия (*d*). Штриховые линии соответствуют их разложению на параболическую (*1*) и гауссову (*2*) компоненты. Сплошная линия — сумма этих компонент, точки — экспериментальные значения.

Металл	Z_c	$n_A,$ $10^{22} \mathrm{cm}^{-3}$	$\lambda_{\exp}, \\ ns^{-1}$ [1-3]	θ_p^{\exp} , mrad	$ heta_{g}^{\exp}$, mrad	$ heta_g^{ ext{calc}},$ mrad	I_p	$n_p(au),\ 10^{22}{ m cm}^{-3}$	$n_p(heta), \ 10^{22} { m cm}^{-3}$	n_p , $10^{22} \mathrm{cm}^{-3}$	φ	f	$arepsilon_F^{ ext{exp}}, ext{eV}$	$arepsilon_{g}^{\exp}, \ \mathrm{eV}$	$arepsilon_F^{ m calc}, \ { m eV}$
Mg	2	4.3	4.44	5.41	4.63	3.5	0.72	43.1	9.4	8.6	2.15	4.6	7.5	8.2	7.1
Al	3	6.0	6.13	6.83	4.46	4.3	0.69	57.2	18.8	18.1	2.85	3.1	11.6	7.6	11.6
					6.4 [10]									15.6	
Cu	1	8.4	8.80	5.5	4.84	2.8	0.38	45.9	10.3	8.45	2.3	4.5	8.0	8.9	7.0
				5.57	6.3 [10]									15.2	
Zn	2	6.5	6.76	5.85	4.85	3.5	0.45	41.1	11.9	13.1	2.05	3.5	8.7	9.0	9.4
In	3	3.8	5.08	5.77	4.43	4.0	0.56	38.5	11.4	11.5	1.93	3.4	8.5	7.5	8.6
Sn	4	3.6	4.98	6.15	5.02	4.7	0.64	43.4	13.8	14.5	2.17	3.2	9.6	9.6	10.0
Pb	4	3.3	5.15	5.62	4.63	3.8	0.41	28.6	10.5	13.2	1.4	2.7	8.0	8.2	9.4
Bi	5	2.8	4.27	6.01	4.72	4.3	0.55	31.5	12.9	14.1	1.5	2.5	9.2	8.4	9.9

Расчетные и экспериментальные параметры исследованных металлов

Примечание. Ошибки опредения (θ_p, θ_g) и (I_p, I_g) не превышают соответственно 0.5 и 5%.

обусловлено тем обстоятельством, что позитрон в металле окружен своеобразной "шубой" электронов за счет кулоновского притяжения позитроном электронов проводимости, приводящей к его экранировке. Согласно Ферранте [11], в металлах даже не исключено образование трехчастичной лептонной системы Уилера [12] состава $e^-e^+e^-$ (ион позитрония).

В общем случае будем считать, что в металле образуется отрицательно заряженный комплекс типа Уилера $Ps^{-\eta}$, эффективный заряд $\eta(-e)$ которого зависит от природы металла. Такого рода комплекс может достаточно сильно взаимодействовать с валентными электронами ионных остовов с образованием релаксирующих метастабильных квазиатомных систем $Ps^{-\eta}+$ (валентные электроны в области ионного остова + ионный остов) по аналогии с образованием квазиатомных систем позитрон + анион в ионных кристаллах, что и обусловливает высокие значения I_e (см. таблицу). Электронные волновые функции комплекса $Ps^{-\eta}$ трансформируются в области ионных остовов в электронные атомные волновые функции внешних валентных электронов, а позитронная волновая функция слабо связанного позитрона с учетом исключения нахождения позитрона на ядре иона металла может быть выбрана в виде [13]

$$\Psi_+(r) = Ar \exp(\alpha r) \sim Ar$$
, при $\alpha \rightarrow 0$, $0 < r \leq r_c$. (16)

Константа A, согласно [13], значительно меньше единицы; r_c — радиус ионного остова металла. В точке $r = r_c$ волновая функция типа (16) должна удовлетворять условию сшивки $\Psi_+(r) = \Psi_+ = \text{const}$, где Ψ_+ — волновая функция термализованного позитрона в объеме металла при $k_+ \rightarrow 0$ [14], где k_+ — волновой вектор позитрона.

