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We describe methods for designing and fabricating one-dimensional random surfaces that scatter light uniformly
within a specified range of scattering angles, and produce no scattering outside this range. These methods are tested
by means of computer simulations, and preliminary experimental results are presented.

The first theoretical study of the scattering of light from
a randomly rough surface was published by Mandel’shtam
in 1913, in the context of the scattering of light from a
liquid surface [1]. In the succeeding years the overwhelming
majority of the theoretical work in this field has continued
to be devoted to the solution of such direct problems,
namely given the statistical properties of a random surface,
to calculate the angular and polarization dependence of the
intensity of the scattered light. In contrast, in this paper we
study theoretically and experimentally an inverse problem in
rough surface scattering, namely the design and fabrication
of a random surface that scatters light in a prescribed way.

For many practical applications it is desirable to have
optical elements whose light scattering properties can be
controlled. In particular, a non-absorbing diffuser that
scatters light uniformly within a specified range of scattering
angles, and produces no scattering outside this range, would
have applications, for example, to projection systems, where
it is important to produce even illumination without wasting
light. We will call such an element a band-limited uniform
diffuser.

The design of uniform diffusers has been considered by
several authors. The case of binary diffusers has been
studied by Kurtz [2], and work on special cases of one-
dimensional diffusers has been reported by Kurtz et al. [3]
and by Nakayama and Kato [4]. Some work on the
more general two-dimensional case has been carried out
by Kowalczyk [5]. In addition, diffractive optical elements
that scatter light uniformly throughout specified angular
regions have recently become commercially available. These
elements, however, are not truly random, and possess the
desired characteristics over only a relatively narrow range of
wavelengths.

Despite the interest in the problem, at the present time
there are no clear procedures for designing and fabricating
random, band-limited uniform diffusers, and it is unclear
what kind of statistics are required for the production of such
an optical element. In this paper, that extends earlier work

by the authors [6,7], we address these questions for the case
of one-dimensional diffusers. We illustrate the ideas involved
by considering the scattering of s-polarized light from a one-
dimensional, randomly rough, perfectly conducting surface.
By working within the Kirchhoff approximation, and moti-
vating the approach by taking the geometrical optics limit
of this approximation, we describe methods for designing
and fabricating achromatic, random, uniform diffusers of
light, and test these methods by computer simulations and
experimentally.

1. Light Scattering in the Geometrical
Optics Limit of the Kirchhoff
Approximation

To motivate the calculations that follow we begin by
considering the scattering of s-polarized light from a one-
dimensional, randomly rough, perfectly conducting surface
defined by x3 = ζ(x1). The region x3 > ζ(x1) is vacuum,
the region x3 < ζ(x1) is the perfect conductor. The
plane of incidence is the x1x3-plane. The surface profile
function ζ(x1) is assumed to be a differentiable, single-
valued function of x1, and to constitute a random process,
but not necessarily a stationary one.

The surface is illuminated from the vacuum region. The
single nonzero component of the total electric field in this
region is the sum of an incident wave and of the scattered
field

E2(x1, x3|ω) = exp
[
ikx1 − iα0(k)x3

]

+

∞∫
−∞

dq
2π

R(q|k) exp
[
iqx1+ iα0(q)x3

]
, (1.1)

where α0(q) =
[
(ω/c)2 − q2

]1/2
, Reα0(q) > 0,

Imα0(q) > 0, and ω is the frequency of the incident
light. A time dependence of the form of exp(−iωt) is
assumed, but explicit reference to it is suppressed.
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In the Kirchhoff approximation, which we adopt here for
simplicity, the scattering amplitude R(q|k) is given by

R(q|k) =
−i

2α0(q)

×

∞∫
−∞

dx1F(x1|ω) exp
[
−iqx1− iα0(q)ζ(x1)

]
, (1.2)

where the source function F(x1|ω) is

F(x1|ω) = 2

(
− ζ ′(x1)

∂

∂x1
+

∂

∂x3

)

× E2
(
x1, x3|ω

)
inc

∣∣∣
x3=ζ(x1)

. (1.3)

Substitution of Eq. (1.3) into Eq. (1.2), followed by an
integration by parts, yields the result that

R(q|k) =
ω2/c2 + α0(q)α0(k) − qk
α0(q)[α0(q) + α0(k)]

×

∞∫
−∞

dx1 exp
[
−i(q− k)x1 − iaζ(x1)

]
, (1.4)

where, to simplify the notation, we have defined
a = α(q) + α0(k).

