Смещение заряда при интеркаляции графитоподобных нанокластеров в аморфном углероде медью

© В.И. Иванов-Омский, Э.А. Сморгонская

Физико-технический институт им. А.Ф. Иоффе Российской академии наук, 194021 Санкт-Петербург, Россия

E-mail: ivanov.ivom@pop.ioffe.rssi.ru

В простой модели сильно связанных электронов рассмотрено взаимодействие примесного атома Cu с углеродом при интеркаляции медью графитоподобных нанокластеров в a-C:H. На примере кластеров простых конфигураций показано, что за счет частичной ионизации Cu происходит металлизация полупроводникового кластера и существенное перераспределение заряда в кластере. В присутствии меди в кластере возникает внутренняя поляризация с компонентами, направленными как по нормали к плоскости графенового фрагмента, так и параллельно ей. Снижение симметрии кластера при интеркаляции медью приводит к активации рамановской полосы G в ИК спектре a-C:H.

Известно, что металлическая медь химически не взаимодействует с угледород и не образует с ним направленных валентных связей, характерных для карбидов металлов. Медь с трудом удается ввести в кристаллический графит в качестве интеркалянта. В то же время примесь Си легко входит в аморфный углерод (a-C:H), существенно модифицируя его электрические и оптические свойства [1]. В отличие от графита а-С:Н является полупроводником, прозрачным в видимой области спектра. Структура а-С:Н представляется как система графитоподобных нанокластеров размерами 5-20 Å, встроенных в широкозонную алмазоподобную матрицу. Размерное квантование электронного спектра в таких нанокластерах и приводит к появлению оптической щели в а-С:Н [2]. Легирование а-С:Н открывает новые возможности изучения взаимодействия меди с углеродом с применением как электрических, так и оптических методов. Так, при исследовании ИК поглощения и рамановского рассеяния в *a*-C:H(Cu) было показано, что атомы Си прежде всего встраиваются в графитоподобные нанокластеры а-С: Н [3], причем без образования связей Си-С, т.е. по механизму интеркаляции.

В данной работе приводятся результаты расчетов электронного спектра простых графитоподобных нанокластеров углерода, содержащих малый фрагмент графеновой плоскости и один атом Си вблизи плоскости. Рассмотрены эффекты, сопровождающие "элементарный акт" интеркаляции кластера медью: перераспределение заряда в кластере и индуцированный Си статический дипольный момент, а также изменения в колебательном спектре.

1. Модель и основные приближения

Для расчета электронного спектра графенового нанокластера с примесным атомом Си использовался известный метод сильно связанных электронов или метод линейных комбинаций атомных орбиталей (ЛКАО) в приближении ближайших соседей. Основные соотношения метода ЛКАО применительно к подобным кластерам приводились ранее [4]. Численные расчеты выполнялись для кластеров разных размеров.

Оказалось, что основные закономерности изменений свойств кластеров при интеркаляции медью легко прослеживаются на примере двух кластеров, из двух или

Рис. 1. Схематическое изображение графитоподобных нанокластеров, содержащих 10 (a) и 16 (b) атомов С (черные кружки) и один атом Си (светлый кружок). Числа рядом с кружками соответствуют эффективному заряду данного иона e_i^*/e .

четырех правильных шестичленных углеродных колец, содержащих соответственно N=10 или 16 атомов С (рис. 1, *a*, *b*). Предполагалось, что атом Сu, не встраиваясь в углеродное кольцо, взаимодействует лишь с его π -электронами, а возмущением прочных ковалентных σ -связей С–С внутри кольца можно пренебречь. Считалось также, что основной вклад во взаимодействие вносит один внешний *s*-электрон атома Cu. Соответствующая *s*-орбиталь и $N p_z$ -орбиталей валентных электронов атомов С являлись системой (N + 1) базисных функций χ_i гамильтониана \hat{H} (ось *z* ортогональна графеновой плоскости *xy*; индекс $i = 1, 2, \ldots N + 1$ нумерует атомы). Волновая функция *j*-ого состояния в кластере представлялась в виде ЛКАО с коэффициентами u_{ji}