В приближении слейтеровских орбиталей электронных волновых функций [15] и позитронной волновой функции типа (16) полуширина Γ_g на полувысоте кривых УРАФ (см. рисунок) может быть вычислена по формуле [13]

$$\Gamma_g = C_{n(s,p,d)} \beta_{n(s,p,d)} / 2, \qquad (17)$$

а ширина θ_g , соответствующая дисперсии гауссовой кривой, —

$$\theta_g = \Gamma_g / \sqrt{2 \ln 2} = \Gamma_g 0.85$$

где $C_{n(s,p,d)}$ — переводной множитель, равный: $C_{2(s,p)} = 3.52; C_{3(s,p)} = 2.86; C_{4(s,p)} = 2.52; C_{5(s,p)} = 2.48;$ $C_{6(s,p)} \sim 2; \quad \beta_{n(s,p,d)}$ — слейтеровские параметры электронных n(s, p, d) — орбиталей атомов. Приведем пример расчета величин θ_g для магния (12 Mg: ($1s^2$) ($2s^2, 2p^2$) ($3s^2$)). Согласно [15], $\beta_{1s} = 11.7;$ $\beta_{2(s,p)} = 7.85; \beta_{3s} = 2.85.$ Расчет по формуле (14) дает: $\theta_g(2(s, p)) = 11.7 \text{ mrad}; \quad \theta_g(3s) = 3.47 \text{ mrad}.$ Сопоставление этих значений $\theta_g = 4.63 \text{ mrad}$ (см. таблицу) указывает на то, что аннигиляция позитрона в области ионного остова происходит в основном на внешних валентных 3s-электронах атома, а не на

внутренних 2(s, p)-электронах (так как $\theta_g(3s) \sim \theta_g$, а $\theta_g(2(s, p))$ гораздо больше экспериментального значения θ_{g}). Оценки показали, что это свойственно всем исследованным нами металлам: позитроны в области ионного остова в основном аннигилируют на внешних валентных электронах атомов, ЧТО подтверждается теоретическими расчетами |14|. В таблице приведены рассчитанные значения $\theta_g(n(s, p))$ и экспериментальные величины θ_g для исследованного ряда металлов. Совпадение рассчитанных и экспериментальных величин θ_g , несмотря на грубость модели (свободный квазиатом), вполне удовлетворительное, что указывает на разумный характер выбранного механизма аннигиляции в металлах.

3. Определение концентрации электронов (*n_p*) в зоне проводимости металла

Как упоминалось, концентрация электронов проводимости n_p (сm⁻³) является важнейшей характеристикой металлического состояния. Для определения величин n_p используются разнообразные методы [16]: электрические, оптические, гальваномагнитные (например, эффект Холла), измерения электронной части теплоемкости металла и поверхностного импеданса на радиочастотах. Отметим, что всеми этими методами измеряют концентрацию электронов проводимости, имеющих энергии, близкие к энергии Ферми [6,7], причем температурные зависимости n_p позволяют определять в свою очередь величины p_F, ε_F и концентрацию электронов свободного электронного газа (n_p = N/V, где N — общее число электронов, V — объем). Например, удельная электропроводность металла σ связана с n_p хорошо известным соотношением

$$\sigma = n_p e l/p_F = n_p e \tau/m; \quad \tau = 1/\nu_F; \quad m = p_F/\nu_F, \quad (18)$$

где l и τ — длина свободного пробега и время между двумя столкновениями электрона в металле. Таким образом, для определения n_p необходимо для исследуемого образца определить величины σ и l или τ , что иногда вызывает некоторые трудности. Метод аннигиляции позитронов является прямым методом определения величин n_p в металлах. Исходя из формулы (12) и считая, что все позитроны аннигилируют в свободных соударениях, можно записать выражение для определения величин $n_p(\theta)$ из данных спектров УРАФ (см. таблицу, рисунок)

$$n_p(\theta) = 5.942 \cdot 10^{20} \theta_p^3, \text{ cm}^{-3}.$$
 (19)