The mean differential reflection coefficient 〈∂Rs/∂θs〉,
which is defined such that 〈∂Rs/∂θs〉dθs gives the fraction
of the total, time-averaged, flux incident on the surface that
is scattered into the angular interval (θs, θs + dθs), is given
in terms of R(q|k) by〈

∂Rs

∂θs

〉
=

1
L1

ω

2πc
cos2 θs

cos θ0

〈
|R(q|k)|2

〉
, (1.5)

where the angle brackets denote an average over the
ensemble of realizations of the surface profile function
ζ(x1), θ0 and θs are the angles of incidence and scattering
respectively, which are related to the wave numbers k and q
by k = (ω/c) sin θ0 and q = (ω/c) sin θs, and L1 is the
length of the x1-axis covered by the random surface.

With the use of Eq. (1.4) the average 〈|R(q|k)|2〉 entering
Eq. (1.5) can be written as

〈|R(q|k)|2〉 =

[
1 + cos(θ0 + θs)

cos θs(cos θ0 + cos θs)

]2

×

∞∫
−∞

dx1

∞∫
−∞

dx′1 exp
[
−i(q− k)(x1 − x′1)

]

×
〈

exp
[
−ia
(
ζ(x1)− ζ(x′1)

)]〉
. (1.6)

We focus on the integral in Eq. (1.6). With the change of
variable x′1 = x1 + u it becomes

I(q|k) =

∞∫
−∞

dx1

∞∫
−∞

duexp
[
i(q− k)u

]

×
〈

exp
[
−ia
(
ζ(x1)− ζ(x1 + u)

)]〉
. (1.7)

The geometrical optics limit of the Kirchhoff approximation
is obtained by expanding the difference ζ(x1) − ζ(x1 + u)
in Eq. (1.7) in power of u and retaining only the leading
nonzero term:

I(q|k) ∼=

∞∫
−∞

dx1

∞∫
−∞

duexp
[
i(q− k)u

]〈
exp
[
iauζ ′(x1)

]〉
.

(1.8)

Because we have not assumed ζ(x1) to be a stationary
random process, we cannot assume that ζ ′(x1) is a stationary
random process. The average 〈exp[iauζ ′(x1)]〉, therefore,
has to be assumed to be a function of x1, and we cannot
out the integral over x1 to yield a factor of L1, as we could
if ζ(x1) were a stationary random process.

2. Design of a Band-Limited Uniform
Diffuser

To evaluate the average in Eq. (1.8) we begin by writing
the surface profile function ζ(x1) in the form

ζ(x1) =
∞∑

l=−∞

cl s(x1 − 2lb), (2.1)

where the {cl} are independent, positive, random deviates.
These properties of the {cl} are dictated by the fabrication
process, described in Section 4. The function s(x1) is
defined by

s(x1) = 0, x1 < −(m+ 1)b,

= −(m+ 1)bh− hx1, −(m+ 1)b< x1 < −mb,

= −bh, −mb< x1 < mb,

= −(m+ 1)bh+ hx1, mb< x1 < (m+ 1)b,

= 0, (m+ 1) b< x1, (2.2)

where m is a positive integer and b is a characteristic length.
The derivative of the surface profile function, ζ ′(x1), is

then given by

ζ ′(x1) =
∞∑

l=−∞

cl d(x1 − 2lb), (2.3)
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where

d(x1) = 0, x1 < −(m+ 1)b,

= −h, −(m+ 1)b< x1 < −mb,

= 0, −mb< x1 < mb,

= h, mb< x1 < (m+ 1)b,

= 0, (m+ 1)b< x1. (2.4)

The function s(x1) and d(x1) are shown in Fig. 1.
In what follows the surface will be sampled at the set of

equally spaced points {xp} defined by

xp =

(
p +

1
2

)
b/N p = 0,±1,±2, . . . , (2.5)

where N is a large positive integer. None of these values
of xp equals an integer multiple of b, at which d(x1) is
discontinuous.

When the probability density function (pdf) of cl ,

f (γ) = 〈δ(γ − cl)〉, (2.6)

is known, a long sequence of the {cl} can be generated, e. g.
by the rejection method [7], from which the surface profile
function ζ(x1) can be obtained by the use of Eqs. (2.1)
and (2.2). We note that since the {cl} are positive random
deviates, f (γ) will be nonzero only for positive values of γ .