$$|\psi_j
angle = \sum_i^{N+1} u_{ji} |\chi_i
angle.$$

Матричные элементы гамильтониана $\chi_{ij} = \langle \chi_i^* | \hat{H} | \chi_i \rangle$ определялись в приближении Харрисона [5]. Диагональные матричные элементы χ_{ii} по существу есть энергии 2p- и 4s-состояний изолированных атомов С и Сu относительно уровня вакуума: $\varepsilon_p = \langle p_z^* | \hat{H} | p_z \rangle = -8.97 \, {
m eV}$ и $\varepsilon_s = \langle s^* | \hat{H} | s \rangle = -6.92 \, \mathrm{eV}$. Недиагональные матричные элементы (*i* ≠ *j*), описывающие межатомное взаимодействие, вычислялись как $\chi_{ji} = \eta_{ji} \hbar^2 / \mu d_{ji}$, где μ масса электрона, d_{ii} — расстояние между атомами *i* и *j*, а η_{ii} — табулированные в [6] универсальные коэффициенты, зависящие от типа волновых функций взаимодействующих атомов. В нашем случае величины χ_{ii} сводятся к двум параметрам — $V_{pp\pi}$ и $V_{sp\sigma}$, соответствующим *π*-взаимодействию между *p*_z-электронами соседних атомов С и *о*-взаимодействию между *s*-электроном атома Си и p_z-электронами ближайших атомов С. Расстояние между соседними атомами углерода принималось равным длине ковалентной связи С-С в графите: $d_{\rm CC} = 1.42$ Å.

Положение атома Си в кластере не известно, однако наиболее вероятным следует полагать то, которое обеспечивает максимальное взаимодействие с углеродным фрагментом. Как показано в [5], это условие выполняется, если атом Си находится на гексагональной оси углеродного кольца z (рис. 1) на расстоянии $z_0 = d_{\rm CC}/\sqrt{2} \cong 1$ Å от плоскости кольца.

2. Металлизация нанокластера медью

На рис. 2 и 3 показаны картины расщепления энергетических уровней $2p_{z}$ - и 4*s*-состояний изолированных атомов С и Сu (*a*) при формировании графенового слоя (*b*) и последующей интеркаляции его атомом Cu (*c*) для кластеров с N = 10 и 16, конфигурация которых приведена на рис. 1, *a*, *b*. Видно, что в дискретном спектре обоих кластеров выделяются "зоны" связывающих π и антисвязывающих π^* -состояний, разделенные щелью. Ширина щели E_g определяется только размером кластера и падает с ростом *N*, что совпадает с расчетами [2] для чисто углеродных кластеров. Значение $E_g = 2.6 \text{ eV}$ для N = 16 удовлетворительно согласуется с экспериментально определенной величиной оптической щели [1].

При T = 0 все уровни связывающих π -состояний заняты электронами, и "лишний" электрон от атома Cu попадает на дно зоны антисвязывающих π^* -состояний, которые в отсутствие Cu были полностью свободными. Таким образом, интеркалированный кластер напоминает вырожденный полупроводник, у которого уровень Ферми находится в зоне проводимости. В этом случае проводимость *a*-C:H(Cu) на постоянном токе будет определяться туннелированием и (или) прыжками электро-

Рис. 2. Расщепление и сдвиг $2p_z$ - и 4*s*-уровней атомов С и Си (*a*) при π -взаимодействии в графеновом слое (*b*) и при π -взаимодействии в графеновом слое и σ -взаимодействии в объеме нанокластера (*c*) для кластера, содержащего 10 атомов С.

Рис. 3. То же, что на рис. 2, для нанокластера, содержащего 16 атомов С.

нов между "металлизированными" медно-углеродными кластерами. Для анализа этого механизма могут, повидимому, быть использованы подходы теории протекания. Металлизация медью графитоподобных кластеров должна привести к резкому росту проводимости *a*-C:H, что и наблюдается на эксперименте [1], причем энергия активации проводимости должна быть существенно меньше оптической щели. Возрастание проводимости с ростом содержания Си в *a*-C:H \langle Cu \rangle можно ожидать до тех пор, пока растет концентрация медно-углеродных графитоподобных кластеров.

3. Поляризация нанокластера медью

Атом Cu в рассматриваемых полупроводниковых нанокластерах ведет себя как донор, уровень которого попадает в область незанятых π^* -состояний атомов C, так что этот донор оказывается частично ионизованным. При интеркаляции происходит смещение и перераспределение заряда валентных электронов между атомами кластера. В методе ЛКАО эффективный заряд e_i^* атома *i* легко оценить через квадраты модулей коэффициентов u_{ii}

$$e_i^*/e = (N+1)^{-1} \sum_j (2|u_{\pi i}|^2 + |u_{\pi^* i}|^2),$$

где суммирование ведется по всем занятым состояниям j (l -заряд электрона).