Сведения о концентрации электронов в зоне проводимости можно также получить по измерениям скорости аннигиляции позитронов в металлах. Действительно, в этом случае позитроний не образуется и скорость аннигиляции позитронов будет определяться концентрацией

933

электронов, с которыми они испытывают соударения

$$\lambda_d = \sigma_d v n_e. \tag{20}$$

Здесь $\sigma_d = \pi r_0^2 / \beta = \pi r_0^2 / vc$ — дираковское сечение 2γ -аннигиляции, v — скорость позитрона, r_0 — классический радиус электрона.

Понимая под n_e сумму концентраций электронов проводимости n_p и остовных электронов n_g , выражение (20) можно записать в виде

$$\lambda_d = (\lambda_p + \lambda_g),\tag{21}$$

где λ_p и λ_g — соответственно скорости аннигиляции позитронов на электронах проводимости и остовных электронах. Тогда вероятности аннигиляции по каждому из перечисленных каналов будут равны

$$I_p = \lambda_p / (\lambda_p + \lambda_g), \qquad (22)$$

$$I_g = \lambda_g / (\lambda_p + \lambda_g). \tag{23}$$

Из выражений (20), (22) и (23) можно найти связь между измеряемой скоростью аннигиляции позитронов в металле $\lambda_m = \lambda_d$, концентрацией электронов (проводимости n_p и остовных n_g) и соответствующей вероятностью аннигиляции (I_p и I_g), определяемой в угловых экспериментах

$$n_p(\tau) = \lambda_m I_p \pi r_0^2 c = 1.354 \lambda_m I_p \cdot 10^{23} \,\mathrm{cm}^{-3}, \qquad (24)$$

$$n_g(\tau) = \lambda_m I_g \pi r_0^2 c = 1.354 \lambda_m I_g \cdot 10^{23} \,\mathrm{cm}^{-3},$$
 (25)

где $\lambda_m = 1/\tau_m$ — суммарная скорость аннигиляции позитронов, τ_m — измеряемые времена жизни, I_p и I_g относительные площади параболы и гауссианы в спектрах УРАФ (см. рисунок). Отметим, что в формулах (19), (24) и (25) θ_p и θ_g имеют размерность mrad, а λ_m — ns⁻¹. Таким образом, приведенные выражения (20), (24) позволяют также, как и выражение (12), оценить концентрацию электронов проводимости n_p , но уже с использованием результатов измерения скорости аннигиляции позитронов.

В таблице приведены концентрации электронов проводимости, определенные по данным УРАФ $n_p(\theta)$ (12), измерениям скорости аннигиляции позитронов $n_p(\tau)$ (24) и значениям n_p для идеальных металлов (15). Сравнение этих концентраций указывает на близость значений $n_p(\theta)$ и n_p и значительное отличие упомянутых параметров от значений $n_p(\tau)$. В связи с этим в таблице приведено значение фактора

$$f = n_p(\tau)/n_p(\theta) = Z_c(\tau)/Z_c(\theta_p), \qquad (26)$$

характеризующего, по нашему мнению, увеличение электронной плотности в области нахождения позитрона по сравнению с электронной плотностью свободного электронного газа [4]. Как видно из таблицы, значения этого параметра для исследованных металлов лежат в интервале от 2.5 до 4.5. Таким образом взаимодействие позитронов с электронным газом приводит к локальному повышению концентрации электронов и, как следствие, увеличению скорости аннигиляции позитронов. В то же время увеличение электронной плотности, по-видимому, не сказывается заметным образом на значениях импульсов и энергии электронов (а, следовательно, и величин θ_n), входящих в состав комплекса $Ps^{-\eta}$, так как спектр УРАФ, описывающий аннигиляцию из этого комплекса, хорошо аппроксимируется параболой, а экспериментально определенное значение энергии Ферми вполне удовлетворительно согласуется с ее теоретическим значением. Следовательно, можно полагать, что значения концентрации электронов, определяемые по формуле (19) с использованием только данных УРАФ, будут наиболее достоверно отражать значения концентрации n_p свободного электронного газа. Это действительно имеет место (см. таблицу).