The average 〈exp iauζ ′(x1)〉 can now be written as

〈exp iauζ ′(x1)〉 =

〈
exp

{
iau

∞∑
l=−∞

cl d(x1 − 2lb)

}〉

=

〈 ∞∏
l=−∞

exp {iau cld(x1 − 2lb)}

〉

=
∞∏

l=−∞

〈
exp
{

iau cld(x1 − 2lb)
}〉
, (2.7)

where the independence of the {cl} has been used in the
last step. With the form of d(x1) given by Eq. (2.4), for
any value of x1 chosen from the set of sampling points {xp}
given by Eq. (2.5) only one factor in the infinite product
on the right hand side of Eq. (2.7) is different from unity.
Indeed, we find for m = 2 that when 2nb< x1 < (2n+ 1)b
(n = 0,±1,±2, . . . )

〈exp iauζ ′(x1)〉 = 〈exp{iauhcn−1}〉

=

∞∫
−∞

dγ f (γ) exp(iauhγ), (2.8a)

while when (2n− 1)b< x1 < 2nb (n = 0,±1,±2, . . . )

〈exp iauζ ′(x1)〉 = 〈exp{−iauhcn+1}〉

=

∞∫
−∞

dγ f (γ) exp(−iauhγ). (2.8b)

Figure 1. The functions s(x1) and d(x1).

When the results given by Eqs. (2.8) are substituted into
Eq. (1.8), the latter becomes

I(q|k) =
∑

n

(2n+1)b∫
2nb

dx1

∞∫
−∞

duexp
[
i(q− k)u

]

×

∞∫
−∞

dγ f (γ) exp(iaγhu)

+
∑

n

2nb∫
(2n−1)b

∞∫
−∞

duexp
[
i(q− k)u

]

×

∞∫
−∞

dγ f (γ) exp(−iaγhu)

=
L1

2

∞∫
−∞

duexp
[
i(q− k)u

]

×

∞∫
−∞

dγ f (γ)
[
exp(iaγhu) + exp(−iaγhu)

]

= πL1

∞∫
−∞

dγ f (γ)
[
δ(q− k+ ahγ)+ δ(q− k− ahγ)

]

=
πL1

ah

[
f

(
k− q

ah

)
+ f

(
q− k

ah

)]
. (2.9)

We note that although Eqs. (2.8) were obtained for the case
that m = 2, the result given by Eq. (2.9) is valid for any m.
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When the results given by Eqs. (1.7), (1.8) and (2.9) are
substituted into Eq. (2.6), we find that the mean differential
reflection coefficient is given by〈

∂Rs

∂θs

〉
=

1
2h

[
1 + cos(θ0 + θs)

]2
cos θ0(cos θ0 + cos θs)3

×

[
f

(
sin θ0 − sin θs

h(cos θ0 + cos θs)

)

+ f

(
sin θs− sin θ0

h(cos θ0 + cos θs)

)]
. (2.10)

Thus, we find that in the geometrical optics limit of the
Kirchhoff approximation the mean differential reflection
coefficient is determined by the pdf f (γ) of the coefficient
cl entering the expansions (2.1) and (2.3). We also note that
it is independent of the wavelength of the incident light.

The result given by Eq. (2.10) simplifies significantly in
the case of normal incidence, θ0 = 0◦:〈

∂Rs

∂θs

〉
=

(
1 + tan2 θs

2

)

×
f
(
− 1

h tan θs
2

)
+ f

(
1
h tan θs

2

)
4h

. (2.11)

The mean differential reflection coefficient given by this
result is normalized to unity,

π/2∫
−π/2

dθs

〈
∂Rs

∂θs

〉
= 1. (2.12)

From the result given by Eq. (2.11) we find that if we wish
a constant value for 〈∂R/∂θs〉 for −θm < θs < θm, we must
choose

f (γ) =
h

tan−1 γmh

θ(γ)θ(γm− γ)

1 + γ2h2
, (2.13)

where γm = [tan(θm/2)]/h, because in this case〈
∂Rs

∂θs

〉
=
θ(θm− |θs|)

2θm
. (2.14)

It is worth noting that if the maximum scattering angle
θm = 2 tan−1(hγm) is small enough, e. g. θm = 20◦, so
that γmh = 0.1763, with little error we can neglect γ2h2

compared to unity in the denominator on the right hand
side of Eq. (2.13) (γ2h2 < γ2

mh2 = 0.0311), and can replace
tan−1 γmh by γmh as well (tan−1 γmh = 0.1745), to obtain
for f (γ) the simple form

f (γ) ∼= θ(γ) θ(γm− γ)/γm. (2.15)

If the required maximum scattering angle is not small, one
has to use the result given by Eq. (2.13) for f (γ).

