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Optical Fiber Communications: Group of the Nonlinear Transformations
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A new method for finding solutions of the nonlinear Shrödinger equation is proposed. Comutative multiplicative
group of the nonlinear transformations, which operate on stationary localized solutions, enables a consideration of
fractal subspaces in the solution space, stability and deterministic chaos. An increase of the transmission rate at the
optical fiber communications can be based on new forms of localized stationary solutions, without significant change
of input power. The estimated transmission rate is 50 Gbit/s, for certain available soliton transmission systems.

The propagation of pulsed light in an optical fiber can be
described by the nonlinear Schrödinger equation,
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where q(ξ, τ ) is a complex envelope function of the effective
electric field amplitude and
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The higher order dispersion and the effect of fiber loss are
neglected here [1]. We take
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q2
0
2 ξ y(τ ), (3)

where y(τ ) is a real function, and get
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The solution of this equation [2]

y0(τ ) =
1

cosh q0τ
(5)

describes the optical soliton. Its unchangeable shape is a
property that makes it attrative for applying to ultra high
speed optical communications [3,4]. The equation (1) is
completely integrable one. The inverse scattering trans-
formation method [5] yields the general solutions of such
nonlinear partial differential equations. Our aim is to propose
here an alternative approach to the nonlinear Schrödinger
equation and discuss applicability of the obtained results to
optical fiber communications.

The equation (4) describes a stationary pulse in optical
fiber. We take a localized solution y(τ ) of this equation and
define the nonlinear operator Hc1

Hc1y =
∞∑
j=1

cjy
j , (6)

where cj are real coefficients. Does Hc1y satisfy the
equation (4)? The case y = y0 is considered yet and the

answer is positive [6]. Putting Hc1 y into the equation (4),
we find that Hc1y is actualy a solution of this equation if

c2 j = 0, (7)

while c2 j+1 satisfy the recursive relation
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where c1 is an arbitrary coefficient. Using the relations
(6)–(8), with c1 = 1, we get

H1y = y. (9)

In the following text, Hc1 will mean both the series (6)
and the recursion (8) with (7). For a localized y(τ ) and
a finite c1, convergence of the series (6) can be numerically
tested. Our calculations yield that Hc1y is localized too.
Therefore, using different values of c1, we are able to get
uncountable many new localized solutions of the equation
(4) from only one known localized solution (Fig. 1). In
the following text ”the solution” will mean ”the localized
solution of the equation (4)”. The solution value preciseness
will be limited only by the number of calculated coefficients.
The solution in form different from (6) does not exist. Each
solution pair z(τ ) and y(τ ) must be in a relation z = Hc1y,
with specific value of c1:

c1 = lim
τ→±∞

z(τ )

y(τ )
. (10)

Starting with a solution y(τ ) we can construct the complete
solution space. There is an analogy to the superposition
principle from linear theory. According to the relation (10),
a solution is determined by its asymptotics.

The nonlinear Schrödinger equation has infinite number
of symmetries corresponding to the conserved quantities:
total energy, momentum, Hamiltonian etc. [1]. We find that
there are actually uncountable conserved quantities. Let us
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Figure 1. Solutions Hc1 y0. a — stable solutions with c1 = 0.2,
0.4, 0.6, 0.8, 1.0; b — stable solutions with c1 = 1.4, 2.0, 2.39;
c — unstable solutions with c1 = 2.41, 2.42.

consider the total energy only (for Hc1y):

q2
0

∞∫
−∞

(
c1y + c3y3 + c5y5 + . . .

)
dτ . (11)

We can choose uncountable different values of c1 and use
the relations (7) and (8).

The relations (6)–(8) yield

Ha1Hb1 = Ha1b1 . (12)

Hence {
Hc1 ; c1 6= 0

}
(13)

is the comutative multiplicative group of the nonlinear trans-
formations (GNT). Group properties of the GNT originate
from group properties of real numbers c1 6= 0. For example,

Hc1H1/c1
= H1. (14)

For definite coefficient c1 and solution y(τ ), we can
construct a fractal subspace of the solution space. The fractal
subspace covers solutions of form

Hc1Hc1 . . .Hc1y. (15)

In the phase plain, a fractal subspace is represented by a
geometrical fractal (Fig. 2).

For optical fiber communications it is important question
whether small disturbations will destroy the information
carrying pulses. Solution parameters, amplitude (pulse
width) and velocity (frequency), are affected by various
perturbations: outside produced noise, incoherence of the
light source, fiber inhomogenities, absorption, amplifier
noise, soliton interactions. . . It is the experimental fact that
optical solitons (equation (5)) are unlikely to be destroyed
by perturbations — they are very robust. We expect
that at least the part of new solutions we have expressed
here are actually stable. We are going to consider this
problem theoretically, although it will be open until an
experimental verification. The GNT method enables the
following statement: the stability of a solution y(τ ) is
equivalent to the relation

lim
ε→0

H1+εy = y. (16)

The relations (6)–(8) and (16) yield

|y(τ )| 6 1. (17)

A localized solution of the equation (4) is stable one if
and only if the relation (17) holds (Fig. 1, a, b). As well
as for the KdV soliton [7], the classical argument about
the counterbalance between nonlinearity and dispersion is
not sufficient to explain the stability. Consideration of the
Lyapunov exponent,

λ(c1) = lim
j→∞

1
j

ln

∣∣∣∣dc2 j+1

dc1

∣∣∣∣ , (18)

yields that deterministic chaos will appear at close packing
of solitons, when c1 is large enough (Fig. 3, a). The
deterministic chaos we can expect for c1 > 2.4. Near
c1 = 1, stability is exceptional (Fig. 3, b).

New forms of localized stationary solutions of the non-
linear Schrödinger equation enable an increase of the trans-
mission rate at the optical fiber communications, without
significant change of input power. An information may be
contained in the special form of soliton (Fig. 1, a, b). The
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Figure 2. Phase diagrams of the solutions (Hc1 )
ny0. a — c1 = 0.6, n = 1 to 8; b — c1 = 0.95, n = 1 to 5; c — c1 = 1.2, n = 1 to 5.
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Figure 3. a — lyapunov exponent; b — exceptional stability near c1 = 1.

known optical soliton, described by (5), is one of many
possible stationary pulses. Let us consider an available
soliton transmission system. If the fiber core cross sectional
area is S= 60µm2, the carrier wavelength is λ = 1.55µm,
the soliton pulse (equation (5)) width is τs = 25 ps, the
peak power is Pm = 2.1 mW, and the separation between
two adjacent solitons is 3τs, then the transmission rate
is 10 Gbit/s [8]. In the same transmission system, using
stable pulses of form Hc1 with different c1 (Fig. 1, a), the
transmission rate will be greater. It becomes equal to
50 Gbit/s, at 40 photons resolution of energies. The new

forms of stable solutions (Fig. 1, b) make possible increase
of the transmission rate in the same system.

In conclusion, we have proposed the GNT method for
solving of the nonlinear Schrödinger equation. New forms of
the stationary localized solutions, usable for an improvement
of the optical fiber communications, are obtained.
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