Результаты оценок e_i^*/e приведены на рис. 1, *a*, *b* в виде чисел, указанных рядом с соответствующими атомами. В обоих кластерах положительный заряд иона Си оказывается чуть больше +0.5е, а фрагмент графенового слоя как целое имеет такой же, но противположный по знаку заряд. Таким образом, в кластере в направлении нормали к слою z возникает отличная от нуля компонента P_z статического дипольного момента P. Для кластеров с N = 10 и 16 величина $P_z/ed_{\rm CC} = 0.36$ и 0.38 соответственно. В общем случае, когда атом Си расположен не на оси симметрии кластера, нормальной к слою, статический дипольный момент возникает и в плоскости слоя ху. Для рассматриваемых кластеров, симметричных относительно плоскости хг или уг, этот дипольный момент параллелен либо оси x (N = 10), либо у (N = 16). Оценки для соответствующих компонент дают $P_x/ed_{\rm CC} = -0.95$ и $P_y/ed_{\rm CC} = -1.53$. В отсутствие корреляции между кластерами, при случайном характере их геометрии и взаимного расположения, суммарная поляризация в а-С:Н равна нулю.

Колебательные свойства нанокластеров с медью

Внутренняя поляризация графитоподобного нанокластера, интеркалированного Cu, должна приводить к дипольной активности колебаний атомов. При этом в ИК спектрах a-C:H \langle Cu \rangle должны наблюдаться новые полосы, отсутствовавшие в чистом a-C:H. В частности, становится понятным наблюдаемое на эксперименте [3] резкое возрастание интенсивности так называемой полосы G (1580 cm⁻¹) в ИК спектре поглощения a-С:Н при легировании медью. Как известно, эта полоса, связанная с симметричными колебаниями связей С-С в плоскости углеродных колец графитоподобных нанокластеров, активна в рамановском спектре а-С:Н и практически не видна в поглощении. Заметим, что в одиночном бесконечном графеновом слое соответствующая мода E_{2g} в поглощении вообще запрещена [6]. В присутствии атома Си симметрия кластера понижается: атомы углеродных колец становятся существенно неэквивалентными (рис. 1), их колебания приводят к изменению компоненты дипольного момента в плоскости слоя и таким образом должны разрешаться в поглощении. Полосы G в поглощении и рамановском рассеянии *a*-C:H(Cu) с хорошей точностью совпадают по спектральному положению. Поэтому можно полагать, что при интеркаляции медью геометрия углеродных колец, а следовательно и σ -связи С–С, не претерпевают больших изменений, как и предполагалось в нашей модели. Эффект активации полосы G в поглощении наблюдался при легировании a-С: Н азотном, однако в отличие от меди атомы N встраиваются в углеродные кольца с образованием связей C-N [7].

Таким образом, показано, как интеркаляция графитоподобных нанокластеров в а-С:Н медью меняет электронные и колебательные свойства самих кластеров и всей системы в целом. Наша упрощенная модель относится к малым концентрация Си, так как не учитывает возможность попадания в один кластер двух или нескольких атомов Си. В этом случае необходимо принимать во внимание взаимодействие между атомами интеркалянта, которое заметно скажется на энергии связи меди в кластере. Для одного атома Си эта энергия оценивалась на уровне 0.4-0.7 eV, в зависимости от размеров графенового фрагмента [5]. При высоком содержании Си кластер может не удержать интеркалянт, и вводимая медь конденсируется в чисто медные кластеры. Это сопровождается резким падением проводимости a-C:H(Cu), если концентрация таких кластеров в матрице а-С:Н окажется ниже порога протекания. Такой эффект наблюдался на эксперименте при содержании Cu ~ 15 at.% [1].

Работа поддержана РФФИ (N 97-02-18110).

Список литературы

- V.I. Ivanov–Omskii. In: Diamond–Based Composites and Related Materials / Ed. by M. Prelas et al. NATO ASI series, 3. High Technology. (1997). V. 38. P. 171.
- [2] J. Robertson, E.P. O'Reilly. Phys. Rev. B35, 2946 (1987).
- [3] В.И. Иванов-Омский, Г.С. Фролова. ЖТФ 65, 186 (1995).
- [4] В.И. Иванов-Омский. Э.А. Сморгонская. ФТП 32, 931 (1998).
- [5] W.A. Harrison. Electronic Structure and the Properties of Solids / Ed. by W.H. Freeman and Company. San Francisco (1980).
- [6] R.J. Nemanich, G. Lucovsky, S.A. Solin. Solid State Commun. 23, 117 (1977).
- [7] J.H. Kaufman, S. Metin, D.D. Saperstein. Phys. Rev. B39, 13053 (1989).