3. Computer Simulations

The approach to the design of band-limited uniform
diffusers presented in the preceding sections was tested
by means of computer simulation calculations. One-
dimensional random surfaces were generated numerically
on the basis of Eqs. (2.1) and (2.2) with the coefficients
{cl} determined by the rejection method with the use of the
pdf (2.15). As an example, we show in Fig. 2 a realization
of a sample profile and its derivative, generated in this way.

For a given surface profile the scattering amplitude R(q|k)
can be calculated in the Kirchhoff approximation, but with-
out passing to the geometrical optics limit, from Eq. (1.4).
The mean differential reflection coefficient can then be
calculated from Eq. (1.5) by generating a large number Np

of surface profiles and averaging over the resulting scattering
distributions. In Fig. 3 we show an example of a calculated
mean differential reflection coefficient obtained by averaging
results obtained for 3000 realizations of the surface profile
function. It is seen that the scattering distribution is close
to the desired result. There is almost no light outside the
range −θm < θs < θm and, apart from a small peak in the
specular direction, the distribution is fairly uniform. This
peak is part of the diffuse component of the scattered light,
as the spercular component is negligible in this case. It is
due to the fact that our analysis is based on the geometrical
optics approximation, and it is worth discussing this point in
more detail.

Figure 2. Numerical generation of a surface profile and its
derivative. The parameters employed are b = 60µm, m = 1,
γm = 1 and θm = 5◦ .
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Figure 3. The mean differential reflection coefficient for normal
incidence calculated from Np = 3000 realizations of the surface
profile function. The parameters employed are λ = 0.6328 µm,
b = 60 µm, m = 1, γm = 1, and θm = 5◦. The sampling interval
on the surface was ∆x = b/N = 0.2 µm (N = 300), and the
length of the surface was L1 = 2000 µm.

Figure 4. The same as Fig. 3, but with random deviates {cl}
drawn from the distribution given by Eq. (3.1) with ε = 0.05.

We see from Eqs. (2.11) and (2.15) that in the geometrical
optics limit of the Kirchhoff approximation the scattering
distribution consists of two tectangular distributions, and
it is clear that diffraction effects will smooth these two
contributions. The peak observed in the specular direction
in the scattering distribution plotted in Fig. 3 is due to the
overlap of the tails of the two distributions predicted on the
basis of the geometrical optics approximation. To illustrate
this point we present, in Fig. 4, a mean differential reflection
coefficient for the case in which the random numbers are
generated from a drc of the form

f (γ) = θ(γ − ε)θ(γm + ε − γ)/γm, (3.1)

where ε = 0.05. In our approximation the scattering
distribution is then given by〈
∂Rs

∂θs

〉
∼=

1
4γmh

[
θ

(
−
θs

2h
− ε

)
θ

(
γm + ε +

θs

2h

)

+ θ

(
θs

2h
− ε

)
θ

(
γm + ε −

θs

2h

)]
, (3.2)

where the smallness of θm has been used in obtaining this
result. It can be seen that this distribution agrees well with

the result shown in Fig. 4, the main difference being that
in the numerical results the two sections of the scattering
distribution are not completely separated due to the overlap
of their tails, which give rise to a dip in 〈∂Rs/∂θs〉. Thus,
a value of ε intermediate between 0 and 0.5 should
yield an approximately flat scattering curve. That this is
the case is shown in Fig. 5, where 〈∂Rs/∂θs〉 is plotted
for a surface the basis of the pdf (3.1) with ε = 0.01,
and for the same values of θ0, b,m, γm, and θm used in
obtaining figs. 3 and 4. Results are presented for three
wavelengths of the incident light: a — λ = 0.6328µm
(He–Ne laser); b — λ = 0.532µm (the second harmonic
of the YAG laser); c — λ = 0.442µm (He–Cd laser). These
wavelengths cover the entire visible region of the optical
spectrum. For each wavelengh the result for 〈∂Rs/∂θs〉 is
seen to consist of a nearly constant scattered intensity for θs

between −5◦ and +5◦, and a zero scattered intensity outside
this interval. Moreover, these results confirm the expected
independence of the scattering pattern from the wavelength
of the incident light over a significant range of wavelengths.

Figure 5. The same as Fig. 4, but with ε = 0.01.
a — λ = 0.6328 µm; b — λ = 0.532 µm; c — λ = 0.442 µm.
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Figure 6. Schematic diagram of the experimental arrangement employed for the fabrication of the diffusers.