Величину эффективного заряда η комплекса Уилера $Ps^{-\eta}$ можно оценить, сравнивая концентрацию $n_p(\tau)$ электронов в области нахождения позитрона с концентрацией n(Ps) в свободном атоме позитрония

$$n(Ps) = 3/4\pi r_{Ps}^3 = 2 \cdot 10^{23} \,\mathrm{cm}^{-3},$$
 (27)

где $r_{Ps} = 1.06 \cdot 10^{-8} \,\mathrm{cm}$ — радиус боровской орбиты позитрония.

Отношение этих величин $\varphi = n_p(\tau)/n(Ps)$ приведено в таблице. Значение параметра φ , усредненное по всем исследованным металлам, оказалось равным 2.04. Очевидно, что значение эффективного заряда η связано с параметром φ формальным соотношением

$$\eta = \varphi - 1,$$

т.е. $\eta = 1$, как и должно быть в комплексе Уилера.

Таким образом, механизм аннигиляции позитрона в металлах через образование комплексов Уилера, повидимому, находит экспериментальное подтверждение.

В заключение отметим, что метод углового распределения аннигиляционных фотонов позволяет определять параметры электронного газа в металлах (n_p , ε_F , Z_c), достаточно хорошо согласующиеся с аналогичными параметрами, получаемыми из теории свободного Фермигаза. В то же время комбинация методов углового и временного распределения аннигиляционных фотонов позволяет получать информацию об увеличении электронной плотности в месте нахождения позитрона.

Следует подчеркнуть, что использование различных методов позитронной спектроскопии несомненно является весьма перспективным для изучения электронных свойств металлов.

Список литературы

- A. Seeger, F. Banhart, W. Bauer. Positron Annihilation. Gent (1988) / Ed. by L. Dorikens-Vanpraet, M. Dorikens, D. Segers. World Scientific, Singapure (1989). P. 275.
- [2] A. Baranovski, E. Debovska. Acta physica polonica A88, 1, 13 (1985).

- [3] M.J. Puska, R.M. Nieminen. Rev. Mod. Phys. 66, 3, 841 (1994).
- [4] W. Brandt, J. Reinheimer. Phys. Rev. B8, 4, 3104 (1970).
- [5] Ч. Киттель. Введение в физику твердого тела. Наука, М. (1978). 792 с.
- [6] А.А. Абрикосов. Введение в теорию нормальных металлов. Наука, М. (1972). 287 с.
- [7] И.М. Лифшиц, М.Я. Азбель, М.И. Каганов. Электронная теория металлов. Наука, М. (1971). 325 с.
- [8] Дж. Слэйтер. Диэлектрики, полупроводники, металлы. Наука, М. (1968). 1263 с.
- [9] В.И. Графутин, В.П. Комлев, Ю.А. Новиков, А.В. Раков, М.К. Филимонов, Ю.В. Фунтиков, В.П. Шантарович. Изв. РАН. Сер. физ. 58, 4, 79 (1994).
- [10] Ю.А. Новиков, А.В. Раков, В.П. Шантарович. ФТТ 36, 6, 1710 (1994).
- [11] G. Ferrante. Phys. Rev. 170, 1, 16 (1968).
- [12] J. Wheeler. Ann. N.Y. Acad. Sci. 48, 1, 219 (1946).
- [13] Е.П. Прокопьев. Введение в теорию позитронных процессов в полупроводниках и ионных кристаллах. Деп. в ЦНИИ "Электроника". Р-2837. М. (1979). 364 с.
- [14] С. ДеБенедетти, К. Коуэн, В. Конеккер, Г. Примаков. В сб.: Аннигиляция позитронов в твердых телах. ИЛ, М. (1960). С. 39.
- [15] С.Э. Фриш. Оптические спектры атомов ГИФМЛ, М.–Л. (1963). 532с.
- [16] Физический энциклопедический словарь. Сов. энциклопедия, М. (1963). Т. 3. С. 194.