4. Experimental Results

A schematic diagram of the optical system used in our
efforts to fabricate the kind of surface studied in this paper
is shown in Fig. 6. The illumination is provided by a
He–Cd laser (wavelength λ = 442 nm). An optical system
concentrates the light transmitted through a rotating ground
glass on a slit, providing illumination that is effectively
incoherent. An incoherent image of the slit is formed by
an X1 (numerical aperture 0.05) microscope objective on a
photoresist-coated glass plate.

The width of the slit is approximately l = 180µm, and its
incoherent image has a nearly restangular shape (smoothed
by diffraction). In order to fabricate grooves with the desired
trapezoidal shape on the photoresist, the plate is exposed
while executing a scan of length b = l/(2m + 1). This
procedure generates, basically, a function s(x1) with the
shape defined by Eq. (2.2). The depth of the groove is
determined by the time of exposure. An example of such
a fabricated groove is shown in Fig. 7, which presents the
measured surface profile of a section of a photoresist plate
that was exposed in this fashion. Althought the corners are
not as sparp as the ones in Fig. 1, a, the result approximates
the desired shape quite well.

The photoresist plate is exposed to grooves generated in
this fashion, with random depths and displaced sequientially
in steps of 2b. Several hundred uncorrelated random
numbers {cl} are generated in the computer with the
specified f (γ). At each position x1 = 2bl, The time of
exposure of the groove is proportional to the random number
cl generated in the computer [8].

In Fig. 8 we present a profileometric trace of one of
the samples fabricated according to Eq. (2.1). The faceted
nature of the surface is clearly visible in the figure. In
the example displayed we chose m = 0, which produces a
function s(x1) of triangular rather than trapezoidal form. The
resulting symmetric triangular indentations are clearly visible
in the figure. Thus, these preliminary results indicate that
the proposed fabrication method is able to produce random
uniform diffusers.

In order to study experimentally the scattering properties
of these photoresist diffusers in reflection they would have
had to be coated with a thin metallic layer. Instead,

we studied these properties in the simpler case of the
transmission of s-polarized light through them. Although
the theoretical work motivating the method for fabricating
the uniform diffusers described in the preseding sections
was based on reflection, an analysis carried out within
the framework of the geometrical optics limit of the thin
phase screen model [9] shows that surfaces that act as
band-limited uniform diffusers in reflection also act as
uniform band-limited diffusers in transmission, althought the

Figure 7. Measured profile that illustrates the experimental
realization of the function s(x1). The profile was measured by
means of a Dektak(st) mecahnical profilometer.

Figure 8. Measured segment of a surface profile for a fabricated
sample. The parameters are b = 60 µm, m = 0.
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Figure 9. Experimental result for the anglular dependence of
the intensity of s-polarized light of wavelength λ = 0.6328 µm
transmitted through a photoresist film. The angle of incidence is
θ0 = 0◦. The illuminated surface of the film is a one-dimensional
random surface through which light is transmitted within the angle
−5◦ < θs < 5◦, and is not transmitted outside this range.

maximum scattering angle θm in transmission is different that
it is in reflection [10]. However, the transmission patterns
obtained with the diffusers fabricated up to now, although
band-limited, are not uniform (Fig. 9). Large intensity
fluctuations are present in the angular region in which a
constant intensity would be expected. The origin of these
fluctuations is the small number of randomly oriented facets
that are etched in our surfaces. They represent, simply,
statistical noise. For the lengths of the surfaces that we
have fabricated only about two hundred random numbers cl

are employed. Efforts are currently underway to fabricate
surfaces with a larger number of randomly oriented facets.

5. Summary and Conclusions

In this paper we have described approaches to design-
ing and fabricating one-dimensional, random, band-limited,
uniform diffusers. These approaches are well suited for the
generation of such surfaces on photoresist. The results of
computer simulations, and some preliminary experimental
results, indicate that uniform band-limited diffusers can be
fabricated by the method proposed.

The design of band-limited uniform diffusers is but one
interesting inverse problem involving the design of random
surfaces with specified scattering properties. The design
of a Lamberitian diffuser, namely a random surface that
produces a scattered intensity proportional to the cosine
of the polar scattering angle, is another [11]. Finally, the
design and fabrication of two-dimensional random surfaces
with specified light scattering properties pose interesting
theoretical and experimental challenges. Some first steps
in this direction have been taken recently [12], but more
remains to be done.

This paper is dedicated to the A.F. Ioffe Physico-technical
institute on the occasion of its 80th anniversary, with best
wishes for many more years of significant contributions to
science. The work reported here was supported in part by
Army Research Office grants DAAH 04–96–1–0187 and
DAAG 55–98–C–0034.
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